首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 686 毫秒
1.
黑河流域陆地水储量变化对流域下游等周边区域水资源的合理利用以及经济和社会发展等有着重要的意义.本文利用2003年1月至2013年12月的GRACE RL05数据反演了黑河流域陆地水储量长时间序列的变化,并针对重力场模型和数据处理中产生的信号泄漏问题,采用Forward-Modeling方法进行了改正并恢复泄漏信号;将GRACE获得的泄漏信号恢复前后的黑河流域水储量变化结果与全球水文模型GLDAS和CPC进行比较分析,结果表明泄漏信号改正后的结果与水文模型结果的时间序列相关性均有明显提高,从其空间分布结果可以看出Forward-Modeling方法有效地恢复初始信号、增强被湮没的信号,泄漏信号误差减小;通过分析黑河流域水储量变化的长时间序列结果,发现其具有明显的阶段性变化特征,即2003—2006年呈明显下降趋势,约为-0.86cm·a-1,在2007—2010年趋于平衡状态,而2011—2013年则呈现缓慢上升趋势约为0.14cm·a-1;联合GRACE数据和GLDAS数据反演了黑河流域地下水储量变化,并与全球降雨数据GPCC进行了比较分析,两者相关性可达到0.88以上.  相似文献   

2.
近年来极端气候事件的频发对全球和区域性水循环产生了重大影响,特别是2005—2017年间两次强ENSO(El Nino-Southern Oscillation)事件使得全球陆地水储量出现了较大的年际波动.GRACE(Gravity Recovery and Climate Experiment)重力卫星随着数据质量的提高、后处理方法的完善和超过十年的连续观测,捕捉陆地水储量异常的能力明显提高,这为研究2005—2017年间两次强ENSO事件对中国区域陆地水储量变化的影响提供了观测基础.本文综合利用GRACE卫星重力数据、GLDAS水文模型和实测降水资料分析了中国区域陆地水储量年际变化和与ENSO的关系.研究发现:长江流域中、下游地区和东南诸河流域与ENSO存在较高的相关性,与ENSO的相关系数最大值分别为0.55、0.78、0.70,较ENSO分别滞后约7个月、5个月和5个月.其中长江流域下游地区与ENSO的相关性最强,2010/11 La Nina和2015/16 El Nino两次强ENSO事件使得陆地水储量分别发生了约-24.1亿吨和27.9亿吨的波动.在2010/11 La Nina期间,长江流域下游地区和东南诸河流域陆地水储量异常约在2011年4—5月达到谷值,而长江流域中游地区晚1~2月达到谷值.在2015/16 El Nino期间,长江流域中、下游地区和东南诸河流域陆地水储量从2015年9月到2016年7月持续出现正异常信号.其中,2015年秋冬季(2015年9月至2016年1月)陆地水储量异常明显是受此次El Nino同期影响的结果;2016年春季(4—5月)陆地水异常是受到此次厄尔尼诺峰值的滞后影响所致;2016年7月的陆地水储量异常则与西北太平洋存在的异常反气旋环流有关.  相似文献   

3.
局部Slepian函数是将局部区域内的地球物理信号转化为空间谱的一种方法,其可以保证在球面上局部范围内获得最优谱平滑解,非常适用于局部范围地球物理信号的研究.本文利用中国陆态网西南地区72个测站的连续GPS观测资料分析川云渝地区陆地水负荷形变特征,并基于Slepian函数方法解算60阶的空间谱基函数,结合弹性质量负荷理论研究了川云渝地区2011年至2015年陆地水储量变化的时空分布模式.针对Slepian函数的边界效应问题,本文使用GLDAS格网数据计算得到站点处垂直负荷位移时间序列,然后利用该位移数据来进行水储量变化恢复实验,结果表明当边界扩充为3°时能较好地恢复GLDAS模型输出的陆地水储量变化.通过对比区域内GPS、GRACE、GLDAS得到的等效水高以及降雨数据,发现季节性降水是陆地水变化的一个重要驱动因子,GPS反演结果与GRACE和GLDAS数据具有较强的空间一致性.云南地区周年变化要强于川渝地区,其中云南西部的山区陆地水变化最大,约为30 cm,最小为川北以及重庆地区仅为7 cm.相较于GPS反演结果,GRACE与GLDAS明显低估了陆地水储量的季节性变化,分别达到24%和47%.比较分析地区内平均等效水高时间序列的相位发现,GPS得到的陆地水变化与降雨数据一致性较好,而GRACE与GLDAS存在一到两个月左右的时延.同时GPS能较好的探测出2015年1月左右南方地区大范围的强降水,而GRACE与GLDAS并没有体现出该现象,说明GPS能更为灵敏地探测到局部地区陆地水的变化.在站点等效水高时间序列上,GPS与GRACE的相关性总体上要优于GPS与GLDAS,陆地水周年变化较大的云南和四川西部地区站点三种数据间相关性较好,而其他季节性信号不明显的地区则相关性较差.本文的研究表明运用GPS-Slepian方法能够独立地监测高时空分辨率的陆地水储量变化,是作为当前补充GRACE观测资料空缺期的有益尝试.  相似文献   

4.
本文利用GRACE (Gravity Recovery and Climate Experiment) 卫星重力资料研究了亚马逊流域2002-2010年的陆地水变化,并与水文模式和降雨资料进行了比较分析.在年际尺度上,GRACE结果表明:2002-2003年和2005年,亚马逊流域发生明显的干旱现象;2007年至2009年,陆地水呈逐年增加的趋势,并在2009年6月变化值达到最大,为772±181 km3;自2009年6月至2010年12月,陆地水总量又急剧减少了1139±262 km3,这相当于全球海平面上升3.2±0.7 mm所需的水量.水文模式得到的亚马逊流域陆地水在2010年也表现出明显的减少.降雨资料与GRACE观测资料有很好的一致性.在2005年和2010年的干旱期,亚马逊流域的降雨显著减少,说明降雨是亚马逊流域陆地水变化的重要因素.此外,本文采用的尺度因子的方法有效地降低了GRACE后处理误差的影响.  相似文献   

5.
GRACE(Gravity Recovery And Climate Experiment)卫星计划为监测陆地水储量变化提供了有效技术手段.本文采用2003至2010年共计8年的GRACE月重力场模型反演中国西南区域陆地水储量变化,与GLDAS(Global Land Data Assimilation System)全球水文模型进行对比分析,其结果在时空分布上均符合较好,同时在2009年秋至2010年春该区域陆地水储量均呈现明显减少,与该时段云贵川三省的干旱事件相一致;比较分析了2009年秋至2010年春GRACE反演陆地水储量变化与TRMM(Tropical Rainfall Measuring Mission)合成数据计算的月降雨量的时空分布,两组结果均与西南干旱事件对应时段与区域十分吻合;对近8年的陆地水储量变化与月降雨量数据进行相关性分析,其结果表明陆地水储量变化与降雨量强相关,即降雨量是导致陆地水储量变化的主要因素;分析该区域地表温度变化,结果显示2009年9月至2010年3月地表温度均比历史同期高,地表温度的升高加剧了陆地水储量的减少.  相似文献   

6.
陆地水储量是赋存在陆地上各种形式水的综合体现,研究其时空变化对认识区域水循环过程和水资源调控等具有重要意义。然而现有陆地水储量变化数据实际分辨率较低,限制了其在中小流域或地区中的应用。针对这一问题,本文基于GRACE重力卫星和其后续卫星GRACE-FO反演的陆地水储量变化数据,首先采用随机森林模型,分别基于格点、区域(流域)和区域(全国)3种空间降尺度思路将GRACE数据降尺度至0.25°×0.25°,后结合GLDAS模型数据,基于水量平衡原理计算得到地下水储量变化数据,最后基于降尺度模型模拟效果和实测地下水位数据评估3种降尺度思路在全国的适用性。结果表明:随机森林模型能够较好地模拟驱动数据(降水、气温、植被条件指数和土壤水储量)与GRACE数据的统计关系,验证期格点降尺度思路的平均相关系数总体在0.6左右,区域降尺度思路的平均纳什效率系数、相关系数和均方根误差分别>0.5、>0.75和<6.6 cm,3种空间降尺度思路的模拟精度均满足基本要求;2003—2021年间,GRACE数据、格点降尺度、区域降尺度(流域)和区域降尺度(全国)得到的我国陆地水储量亏缺量分别约为...  相似文献   

7.
GRACE重力卫星自2002年3月发射至今,已进行了十多年的连续观测,由此获得的重力场变化数据被广泛地应用于研究地表河流及地下水储量变化、南极和格林兰岛冰盖厚度以及全球海平面变化等.本文从GRACE重力卫星数据的处理方法入手,对其数据特点、限制条件和水文模型计算方法等问题进行了系统总结,并针对近年来利用GRACE卫星数据开展的相关研究,从估算全球水储量的变化、区域水储量变化、地下水变化以及陆地河流流域的水储量变化等方面对相关研究和应用进行了简要评述.最后,对使用GRACE卫星数据反演陆地水储量的验证方法和存在的问题进行讨论.本文对于全面了解近年来应用GRACE卫星数据研究陆地水储量变化方面的相关进展具有参考意义.  相似文献   

8.
河西走廊由疏勒河流域、黑河流域和石羊河流域组成,水资源保护对河西走廊生态平衡和经济发展有着重要意义.本文利用JPL GRACE/GRACE-FO Mascon模型反演该区域陆地水储量的时空变化,结合GLDAS模型、实测地下水位和冰川水模型等数据对陆地水储量进行水平衡分析及时空特征变化分析,结果表明:(1)2002-04—2020-01间由于降水和冰川融水的补充,疏勒河流域南部和黑河大部分区域陆地水储量空间变化呈上升趋势,而蒸散消耗与农业扩张则导致疏勒河流域北部和石羊河流域陆地水储量下降;(2)通过水平衡研究发现人类耗水是疏勒河流域、黑河流域和石羊河流域陆地水储量变化的重要因素,平均贡献率分别为-24.49%、-47.20%和-43.29%;(3)河西走廊水资源治理政策的实施减少了农业灌溉耗水量、控制了耕地面积的扩张、抑制了地下水储量的消耗.  相似文献   

9.
监测流域水储量的变化对研究流域水资源变化和水平衡具有重要意义,而GRACE重力卫星为流域尺度水储量变化的研究提供了新的手段.本文利用2003-2012年近十年来洞庭湖流域GRACE RL05时变重力场数据并结合30个气象站点的降水量数据,反演洞庭湖流域水储量时空变化特征及其与降水量之间的联系,并采取趋势分析法,揭示了该流域近10年来水储量变化趋势.结果表明:在空间上,洞庭湖流域水储量变化呈现总体从东北向西南递减格局.在时间上,水储量变化与降水量变化之间存在明显的季节性变化规律,两者变化过程基本一致,但水储量变化峰值出现滞后于降水量峰值一个月左右.近十年来洞庭湖流域水储量整体呈逐年上升趋势,平均每月上升0.5 mm,其中秋季增加幅度最大,为26.07 mm·a-1,全球变暖,降水量增加,导致该流域水储量变化增大.  相似文献   

10.
利用GRACE空间重力测量监测长江流域水储量的季节性变化   总被引:13,自引:0,他引:13  
2002年3月成功发射的美德合作重力卫星计划GRACE(Gravity Recovery And Climate Experiment)已经开始提供阶次数达到120、时间分辨率为约1个月的地球重力场模型时变序列. GRACE的星座由两颗相距约220 km, 高度保持300~500 km, 而倾角保持约90°的近极轨卫星组成. 由于采用星载GPS和非保守力加速度计等高精度定轨技术以及高精度的星-星跟踪数据反演地球重力场, 在几百公里和更大空间尺度上, GRACE重力场的精度大大超过此前的卫星重力观测. 根据GRACE时变重力场反演的地球系统质量重新分布对固体地球物理、海洋物理、气候学以及大地测量等应用有重要的意义. 在长期时间尺度上, GRACE的结果可用于研究北极冰的变化, 并进而研究极冰融化对全球气候变化, 特别是对海平面长期变化的影响. 在季节性时间尺度上, 利用GRACE重力场的精度足以揭示平均小于1 cm的地表水变化或小于1 mbar的海底压强变化. 除了巨大的社会和经济效益外, 这些变化对了解地球系统的物质循环(主要是水循环)和能量循环有非常重要的意义. 利用2002年4月至2003年12月之间共15个月的GRACE时变重力场揭示了全球水储量的明显季节性变化, 并重点分析了中国长江流域水储量的变化. 结果表明长江流域水储量周年变化幅度可达到3.4 cm等效水高, 其最大值出现在春季和初秋. 根据GRACE时变重力场反演的水储量变化与两个目前最好的全球水文模型的符合相当好, 其差别小于1 cm等效水高. 研究表明现代空间重力测量技术在监测一些大流域的水储量变化(如长江流域)、全球水循环和气候变化上有巨大的应用潜力.  相似文献   

11.
本文利用CSR发布的GRACE RL06时变重力场模型,结合两种水文模式、卫星测高、降雨和蒸散等多源数据,从多个角度综合系统地分析维多利亚湖流域2003-01-2017-06的陆地水储量变化.比较了正向建模方法和单一尺度因子对泄漏误差的改正效果,经对比采用正向建模方法在此流域效果更好.基于多源数据得出以下三点与此前研究...  相似文献   

12.
Seasonal water storage change of the Yangtze River basin detected by GRACE   总被引:13,自引:0,他引:13  
1 Introduction Large-scale mass redistribution, or temporal varia- tion of mass within the Earth system, the driving force of interactions between solid Earth and geophysical fluids envelope (i.e., atmosphere, ocean, and hydro- sphere), is an important geophysical process critical to human life. Most of the interactions between solid Earth and the atmosphere/oceans happen at seasonal and inter-annual time scales. One important contribu- tor of mass redistribution at seasonal and inter-annual …  相似文献   

13.
Global Terrestrial Water Storage Changes and Connections to ENSO Events   总被引:1,自引:0,他引:1  
Improved data quality of extended record of the Gravity Recovery and Climate Experiment (GRACE) satellite gravity solutions enables better understanding of terrestrial water storage (TWS) variations. Connections of TWS and climate change are critical to investigate regional and global water cycles. In this study, we provide a comprehensive analysis of global connections between interannual TWS changes and El Niño Southern Oscillation (ENSO) events, using multiple sources of data, including GRACE measurements, land surface model (LSM) predictions and precipitation observations. We use cross-correlation and coherence spectrum analysis to examine global connections between interannual TWS changes and the Niño 3.4 index, and select four river basins (Amazon, Orinoco, Colorado, and Lena) for more detailed analysis. The results indicate that interannual TWS changes are strongly correlated with ENSO over much of the globe, with maximum cross-correlation coefficients up to ~0.70, well above the 95% significance level (~0.29) derived by the Monte Carlo experiments. The strongest correlations are found in tropical and subtropical regions, especially in the Amazon, Orinoco, and La Plata basins. While both GRACE and LSM TWS estimates show reasonably good correlations with ENSO and generally consistent spatial correlation patterns, notably higher correlations are found between GRACE TWS and ENSO. The existence of significant correlations in middle–high latitudes shows the large-scale impact of ENSO on the global water cycle.  相似文献   

14.
Quantitative estimates of the groundwater depletion and droughts in the Tigris‐Euphrates Basin (TEB) can be useful for sustainably managing its water resources. Here, data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to infer the monthly changes in the total water storage of the TEB from January 2003 to December 2015. Additionally, the data of altimetry and output from land surface models are used to remove the contributions from lake water changes and other hydrological factors to obtain the total groundwater depletion (TGWD), human‐driven groundwater depletion (HGWD), and climate‐driven groundwater depletion. We conclude that an alarming rate of decrease in the total water storage and the loss of TGWD have an “accelerating” trend, as the trend during 2007 to 2015 was 3.6 times that during 2003 to 2006. Moreover, the HGWD is 116.09 Gt, which accounts for 98% of the TGWD. Finally, the total storage deficit index (TSDI) is derived from the GRACE data to characterize the drought of the TEB. The results show that TSDI agrees well with the actual drought rather than the Palmer drought severity index (PDSI) and that the TEB has been undergoing a severe drought since September 2007 according to both the TSDI and PDSI. The research in this study provides an effective and unique method for understanding the hydrological processes and sustainable use of water resources in regions or countries with little data, which is essential for more efficient, sustainable, and cross‐boundary cooperative water resource management.  相似文献   

15.
Freshwater resources in the arid Arabian Peninsula, especially transboundary aquifers shared by Saudi Arabia, Jordan, and Iraq, are of critical environmental and geopolitical significance. Monthly Gravity Recovery and Climate Experiment (GRACE) satellite‐derived gravity field solutions acquired over the expansive Saq transboundary aquifer system were analysed and spatiotemporally correlated with relevant land surface model outputs, remote sensing observations, and field data to quantify temporal variations in regional water resources and to identify the controlling factors affecting these resources. Our results show substantial GRACE‐derived terrestrial water storage (TWS) and groundwater storage (GWS) depletion rates of ?9.05 ± 0.25 mm/year (?4.84 ± 0.13 km3/year) and ?6.52 ± 0.29 mm/year (?3.49 ± 0.15 km3/year), respectively. The rapid decline is attributed to both climatic and anthropogenic factors; observed TWS depletion is partially related to a decline in regional rainfall, while GWS depletions are highly correlated with increasing groundwater extraction for irrigation and observed water level declines in regional supply wells.  相似文献   

16.
Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 km3/year during 1998–2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 km3/year during 1998–2002. It is the sum of the net abstraction of 250 km3/year of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/year of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on groundwater table observations, and with estimates of total water storage variations from the GRACE satellites mission. Due to the difficulty in estimating area-averaged seasonal groundwater storage variations from point observations of groundwater levels, it is uncertain whether WaterGAP underestimates actual variations or not. We conclude that WaterGAP possibly overestimates water withdrawals in the High Plains aquifer where impact of human water use on water storage is readily discernible based on WaterGAP calculations and groundwater observations. No final conclusion can be drawn regarding the possibility of monitoring water withdrawals in the High Plains aquifer using GRACE. For the less intensively irrigated Mississippi basin, observed and modeled seasonal groundwater storage reveals a discernible impact of water withdrawals in the basin, but this is not the case for total water storage such that water withdrawals at the scale of the whole Mississippi basin cannot be monitored by GRACE.  相似文献   

17.
As a critical water discharge term in basin‐scale water balance, accurate estimation of evapotranspiration (ET) is therefore important for sustainable water resources management. The understanding of the relationship between ET and groundwater storage change can improve our knowledge on the hydrological cycle in such regions with intensive agricultural land usage. Since the 1960s, the North China Plain (NCP) has experienced groundwater depletion because of overexploitation of groundwater for agriculture and urban development. Using meteorological data from 23 stations, the complementary relationship areal evapotranspiration model is evaluated against estimates of ET derived from regional water balance in the NCP during the period 1993–2008. The discrepancies between calculated ET and that derived by basin water balance indicate seasonal and interannual variations in model parameters. The monthly actual ET variations during the period from 1960 to 2008 are investigated by the calibrated model and then are used to derive groundwater storage change. The estimated actual ET is positively correlated with precipitation, and the general higher ET than precipitation indicates the contributions of groundwater irrigation to the total water supply. The long term decreasing trend in the actual ET can be explained by declining in precipitation, sunshine duration and wind speed. Over the past ~50 years, the calculated average annual water storage change, represented by the difference between actual ET and precipitation, was approximately 36 mm, or 4.8 km3; and the cumulative groundwater storage depletion was approximately 1700 mm, or 220 km3 in the NCP. The significantly groundwater storage depletion conversely affects the seasonal and interannual variations of ET. Irrigation especially during spring cause a marked increase in seasonal ET, whereas the rapid increasing of agricultural coverage over the NCP reduces the annual ET and is the primary control factor of the strong linear relationship between actual and potential ET. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Time-variable gravity data of the GRACE (Gravity Recovery And Climate Experiment) satellite mission provide global information on temporal variations of continental water storage. In this study, we incorporate GRACE data for the first time directly into the tuning process of a global hydrological model to improve simulations of the continental water cycle. For the WaterGAP Global Hydrology Model (WGHM), we adopt a multi-objective calibration framework to constrain model predictions by both measured river discharge and water storage variations from GRACE and illustrate it on the example of three large river basins: Amazon, Mississippi and Congo. The approach leads to improved simulation results with regard to both objectives. In case of monthly total water storage variations we obtained a RMSE reduction of about 25 mm for the Amazon, 6 mm for the Mississippi and 1 mm for the Congo river basin. The results highlight the valuable nature of GRACE data when merged into large-scale hydrological modeling. Furthermore, they reveal the utility of the multi-objective calibration framework for the integration of remote sensing data into hydrological models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号