首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the seismic liquefaction performance of earth dams under earthquake loading, we present a new methodology for evaluating the seismic response of earth dams based on a performance‐based approach and a stochastic vibration method. This study assesses an earthfill dam located in a high‐intensity seismic region of eastern China. The seismic design levels and corresponding performance indexes are selected according to performance‐based criteria and dam seismic codes. Then, nonlinear constitutive models are used to derive an array of deterministic seismic responses of the earth dam by dynamic time series analysis based on a finite element model. Based on these responses, the stochastic seismic responses and dynamic reliability of the earth dam are obtained using the probability density evolution method. Finally, the seismic performance of the earth dam is assessed by the performance‐based and reliability criteria. Our results demonstrate the accuracy of the seismic response analysis of earth dams using the random vibration method. This new method of dynamic performance analysis of earth dams demonstrates that performance‐based criteria and reliability evaluation can provide more objective indices for decision‐making rather than using deterministic seismic acceleration time series as is the current normal practice. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The current Chinese national standard, the Standard for Seismic Design of Hydraulic Structures (GB51247), released in 2018, is strictly based on China’s national conditions and dam engineering features. A comprehensive and systematic overview of the basis of the seismic fortification requirements, the framework of the fortification criteria, and the mechanisms of seismic input related to the seismic design of dams are presented herein. We first analyzed and clarified several conceptual aspects in traditional seismic design of dams. Then, for the seismic input at the dam site described in the first national standard for hydraulic structures, we expounded innovative concepts, ideas, and methods to make relevant provisions more realistic and practical and discussed whether reservoir earthquakes must be included in the seismic fortification framework of dams. This study seeks to incorporate seismic input at the dam site into traditional seismic design practice to promote its improvement from the quasi-static method to the dynamic method and from the closed vibration system to an open wave propagation system, to ensure that the seismic design of dams becomes more reasonable, reliable, scientific, and economic.  相似文献   

3.
土石坝振动台模型试验是认识坝体地震破坏过程和检验抗震措施效果的重要手段之一。针对2种坝体材料,利用小型振动台,开展了一系列不同加载工况、不同加筋方式的土石坝小型振动台模型试验。试验结果表明:①2种坝体材料的初始破坏都首先从坝顶开始,表明坝顶是抗震的关键部位,与已有研究成果基本一致;②相同加载条件下,级配较差的碎石料模型坝的抗震性能优于砂砾石料,表明相对于级配,堆石料自身的性质对土石坝抗震性能的影响更大;③由细铁丝网和纱布组成并在坝坡采取包裹处理的复合加筋的抗震措施,抗震效果优于平铺纱布、平铺纱布且在坝坡包裹处理、平铺细铁丝网等的抗震措施。研究成果可供进一步开展土石坝大型振动台模型试验的材料选择、抗震措施设计等参考。  相似文献   

4.
调查、搜集和研究了汶川地震中被评定为高危以上险情的147座小型水库土坝的地震破坏情况,给出了高危以上险情土坝的地震破坏程度划分为中等破坏、严重破坏和极严重破坏三个等级的原则和标准,以及土坝的地震破坏程度与地震烈度、土坝的宽高比、上游坡比、坝高的经验关系表,可发现:土坝的几何形状对其破坏程度起着重要的作用;对于6~8度地震烈度区,土坝的宽高比越小,或上游坡比越小,或坝体越高,则土坝的破坏程度越严重;对于9度以上地震烈度区,土坝通常发生极严重破坏。依据高危以上险情土坝的地震反应分析结果,给出了土坝地震破坏程度与土坝宽高比、坝高、土坝上游坡比及坝顶加速度放大系数、坝体最大动剪应力的经验关系曲线,发现在相同的地震烈度水平下,土坝的宽高比越小,或上游坡比越小,或坝高越大,且坝顶加速度放大系数越大或坝体最大动剪应力越大,则其地震破坏程度越严重;坝体最大动剪应力超过30kPa的土坝,通常发生严重或极严重破坏,坝体最大动剪应力大于100kPa的土坝,通常发生极严重破坏;土坝离发震断层越远,则其坝顶加速度放大系数越大。本文给出的高危以上险情土坝的地震破坏程度与坝体几何形状的经验关系,可为今后土坝抗震设计提供参考依据。  相似文献   

5.
China is a country of high seismicity with many hydropower resources. Recently,a series of high arch dams have either been completed or are being constructed in seismic regions,of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper,a brief introduction to major progress in the research on seismic aspects of large concrete dams,conducted mainly at the Institute of Water Resources and Hydropower Research(IWHR) during the past 60 years,is presented. The dam site-specific ground motion input,improved response analysis,dynamic model test verification,field experiment investigations,dynamic behavior of dam concrete,and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.  相似文献   

6.
地球物理技术在大坝抗震研究中的应用   总被引:5,自引:4,他引:1       下载免费PDF全文
水工建筑物的场址和结构都十分复杂,涉及到坝址河谷地震动输入及坝体、库水、地基综合体系的动力相互作用和不同介质动态耦合等前沿课题.这些课题的解决有赖于多学科的配合.特别是地球物理学在水坝抗震中得到了广泛的应用.主要应用表现在为大坝抗震设计提供设计地震动参数、进行大坝的模型和原型抗震试验、大坝的强震安全监测、水库诱发地震等方面.  相似文献   

7.
新版《水电工程水工建筑物抗震设计规范》(NB35047-2015)中规定:"抗震设防类别为甲类的混凝土坝应考虑远域地基的辐射阻尼效应"。针对通用商业有限元软件Marc在振型分解反应谱法中的不足,且缺少时程分析法中模拟地基辐射阻尼效应的粘弹性人工边界,采用Fortran语言编制相应的独立程序及二次开发程序,以便在Mrac软件中精确实现新规范要求下的混凝土坝抗震安全评价。数值算例和工程实例分析结果验证了基于Marc二次开发实施思路和自编程序的正确性;重力坝抗震薄弱部位主要为坝体断面突变处,考虑无限地基的辐射阻尼效应后,坝体地震动力响应明显下降。  相似文献   

8.
本文通过成层状地基地震动输入计算方法得到覆盖层边界自由场运动,采用粘弹性边界,考虑地基辐射阻尼效应及坝体和地基的接触非线性,针对强震区深厚覆盖层场地重力坝开展线性和非线性动力时程分析研究,结合需求能力比DCR评估其抗震性能。由线弹性动力时程分析可知,在运行基准地震OBE作用下,重力坝坝体应力均在允许范围内,其抗滑稳定安全系数不能满足要求;由非线性动力分析可知,在OBE和最大设计地震MDE作用下,重力坝发生较大滑动位移。通过在重力坝坝体下游坝后回填土加强重力坝抗震稳定性,结果表明,下游坝后回填土可有效减小坝体滑动位移,加强其抗震稳定性。本文针对深厚覆盖层场地重力坝开展的抗震安全研究为抗震设计提供了科学依据,为强震区深厚覆盖层场地重力坝的抗震分析提供参考。  相似文献   

9.
Lessons learned from Wenchuan earthquake for seismic safety of large dams   总被引:1,自引:1,他引:0  
This paper describes some special features of the Wenchuan earthquake that affected dam safety. Damage and performance of dams, primarily for four dams over 100 m high located in the affected earthquake area, are briefly described. Lessons learned related to dam safety from this devastating earthquake are preliminarily drawn. As the seismic safety of high dams during strong earthquakes has gained more attention around the world, some critical issues related to dam construction in China are considered and extensively discussed. Questions such as “Why is dam construction necessary in earthquake prone countries such as China?”, “Can we accurately evaluate the seismic safety of high dams in China?”, “Did reservoir impounding of the Zipingpu and Three Gorges Projects trigger the Wenchuan Earthquake in some way?” and “What is the strategic priority of dam safety for large dams in China?” are discussed. Finally, the corresponding tactics with response to the challenge are suggested and recent preliminary progress mainly achieved in IWHR is briefly introduced.  相似文献   

10.
Different procedures are compared for the three-dimensional seismic cracking analysis of gravity and arch dams during strong earthquakes. The fracture procedures include the extended finite element method with cohesive constitutive relations, crack band finite element method with plastic-damage relations, and the finite element Drucker−Prager elasto-plastic model. These procedures are used to analyze the nonlinear dynamic response of Koyna dam to the 1967 Koyna earthquake and the seismic cracking of the Dagangshan arch dam subjected to design earthquake. The cracking process and profiles of the two dams using the three different procedures are compared. The applicability and the suitability of the three procedures for seismic cracking analysis of gravity and arch dams are discussed.  相似文献   

11.
易损性分析是评估不同强度地震作用下混凝土重力坝各级破坏概率的有效方法。目前重力坝易损性分析通常假定地震波为垂直入射,然而在近断层区域,地震波往往是倾斜入射的,地震波斜入射对重力坝地震响应有显著影响。从太平洋地震工程研究中心数据库选取16条地震动记录,采用黏弹性人工边界结合等效节点荷载实现SV波斜入射波动输入。采用增量动力分析方法对地震动峰值加速度进行调幅,以印度Koyna混凝土重力坝为研究对象,以坝顶相对位移为抗震性能指标,建立SV波斜入射下重力坝不同震损等级的易损性曲线。结果表明,与垂直入射相比,相同震损等级和相同地震动强度下,斜入射时重力坝破坏概率减小;当PGA接近重力坝实际遭受的地震动强度时,入射角为15°和30°时破坏概率与垂直入射相比最大减小率分别为27.3%和68.2%;各地震强度下,15°和30°斜入射相对于垂直入射的破坏概率差异值最大分别达36.6%、83.9%。因此,混凝土重力坝抗震性能分析应考虑地震波斜入射的影响。研究结果也可为近断层区域混凝土重力坝安全风险评估提供参考。  相似文献   

12.
Many concrete gravity dams have been in service for over 50 years, and over this period important advances in the methodologies for evaluation of natural phenomena hazards have caused the design‐basis events for these dams to be revised upwards. Older existing dams may fail to meet revised safety criteria and structural rehabilitation to meet such criteria may be costly and difficult. Fragility assessment provides a tool for rational safety evaluation of existing facilities and decision‐making by using a probabilistic framework to model sources of uncertainty that may impact dam performance. This paper presents a methodology for developing fragilities of concrete gravity dams to assess their performance against seismic hazards. The methodology is illustrated using the Bluestone Dam on the New River in West Virginia, which was designed in the late 1930s. The seismic fragility assessment indicated that sliding along the dam–foundation interface is likely if the dam were to be subjected to an earthquake with a magnitude of the maximum credible earthquake (MCE) specified by the U.S. Army Corps of Engineers. Moreover, there will likely be tensile cracking at the neck of the dam at this level of seismic excitation. However, loss of control of the reservoir is unlikely. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
拱坝横缝影响及有效抗震措施的研究   总被引:6,自引:0,他引:6  
大量研究结果和某些拱坝的地震震害表明,横缝对拱坝的地震响应有很大的影响。通过采用非光滑方程组方法以及考虑碰撞时刻动量、动能守恒来模拟横缝所引起的动接触问题,同时为了提高计算效率,采用隐-显式积分方法对坝-基系统的动力平衡方程进行求解。针对在拱坝中上部配筋这一抗震措施,也作了探讨。通过对小湾拱坝的分析,为高拱坝工程抗震措施的选择提供技术依据。  相似文献   

14.
殷琳  楼梦麟  康帅 《地震工程学报》2020,42(6):1409-1416,1456
通过二维数值计算,讨论合理建立阻尼矩阵对高重力坝时域内进行地震反应计算的重要性。首先,以4个不同坝高的混凝土重力坝为计算对象,将三种地震波作为水平输入,解得6种不同的阻尼矩阵形式下坝体的地震反应。然后以频域内解为标准,研究各种阻尼矩阵的合理性。研究结果表明:坝高超过250 m高的重力坝在时域内进行的地震反应计算是长周期系统的动力分析问题,应重视阻尼矩阵的建模方式,不宜采用单频率参数的质量比例阻尼矩阵和刚度比例阻尼矩阵,应采用双频率参数的Rayleigh阻尼矩阵,在确定2个频率参数时除采用坝体基频外还应考虑激振地震波的频谱特性以获得合理的坝体地震反应计算结果。  相似文献   

15.
论证了广大坝抗震安全性研究的实践与发展现状。目前大坝在地震作用下的应力与变形分析方法主要有拟静力法和动力响应分析法,并依据大坝混凝土的抗拉强度判断大坝的安全性;各国规范体现的抗震设防弹念和大坝材料的容许应力差别很大。坝址河谷不同高程处地震动状态不尽相同、河谷两恻同一高程处地震动也不一样。混凝土材料的强度与加载速度、应变速率有关;地震时大坝不同部位的应变速率不相同、同一部位的应变速率也随时间变化;混凝土的动态强度既与应变速率有关。也与应变历史等其它因素有关。大坝河谷地震动的输入机理和模型研究、混凝土的动态强度的变化规律探索、大坝抗震安全性评价准则的完善与创新等将有待深入。通过以上内容针对性分析,提出了大坝抗震评价的一些合理建议、方法以及进一步的研究方向。  相似文献   

16.
汶川8.0级地震水坝震害调查   总被引:11,自引:1,他引:10  
“5.12”汶川地震中水坝损毁严重,造成了巨大的经济损失。震后对69座溃坝险情和310座高危险情水库水坝进行了系统的调查,典型震害现象包括坝体裂缝、塌陷、滑坡、渗漏、启闭设施损坏和其他附属设施的损毁等。文中给出了不同烈度区的水坝震害分布,并对地震中水坝的震害现象做了初步总结和分析。  相似文献   

17.
Concrete dams suffering from alkali-aggregate reaction (AAR) exhibit swelling and deterioration of concrete or even cracking over a long period. The deterioration of concrete may significantly affect the dynamic behavior of the structures, and it is necessary to estimate seismic safety of the deteriorated dams subjected to strong earthquakes. A unified approach is presented in this paper for long-term behavior and seismic response analysis of AAR-affected concrete dams by combining AAR kinetics, effects of creep and plastic-damage model in the finite element method. The proposed method is applied to a gravity dam and an arch dam. The long-term behavior of the AAR-affected dams is first predicted in terms of anisotropic swelling, spatially non-uniform deterioration of concrete, and cracking initiation and propagation with the development of AAR. The seismic response of the deteriorated dams is subsequently analyzed based on the state of the structures at the end of the long-term analysis. The AAR-induced expansion displacements obtained from the proposed method are in good agreement with the measured ones in the long-term operation. The simulated cracking patterns in the dams caused by the continuing AAR are also similar to the field observation. The results from the seismic analysis show that AAR-induced deterioration of concrete and cracking may lead to more severe damage cracking in the dams during earthquake. The dynamic displacements are also increased compared with the dams that are not suffering from AAR. The seismic safety of the AAR-affected concrete dams is significantly reduced because of the AAR-induced deterioration of concrete and cracking.  相似文献   

18.
In this paper the seismic response of a well-documented Chinese rockfill dam, Yele dam, is simulated and investigated employing the dynamic hydro-mechanically (HM) coupled finite element (FE) method. The objective of the study is to firstly validate the numerical model for static and dynamic analyses of rockfill dams against the unique monitoring data on the Yele dam recorded before and during the Wenchuan earthquake. The initial stress state of the dynamic analysis is reproduced by simulating the geological history of the dam foundation, the dam construction and the reservoir impounding. Subsequently, the predicted seismic response of the Yele dam is analysed, in terms of the deformed shape, crest settlements and acceleration distribution pattern, in order to understand its seismic behaviour, assess its seismic safety and provide indication for the application of any potential reinforcement measures. The results show that the predicted seismic deformation of the Yele dam is in agreement with field observations that suggested that the dam operated safely during the Wenchuan earthquake. Finally, parametric studies are conducted to explore the impact of two factors on the seismic response of rockfill dams, i.e. the permeability of materials comprising the dam body and the vertical ground motion.  相似文献   

19.
In this paper a general methodology for the analysis of large concrete dams subjected to seismic excitation is outlined. It is valid both for gravity dams (2D representation) and arch dams (3D representation). The method allows for non-linear material behaviour of the dam, ‘transparent fictitious boundaries’ for dealing properly with in-coming and out-going seismic waves, and an efficient procedure to deal with dam-soil-fluid interaction. The mechanical behaviour of concrete is modelled using an isotropic damage model which allows for tension and compression damage, and exhibits stiffness recovery upon load reversals. Emphasis is placed in the treatment of fluid-structure interaction, regarding both formulation and efficiency aspects. A gravity dam and an arch dam are analysed subjected to artificially generated earthquakes of different intensities, and the results are used to study the degree of (un)safety of the dams.  相似文献   

20.
Rockfill buttressing resting on the downstream face of masonry or concrete gravity dam is often considered as a strengthening method to improve the stability of existing dam for hydrostatic and seismic loads. Simplified methods for seismic stability analysis of composite concrete-rockfill dams are discussed. Numerical analyses are performed using a nonlinear rockfill model and nonlinear dam-rockfill interface behavior to investigate the effects of backfill on dynamic response of composite dams. A typical 35 m concrete gravity dam, strengthened by rockfill buttressing is considered. The results of analyses confirm that backfill can improve the seismic stability of gravity dams by exerting pressure on the dam in opposition to hydrostatic loads. According to numerical analyses results, the backfill pressures vary during earthquake base excitations and the inertia forces of the backfill are the main source for those variations. It is also shown that significant passive (or active) pressure cannot develop in composite dams with a finite backfill width. A simplified model is also proposed for dynamic analysis of composite dam by replacing the backfill with by a series of vertical cantilever shear beams connected to each other and to the dam by flexible links.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号