首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
南极海冰与气候   总被引:1,自引:0,他引:1  
在极区,海冰的形成在海洋上部和大气下部之间构成了新的交界面,改变了大洋表面的辐射平衡和能量平衡,隔离了海洋与大气之间的热交换和水汽交换;海冰冻融过程影响着大洋温、盐流的形成和强度;海冰对南大洋和南极大陆气象、气候有重要的影响,在气候环境系统中起着重要的作用。南极海冰作用区约占南半球雪冰作用区面积的58%,约占地球表面积的3.58%。其中,一年生海冰约占南极海冰区分布面积的83%;其分布面积从夏末2月份最小时的3×106 km2左右,到9月份冬末最大时的18×106 km2左右,一年中季节变化幅度可达15×106 km2,季节变化率>500%。海冰分布区域的年际变化较大。南极海冰区是影响季节和年际全球气候环境变化的重要区域。当前,国际南极海冰与气候研究的核心问题是海冰物理过程和在海冰区的海洋—大气相互作用。结合目前承担的研究课题,对国际南极海冰与气候研究的前沿动态和相关的国际计划进行了综述。  相似文献   

2.
全球冰-海洋耦合模式的海冰模拟   总被引:18,自引:0,他引:18  
海冰是全球气候系统的重要分量 ,与大气和海洋的相互作用 ,直接影响大气环流和海洋环流 ,对气候及其变化具有重要影响。文中依据冰、海洋间的热力、动力耦合相互作用 ,改进冰海洋热力耦合方案 ,利用由中国科学院大气物理研究所的 30层海洋模式和基于Flato空化流体流变学的海冰动力模式和Hibler表面热收支平衡的零层海冰热力模式 ,建立全球冰海洋耦合模式。利用大气月平均气候资料 ,利用冰海洋耦合模式对全球海冰的分布及其季节性变化、海冰漂移进行了耦合模拟和分析。模拟的南半球海冰分布及季节变化与实际分析资料非常接近 ,比 2 0层冰海洋耦合模式的结果有显著改进。北半球海冰范围偏小 ,但季节变化的量值与实际相当一致。模拟的海冰速度场反映了南、北半球海冰漂移的主要特征 ,如北极的穿极漂流和南大洋的绕极环流等。对海冰密集度的分析表明 ,模拟结果得以改进原因在于改进的冰海洋热力耦合方案增强了融冰期冰海洋耦合系统海洋热通量增加—密集度减小—能量收支增加的正反馈机制。  相似文献   

3.
北极海冰与全球气候变化   总被引:7,自引:2,他引:7  
李培基 《冰川冻土》1996,18(1):72-80
最近有关北极海冰在全球气候系统中作用的研究发现,北冰洋边缘海域大洋深水的形成与海冰发育有关,海冰冻融过程对盐度层结具有重要影响,海冰变化可引起盐度突变层的灾变和热盐环流的突然停止,热盐环流的变化与北大西洋海冰10年际变化相联系,北大西洋气候的不稳定性与热盐环流变化密切相关。北极海冰-海洋-大气间耦合作用,使北极海冰构成了北大西洋和全球气候反馈循环中的重要环节。  相似文献   

4.
针对极地冰雪显著影响中低纬气候的事实,利用1979-2017年长江流域116站降水资料和美国国家冰雪数据中心海冰资料,通过奇异值分解等统计学方法,研究北极海冰对长江流域主汛期降水的影响及可能的机制,结果表明:冬春季节,巴伦支海和鄂霍次克海海冰面积偏多、波佛特海海冰面积偏少时,主汛期长江上中游干流、汉江上游和雅砻江降水偏多;北极群岛、楚科奇海和拉普捷夫海以北海域海冰面积偏多时,主汛期两湖水系降水偏多,嘉陵江上游、汉江上游降水偏少;反之亦然。可能的机制为冬春季关键区海冰变化通过影响湍流热通量引发大气能量波动,这种波动以大气波列形式向东亚传播,影响东亚地区夏季的大气环流和水汽输送,从而间接影响长江流域主汛期降水。应用多元回归法,以关键区海冰面积作为预测因子建立4个流域内主汛期降水趋势预测模型,模型对预报区降水的定量预测有明显的波动,但对预报区总体的降水趋势有较好的预测效果。  相似文献   

5.
Kjellström, E., Brandefelt, J., Näslund, J.‐O., Smith, B., Strandberg, G., Voelker, A. H. L. & Wohlfarth, B. 2010: Simulated climate conditions in Europe during the Marine Isotope Stage 3 stadial. Boreas, 10.1111/j.1502‐3885.2010.00143.x. ISSN 0300‐9483. State‐of‐the‐art climate models were used to simulate climate conditions in Europe during Greenland Stadial (GS) 12 at 44 ka BP. The models employed for these simulations were: (i) a fully coupled atmosphere–ocean global climate model (AOGCM), and (ii) a regional atmospheric climate model (RCM) to dynamically downscale results from the global model for a more detailed investigation of European climate conditions. The vegetation was simulated off‐line by a dynamic vegetation model forced by the climate from the RCM. The resulting vegetation was then compared with the a priori vegetation used in the first simulation. In a subsequent step, the RCM was rerun to yield a new climate more consistent with the simulated vegetation. Forcing conditions included orbital forcing, land–sea distribution, ice‐sheet configuration, and atmospheric greenhouse gas concentrations representative for 44 ka BP. The results show a cold climate on the global scale, with global annual mean surface temperatures 5 °C colder than the modern climate. This is still significantly warmer than temperatures derived from the same model system for the Last Glacial Maximum (LGM). Regional, northern European climate is much colder than today, but still significantly warmer than during the LGM. Comparisons between the simulated climate and proxy‐based sea‐surface temperature reconstructions show that the results are in broad agreement, albeit with a possible cold bias in parts of the North Atlantic in summer. Given a prescribed restricted Marine Isotope Stage 3 ice‐sheet configuration, with large ice‐free regions in Sweden and Finland, the AOGCM and RCM model simulations produce a cold and dry climate in line with the restricted ice‐sheet configuration during GS 12. The simulated temperature climate, with prescribed ice‐free conditions in south‐central Fennoscandia, is favourable for the development of permafrost, but does not allow local ice‐sheet formation as all snow melts during summer.  相似文献   

6.
The Antarctic and the Arctic regions play a key role in global sea level change and carbon cycle, and reserve key information of the Cenozoic transition from a green-house to an ice-house Earth. They have become hot spots in earth science studies. The geological drilling projects in both polar regions (e.g., DSDP/ODP/IODP/ICDP) have achieved remarkable successes, which have freshened the knowledge of global environmental and climatic evolution. Along with the Cenozoic global cooling, the timing of glaciation was almost synchronous on both the Antarctic and the Arctic. Accompanied with the Antarctic ice sheet build-up and increased terrestrial weathering, the enhanced formation of Antarctic Bottom Water exerts significant impact on global ocean circulation. The volume of unstable West Antarctic Ice Sheet fluctuates during glacial-interglacial periods showing 40 ka obliquity cycles, its volume significantly reduced or collapsed during several peak interglacials or long warm intervals. The Southern Ocean plays a significant role modulating atmospheric CO2 concentration, global deep water circulation and nutrient distribution, productivity at different time scales. Sea level responses to the waxing and waning of polar ice sheets at different time intervals were tested, which provide valuable clue for predicting future sea level changes. The upcoming IODP drilling projects on polar regions will keep focusing on the high latitude ice sheet development, Southern Ocean paleoceanographic evolution, land-ocean linkages in the Arctic, and the impacts on the global climate, which will provide important boundary conditions for predicting global future climate evolution.  相似文献   

7.
隋伟辉  赵平 《第四纪研究》2005,25(5):645-654
文章利用Zhao等的模拟结果,进一步研究了在末次盛冰期(LGM)情景下汪品先和CLIMAP两种重建海洋表面温度(SST)资料差异对亚洲夏季风的影响。模拟结果表明:在LGM情景下西太平洋海域SST资料的不同对模拟的亚洲夏季风有着十分重要的作用。夏季,与CLGM方案相比,在WLGM方案中,当热带西太平洋SST较暖时,印度地区的大气热量出现显著增加,大气热量的这种变化,使得南非高压、南印度洋经向Hadley环流加强,伴随着索马里越赤道气流加强,也导致了印度季风区纬向季风环流的加强,从而造成了印度夏季风增强、降水增多;与较暖的热带西太平洋相对应,澳大利亚高压和120°E附近越赤道气流减弱,东亚季风区20°N以南经向季风环流加强、20°N以北经向季风环流减弱,指示着一个强的南海夏季风和较弱东亚副热带大陆夏季风。  相似文献   

8.
The GISP2, central Greealand, glaciochemical series (sodium, potassium, ammonium,calcium, magnesium, sulfate, nitrate and chloride) provides a unique view of the chemistry of the atmosphere and the history of atmospheric circulation over much of the Northern Hemisphere. Interpretation of this record reveals the controls on both high and low frequency climate events of the last 110 000 years.Changes in insolation on the order of the major orbital cycles control the long-term behavior of atmospheric circulation patterns through changes in ice volume (sea level) and related positive feedbacks.Events such as the Heinrich events (massive discharges of icebergs first identified in the marine record)are found to operate on a 6 100 year cycle due largely to the lagged response of ice sheets to changes in insolation and consequent glacier dynamics Rapid climate change events (massive reorganizations of atmospheric circulation) are demonstrated to operate on 1 450 year cycle possibly in response to internal oscillations in the ocean-atmosphere system or due to changes in solar output. Changes in insolation and associated positive feedbacks related to ice sheets assist in explaining favorable time periods and controls on the amplitude of these massive rapid climate change events.Comparison of the GISP2 glaciochemical series with an ice record from Taylor Dome in Antarctica indicates considerable similarity suggesting that both polar regions experience marked changes in climate. While preliminary evidence points to similar phasing of several major climate events in the two polar regions exact phasing cannot as yet be determined, because dating of Antarctic ice core records is not as well-established as the dating for Greenland ice cores.  相似文献   

9.
末次盛冰期东亚气候的成因检测   总被引:4,自引:0,他引:4       下载免费PDF全文
在国际古气候模拟比较计划设置的标准试验方案下,首先利用中国科学院大气物理研究所的全球大气环流模式(IAP-AGCM)模拟了末次盛冰期东亚气候状况,然后通过4组数值敏感性试验逐一模拟了大气CO2浓度、海洋表面温度(SST)和海冰、陆地冰盖和地形、东亚植被变化4项强迫因子的单独气候效应,进而对末次盛冰期东亚气候的成因进行了检测。结果表明,末次盛冰期除华南局部略有升温外,中国年均地表气温显著降低,降温幅度总体上向北增大,青藏高原处存在一个降温中心。其中,SST和海冰变化是华南局部略偏暖的主因,它同时导致了东亚其他区域地表气温的显著降低,特别是在东北亚地区;陆地冰盖和地形变化对于东亚地表气温的显著冷却作用主要体现在东亚的西北部;大气CO2浓度降低会引起东亚地区0.2~0.9℃的普遍降温;相对而言,东亚植被的降温作用(0.5~1.0℃)主要显现在中国40°N以南的区域。与此同时,SST和海冰变化能引起中国东部年均降水一定程度的减少,而大气CO2浓度、陆地冰盖和地形、东亚植被单独变化均不会显著影响东亚年均降水的分布状况,然而,上述四项因子的共同变化会通过协同作用引起中国东部年均降水的显著减少,西部地区降水则与现在差别不大。此外,末次盛冰期东亚夏季风的显著减弱源于SST和海冰变化,冬季风变化则可归因于SST和海冰、陆地冰盖和地形的变化。  相似文献   

10.
Associations between polar air cloud vortices (polar lows), as an indicator of intermediate-scale atmospheric activity, and the Antarctic sea ice, are examined for the Southern Hemisphere winter (June–September). Seven consecutive winters, spanning a period of marked interannual variability of the atmospheric circulation and sea ice (1977–83), are analyzed using sets of DMSP (Defense Meteorological Satellite Program) imagery. Relatively high frequencies of polar lows are found in ice-edge and adjacent ocean latitudes. There is some evidence for an equatorward shift in the latitude of maximum monthly polar low occurrence during the June to September period. Polar low incidence over the Southern Hemisphere on interannual time scales shows a close association with positive sea ice anomalies in the longitudes of more frequent cold air outbreaks from higher latitudes. This is particularly apparent for winters of strongly anomalous circulation, such as FGGE (1979) and the major ENSO of 1982–83. However, for individual cases on daily to weekly time scales, the feedback of cold air — sea ice advance — polar low development is not always evident, and implies that additional processes may contribute to polar air cyclogenesis in the marginal ice zone.  相似文献   

11.
渐新世初期,南极大陆在短时间内出现永久性冰盖,地球由两极无冰进入到单极有冰的特殊时期。越来越多的研究表明,这一重大气候转型事件与大气CO2及大洋碳储库的变化密切相关。南大西洋ODP 1263站碳酸钙软泥的粒度分析揭示了在渐新世初期发生的强烈碳酸盐溶解事件,碳酸盐溶解超前于底栖有孔虫氧同位素重值约100 ka,显示碳酸盐溶解事件先于南极冰盖的形成。由于碳酸钙泵的作用,碳酸盐的溶解会消耗大量的大气CO2,从而可能驱动了气候的快速变冷,导致南极大陆永久性冰盖发育。  相似文献   

12.
极地海冰的研究及其在气候变化中的作用   总被引:4,自引:2,他引:2  
极地海冰作为全球气候系统的一个重要组成部分,通过影响大洋表面的辐射平衡、物质平衡、能量平衡以及大洋温、盐流的形成和循环而影响全球气候变化.从最初研究极地海冰的强度和承载力到目前海/冰/气相互作用全球气候耦合模型的建立,使海冰变化和全球气候变化紧密结合起来.这些研究领域主要有:海冰及其表层雪的物理特性和过程、海冰区域生态特征、海冰区与气候相关的反照率和物质平衡研究以及海冰气候耦合模型等大的领域.模拟显示,21世纪因为全球变暖,南北极海冰都将减少.海冰和全球气候系统其它要素之间的相互作用问题、极地海冰的厚度季节性区域性分布问题、极地海冰边界及范围变化趋势问题、生消关键过程及其影响因素问题、冰间湖的作用以及海气相互作用等将是未来重要的研究方向.  相似文献   

13.
In spite of the importance of sea ice to polar climates, sea ice/climate studies have been limited in the past due to the lack of consistent, long-term, global sea ice records. Satellite passive microwave technology, available since the early 1970s, now provides the potential of generating the desired long-term data sets. With passive microwave data, global sea ice distributions can be mapped on a routine basis every few days, to a spatial resolution on the order of 30 km. The sea ice records generated so far from such satellite data have already been used in many scientific investigations, helping to quantify global sea ice distributions and their seasonal and interannual variations, and to illuminate possible ice/ocean and ice/atmosphere interactions. The results to date augur well for the possibilities once the satellite passive microwave record is long enough to form a true climatic data base.  相似文献   

14.
王跃  翦知湣  赵平 《第四纪研究》2009,29(2):221-231
利用美国NCAR CAM3大气环流模式,分析了末次盛冰期(LGM)两个不同的热带海表温度重建方案中,北半球冬季热带中、西太平洋对流活动及大气环流对暖池外(赤道东太平洋和热带大西洋)热带SST异常的敏感性。结果表明:  1)SST异常首先引起大气环流的改变。  赤道东太平洋对流层下沉增强,而作为经向补偿,副热带东太平洋上升运动增强,其中南半球尤为明显,同时南半球热带中、西太平洋上升运动增强,加剧了该区纬向逆时针环流,说明冰期热带海气耦合过程受气候背景场(如SST)影响很大;   2)大气环流格局改变引起热带中西太平洋的大气加热、对流活动、表层风场及降雨的巨大变化。  140°E以西的婆罗洲和菲律宾区域,总的大气加热减少是由于对流与辐射加热减少所致,对应于该区风场辐散和降雨减少;   而140°E以东的南半球热带中、西太平洋,大气吸收热量增加,对流与辐射加热均增强,总降雨量也随之增加,反映该区赤道辐合带南移并增强。该项研究为探索热带太平洋在冰期/间冰期旋回中的古海洋学变化提供了新的数据支撑。此外,不同重建SST对赤道辐合带的影响比较大,因此利用重建SST进行数值模拟或者利用耦合模式研究LGM热带海气相互作用时,应该十分重视全球热带SST分布特征。  相似文献   

15.
Synoptically mapped faunal abundance and faunal composition data, derived from a suite of 24 Norwegian Sea cores, were used to derive sea-surface temperatures for the last glacial maximum (18,000 B.P.), the last interglacial (120,000 B.P.), and isotope stage 5a (82,000 B.P.). Surface circulation and ice cover reconstructions for these three times, deduced from the sea-surface temperatures, suggest the following conclusions: (1) During glacial periods, Norwegian Sea surface circulation formed a single, sluggish, counterclockwise gyre that was caused by wind drag on the ubiquitous sea ice cover; (2) the last interglacial was characterized by a circulation pattern similar to that of today except that the two counterclockwise gyres were displaced toward the east and were more vigorous than they are today. This circulation pattern forced the Norwegian Current into a position close to the coast of Norway and permitted formation of a strong east-west temperature gradient close to the Scandinavian landmass; (3) interglacial periods prior to 120,000 B.P. had similar climatic conditions to the 82,000 B.P. level and were characterized by a weak two-gyre circulation pattern. The southern gyre, driven by wind stress in summer months, was ice covered in winters. The northern gyre had little open water even in summers and was primarily formed by wind drag on sea ice. Atmospheric modifications resulting from these circulation patterns and sea ice conditions produced varying climatic conditions in Scandinavia during interglacials prior to the Holocene. The climate was probably warmer and moister during the last interglacial (Eemian) than it is today. Other interglacials during the last 450,000 years, but prior to the Eemian, were probably colder and drier as the Norwegian Sea was not an important source of heat and moisture.  相似文献   

16.
Back in the mid-nineteenth century British explorer James Clark Ross took his ships, HMS Terror and HMS Erebus , farther south than anyone else had been. He now lends his name to James Ross Island, a part-volcanic edifice that rises out of the sea off the north-east tip of the Antarctic Peninsula. The island records a geological history dating back to the Cretaceous, though its great peaks are volcanic. The most recent rocks of the island record a monumental struggle between fire and ice, the volcanoes, and the ice sheets that cover them. The glacigenic sediments that are interspersed with the volcanic rocks contain rich fossil assemblages which suggest that at times, the climate was warmer, with the ice retreating. Their study may help us to delimit the patterns of climate change in the Antarctic Peninsula region as Earth's global climate warms.  相似文献   

17.
Antarctic sea ice cover plays an important role in shaping the earth’s climate, primarily by insulating the ocean from the atmosphere and increasing the surface albedo. The convective processes accompanied with the sea ice formation result bottom water formation. The cold and dense bottom water moves towards the equator along the ocean basins and takes part in the global thermohaline circulation. Sea ice edge is a potential indicator of climate change. Additionally, fishing and commercial shipping activities as well as military submarine operations in the polar seas need reliable ice edge information. However, as the sea ice edge is unstable in time, the temporal validity of the estimated ice edge is often shorter than the time required to transfer the information to the operational user. Hence, an accurate sea ice edge prediction as well as determination is crucial for fine-scale geophysical modeling and for near-real-time operations. In this study, active contour modelling (known as Snake model) and non-rigid motion estimation techniques have been used for predicting the sea ice edge (SIE) in the Antarctic. For this purpose the SIE has been detected from sea ice concentration derived using special sensor microwave imager (SSM/I) observations. The 15% sea ice concentration pixels are being taken as the edge pixel between ice and water. The external force, gradient vector flow (GVF), of SIE for total the Antarctic region is parameterised for daily as well as weekly data set. The SIE is predicted at certain points using a statistical technique. These predicted points have been used to constitute a SIE using artificial intelligence technique, the gradient vector flow (GVF). The predicted edge has been validated with that of SSM/I. It is found that all the major curvatures have been captured by the predicated edge and it is in good agreement with that of the SSM/I observation.  相似文献   

18.
Dimethylsulphide (DMS) is an important marine biogenic gas and can be released into atmosphere through sea air gas exchange. The oxidants of DMS in atmosphere are the main compounds of pristine marine sulphate aerosols and would affect the global climate change finally. Almost all the atmospheric DMS, about 90%, comes from the ocean. The southern ocean, which consists about 20% of the whole ocean area, is one of the largest atmospheric DMS sources. In contrast with the other oceans, the Southern Ocean appears great spatial and temporal variability of surface seawater DMS. In addition, there are the complex hydrography system, variable sea ice condition and various biologic activities in the Southern Ocean as to make survey and understand DMS as well as its controlling factors most difficult. Moreover, it is significant to integrate the DMS sea ice exchange processes and its controlling factors studies. In order to develop survey and research on the sea air DMS exchange and biogeochemistry processes, estimate methods of the sea air DMS fluxes will be reviewed, characteristics of the spatial and temporal distribution of surface seawater DMS will be discussed and the sea air DMS flux in the Southern Ocean will be assessed. Finally, major controlling factors of DMS sea air DMS processes will also be analyzed.  相似文献   

19.
Understanding climate during the last interglacial is critical for understanding how modern climate change differs from purely naturally forced climate change. Here we present the first high-resolution ice core record of the last interglacial and transition to the subsequent glacial period from Antarctica and the first glaciochemical record for this period from West Antarctica. Samples were collected from a horizontal ice trench in the Mt. Moulton Blue Ice Area (BIA) in West Antarctica and analyzed for their soluble major anions (Cl?, NO3?, SO42-), major and trace elements (Na, Mg, Ca, Sr, Cd, Cs, Ba, La, Ce, Pr, Pb, Bi, U, As, Al, S, Ti, V, Cr, Mn, Fe, Co, Cu, Zn) and water hydrogen isotopes (δD). The last interglacial is characterized by warmer temperatures (δD), weakened atmospheric circulation (dust elements, seasalts aerosols), decreased sea ice extent (Na, nssSO42-) and decreased oceanic productivity (nssSO42-). A combined examination of Mt. Moulton seasalts, dust, nssSO42- and δD records indicates that the last interglacial was extremely stable compared to glacial age climate events and it ended through a long period of gradual cooling unlike that projected for future Holocene climate.  相似文献   

20.
The energy required to sustain midlatitude continental glaciations comes from solar radiation absorbed by the oceans. It is made available through changes in relative amounts of energy lost from the sea surface as net outgoing infrared radiation, sensible heat loss, and latent heat loss. Ice sheets form in response to the initial occurrence of a large perennial snowfield in the subarctic. When such a snowfield forms, it undergoes a drastic reduction in absorbed solar energy because of its high albedo. When the absorbed solar energy cannot supply local infrared radiation losses, the snowfield cools, thus increasing the energy gradient between itself and external, warmer areas that can act as energy sources. Cooling of the snowfield progresses until the energy gradients between the snowfield and external heat sources are sufficient to bring in enough (latent plus sensible) energy to balance the energy budget over the snowfield. Much of the energy is imported as latent heat. The snow that falls and nourishes the ice sheet is a by-product of the process used to satisfy the energy balance requirements of the snowfield. The oceans are the primary energy source for the ice sheet because only the ocean can supply large amounts of latent heat. At first, some of the energy extracted by the ice sheet from the ocean is stored heat, so the ocean cools. As it cools, less energy is lost as net outgoing infrared radiation, and the energy thus saved is then available to augment evaporation. The ratio between sensible and latent heat lost by the ocean is the Bowen ratio; it depends in part on the sea surface temperature. As the sea surface temperature falls during a glaciation, the Bowen ratio increases, until most of the available energy leaves the oceans as sensible, rather than latent heat. The ice sheet starves, and an interglacial period begins. The oscillations between stadial and interstadial intervals within a glaciation are caused by the effects of varying amounts of glacial meltwater entering the oceans as a surface layer that acts to reduce the amount of energy available for glacial nourishment. This causes the ice sheet to melt back, which continues the supply of meltwater until the ice sheet diminishes to a size consistent with the reduced rate of nourishment. The meltwater supply then decreases, the rate of nourishment increases, and a new stadial begins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号