首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
刘磊  罗栋梁 《冰川冻土》2020,42(3):812-822
冻结指数是某个地区冻结期长短和严寒程度的综合表征, 融化指数是某个地区融化期长短及正积温高低的综合度量, 冻融指数也是计算活动层厚度和季节冻结深度的关键参数, 并可用于多年冻土分布预报。利用雅鲁藏布江(雅江)流域中下游11个气象站点的逐日气温、 地面温度数据计算了1977 - 2017年大气及地面冻融指数, 并分析其时空变化趋势。结果表明: 雅江流域中下游近40年来冻结指数呈显著下降趋势, 大气冻结指数、 地面冻结指数、 大气融化指数、 地面融化指数多年变化范围分别为208.4 ~ 508.0、 136.9 ~ 371.0、 2 171.8 ~ 2 499.8、 3 350.2 ~ 4 315.2 ℃·d; 其气候倾斜率分别为-36.6、 -48.7、 90.7、 115.8 ℃·d·(10a)-1。雅江流域大气和地面冻结指数以海拔4 488.8 m的嘉黎最大, 海拔2 991.9 m的林芝最小; 大气和地面融化指数则以海拔3 560 m的泽当最大, 海拔4 488.8 m的嘉黎最小。流域内大气负温日数变化规律与地面负温日数变化趋势基本一致, 其气候倾向率分别是-6.28 d·(10a)-1和-5.57 d·(10a)-1。研究结果可为雅江流域冻土预报, 冻融作用所形成的冰缘地貌研究及其引发的地质灾害如冻融滑塌、 冻融泥流等灾害的监测与预防提供借鉴。  相似文献   

2.
何彬彬  盛煜  黄龙  黄旭斌  张玺彦 《冰川冻土》2019,41(5):1107-1114
利用我国北疆地区49个主要气象站1961-2017年的逐日平均气温观测值计算了年冻融指数,并分析其变化趋势及分布特征。结果表明:北疆地区冻结指数出现明显的下降趋势,下降速率为51.6℃·d·(10a)-1。冻结指数的范围在509~2 304.9℃·d之间,平均值为1 240℃·d。北疆地区融化指数出现明显上升趋势,上升速率为73.9℃·d·(10a)-1。融化指数的范围在526.4~4 531.1℃·d之间,平均值为3 516℃·d。冻结指数表现出在经纬度和海拔较低的准噶尔盆地和伊宁地区较小,在海拔高的高山地区如阿尔泰山和天山山脉较大;融化指数与之相反。北疆地区冻结指数受经纬度及海拔的综合影响,融化指数则主要受海拔影响;年平均气温和冻融指数有非常强的线性关系。  相似文献   

3.
黑河流域年冻融指数及其时空变化特征分析   总被引:4,自引:0,他引:4  
利用黑河流域气象站点的逐日平均温度数据计算空气及地表冻融指数,并分析其变化趋势以及空间分布。结果表明,黑河流域空气冻结指数、空气融化指数、地表冻结指数和地表融化指数变化范围依次为:673~2 135℃·d,1 028~4 177℃·d,682~1 702℃·d,1 956~5 278℃·d;黑河流域冻结指数出现明显的下降趋势,其中空气冻结指数(1951—2007年)下降速率为56.0℃·d/10a,地表冻结指数(1954—2005年)下降速率为35.4℃·d/10a;融化指数表现为上升,其中空气融化指数(1951—2008年)整体以每年47.8℃·d/10a的速率上升,地表融化指数在1954—1975年以135.9℃·d/10a的速率下降,在1976—2006年以185.3℃·d/10a的速率上升;黑河流域各站点冻结指数受海拔及纬度双重影响,而融化指数则主要受海拔影响;年平均气温与冻融指数有非常强的线性关系。  相似文献   

4.
三江源地区是我国重要生态安全屏障,冻土是其高寒生态系统的重要组成部分,冻土的变化深刻影响高寒生态系统固碳及水源涵养。基于英国东英吉利大学(University of East Anglia,UEA)气候研究中心(Climatic Research Unit,CRU)月平均气温再分析资料,利用线性倾向法和滑动平均法并结合GIS空间分析和制图,计算并分析了三江源地区1901—2018年冻融指数变化趋势及其空间分布特征。结果表明:三江源地区冻结指数在1901—2018年整体以-1.1 ℃·d·a-1的斜率呈波动减少趋势,经历了三个波动变化阶段:1901—1943年的下降(-3.4 ℃·d·a-1)、1943—1966年的升高(8.8 ℃·d·a-1)、1966—2018年的再次下降(-4.3 ℃·d·a-1)。融化指数与冻结指数的变化相反,整体以0.34 ℃·d·a-1的斜率呈波动上升趋势,呈现升高(1901—1943年,3.3 ℃·d·a-1)、下降(1943—1981年,-3.1 ℃·d·a-1)、再次升高(1981—2018年,2.9 ℃·d·a-1)的趋势。在空间分布上,自西向东随海拔和多年冻土连续性降低,冻结指数由3 400 ℃·d递减到600 ℃·d,融化指数由接近0 ℃·d增加到1 800 ℃·d。长江源区冻结指数最大,融化指数最小;黄河源区冻结指数最小,融化指数最大。研究成果可为三江源地区冻土变化及其对高寒生态环境的影响研究提供科学借鉴。  相似文献   

5.
冻融指数不仅对冻土研究具有重要意义,而且是反映气候变化的有用指标。利用祁连山区11个主要气象站点的逐日温度观测值计算了1961—2014年的年大气及地面冻融指数,分析了这些指数的统计与分布特征,并通过非参数Mann-Kendall检验法、Sen斜率估计法及相关性分析法分析了年冻融指数的时空变化趋势。结果表明:祁连山区近54年来冻结指数呈显著下降趋势,融化指数呈显著上升趋势,多年平均大气冻结指数、大气融化指数、地面冻结指数和地面融化指数大致分布在994.3~1 540.9℃·d、1 828.2~2 376.6℃·d、744.7~1 287.3℃·d、2 706.0~3 542.6℃·d之间;其气候倾向率分别为-6.5、6.5、-7.7、9.1℃·d·a-1。从西北向东南方向,冻结指数表现出中部高,往东西方向逐渐降低的分布特征,而融化指数则相反;冻融指数除了受海拔和纬度综合影响外,还受台站地的坡向、周边地形、积雪深度以及人类活动等因数的影响。冻融指数时间序列的突变点发生在1994—1995年,与其气温的突变相对应;在突变点以后,大气和地面融化指数的增长速率和地面冻结指...  相似文献   

6.
冻融指数是气候变化的一个重要敏感指示器,被广泛应用于冻土变化研究中。研究全球范围内冻融指数的空间分布特征与时间变化趋势,可为全球冻土环境评估、工程建设以及应对气候变化提供依据。本文基于1973—2021年覆盖全球陆地且超过14 000个站点的逐日气温观测数据,计算大气冻融指数并分析其时空变化特征,探讨其与地理因子的关系。研究结果表明:近49年全球平均冻结指数为610.8℃·d,最大值为19 653.3℃·d,北半球(667.9℃·d)大于南半球(152.4℃·d);全球平均融化指数为4 709.6℃·d,最大值为11 217.0℃·d,北半球(4 444.5℃·d)小于南半球(6 927.3℃·d)。空间上,近赤道等低纬地区的站点冻结指数基本为0℃·d,融化指数为0℃·d的站点仅出现在南极洲和格陵兰岛。冻融指数受纬度和海拔的双重影响,且具有明显的气候带分布特征。全球站点的冻结指数以平均6.4℃·d·a-1的速率下降,而融化指数以平均14.0℃·d·a-1的速率呈上升趋势;但在21世纪初冻融指数变化均趋于平缓。在1973—2021年间,全球范围...  相似文献   

7.
新疆乌鲁木齐河流域高山区和平原区气候条件差异较大,对该流域气温和降水垂直梯度变化的研究,有利于了解不同地理要素之间的作用过程。利用乌鲁木齐河流域6个气象观测站数据,分析研究了气温和降水的变化趋势、气温和降水及其倾向率与海拔的关系,以及不同月份气温和降水随海拔的变化特征。结果表明:1961-2016年间,乌鲁木齐河流域气温和降水总体呈上升趋势,其中乌鲁木齐站气温和降水倾向率分别为0.189℃·(10a)-1和28.83 mm·(10a)-1,大西沟站气温和降水倾向率分别为0.268℃·(10a)-1和18.85 mm·(10a)-1;气温和降水与海拔关系密切,随海拔降低气温逐渐升高,而降水呈减少趋势;高海拔区气温升温倾向率总体大于低海拔区,降水倾向率随高度增加而明显增加;月气温变化速率随海拔升高呈“钟”形分布,并在5-8月达到最大;月降水变化速率随海拔变化表现为下降~上升~下降~上升,并在5-8月达到峰值。  相似文献   

8.
季节冻土是气候变化的重要指示器,对区域气候变化具有重要的表征作用。本文利用青海省三江源地区20个位于季节冻土区的气象观测站点数据,通过计算最大冻结深度、冻结开始日期、完全融化日期和冻融期4个指标,分析了1961—2019年期间三江源地区季节冻土冻融状态时空变化特征;并通过计算空气冻结、融化指数及其变化趋势,结合地理因子(海拔、经度和纬度)和气候因子(气温、降水和雪深)评估了三江源地区季节冻土最大冻结深度与冻融状态的影响因素。结果表明:三江源地区季节冻土最大冻结深度为64.7~214.1 cm,冻结开始日期为9月初—10月底,完全融化日期为3月下旬—6月底,冻融期为144.7~288.4 d;1961—2019年期间三江源地区季节冻土最大冻结深度呈显著减小趋势[2.5 cm·(10a)-1],冻结开始日期显著推迟[2.9 d·(10a)-1],完全融化日期显著提前[2.6 d·(10a)-1],冻融期显著缩短[5.5 d·(10a)-1];三江源地区季节冻土冻融状态变化主要受温度变化的影响,表现为冷季...  相似文献   

9.
基于新疆阿勒泰地区5个国家气象站的逐日平均气温、 最高气温和最低气温气象数据, 利用一元线性回归、 9 a滑动平均等方法分析了该地区近52年极端气温的时空变化规律。结果表明: (1)阿勒泰地区平均气温、 平均最高气温、 平均最低气温均显著上升, 上升速率为0.40、 0.29、 0.58 ℃·(10a)-1; 秋、 冬季上升幅度最大。(2)极端最高气温、 最低气温极高值、 暖昼、 暖夜以不同的速率上升(增加), 分别为0.19 ℃·(10a)-1、 0.58 ℃·(10a)-1、 1.45 d·(10a)-1、 3.37 d·(10a)-1。气温日较差以-0.29 ℃·(10a)-1的速率下降; 生长季长度呈上升趋势, 增加速率为3.31 d·(10a)-1。暖日、 暖夜在四季均呈上升趋势。除极端最高气温和生长季长度外, 其他指数均有50%以上的站点呈上升趋势。(3)极端最低气温、 最高气温极低值分别以0.68、 0.48 ℃·(10a)-1的速率上升; 冷昼、 冷夜、 冰日、 霜日均呈下降趋势, 减少速率分别为-1.57、 -3.69、 -1.79、 -4.40 d·(10a)-1。仅冷夜、 霜日两个指数在所有站点显著下降。(4)冷指数的减小幅度大于暖指数的增大幅度, 夜指数的减小幅度大于昼指数的增大幅度。  相似文献   

10.
1951-2014年内蒙古地区气温、降水变化及其关系   总被引:2,自引:0,他引:2  
李虹雨  马龙  刘廷玺  杜艳霞  刘明 《冰川冻土》2017,39(5):1098-1112
内蒙古地域辽阔,气候复杂多变,研究气候因子变化对生态环境建设、水资源开发利用有一定借鉴意义。利用内蒙古地区及周边70个气象站点1951-2014年气温和降水资料,采用中心聚类、气候倾向率等方法,对气温、降水变化特征及其关系做了分析。结果表明:空间上平均、最低、最高气温年(季)变化均随纬度升高而降低,降水量与此趋势相反。各类气温年际变化均呈上升趋势,最低气温增温速率最快,西、中、东部气候倾向率分别达到0.427℃·(10a)-1、0.442℃·(10a)-1、0.395℃·(10a)-1。各类气温在春、冬季增温明显,总体表明最低气温对气候变暖所做贡献最大。降水量年际波动较大,但总体趋势不明显。春季降水量呈缓慢增长趋势,其中中部增长速率最快[1.583 mm·(10a)-1],夏季呈减少趋势。年降水量与年际各类气温均呈负相关,各分区年、季(除个别夏季)降水量与三类气温除个别阶段呈一致变化趋势外,其他年际呈反对称变化。气温不断升高,降水量的减少,使得研究区气候不断向暖干化趋势发展。  相似文献   

11.
利用被动微波探测青海湖湖冰物候变化特征   总被引:3,自引:2,他引:1  
湖冰物候是气候变化的敏感因子,不仅能反映区域气候变化特征,还可以反映区域气候与湖泊相互作用。利用长时间序列(1978—2018年)被动微波遥感18 GHz和19 GHz亮度温度数据、MODIS数据(2000—2018年)、实测湖冰厚度数据(1983—2018年)和气温、风速、降水(雪)数据(1961—2018年),分析青海湖湖冰变化特征及其对气候变化的响应。结果表明:青海湖流域呈现显著的变暖趋势(1961—2018年),气温上升2.85 ℃,在这种气候条件下,青海湖湖冰封冻日推迟(0.23 d·a-1),消融日呈现明显的提前趋势(0.33 d·a-1),湖冰封冻期天数明显减少,减少速率为0.57 d·a-1;同时,湖冰厚度以0.29 cm·a-1的速率减薄。此外,总结归纳了青海湖冻结-融化空间特征,青海湖主要由东部海晏湾地区开始冻结,从西部黑马河等地区开始消融,冻结和消融过程存在空间差异。通过分析湖冰冻融特征和气候因子关系发现,青海湖流域冬季气温是影响青海湖湖冰物候变化的主要因素,同时风速和降水(雪)也是影响湖冰发育和消融的重要因素。  相似文献   

12.
龚强  晁华  朱玲  蔺娜  于秀晶  刘春生  汪宏宇 《冰川冻土》2021,43(6):1782-1793
根据东北地区144个国家气象站1951—2016年的地温和土壤冻结深度资料,采用实测资料统计及统计建模推算的方法,对东北地区地温和冻结深度时空特征进行了细化分析。结果表明:东北地区地温整体由南到北逐渐降低,冻结深度逐渐增大。各层年平均地温呈向北2个纬度降低1 ℃左右,年平均最大冻结深度为向北2~3个纬度加深30 cm左右,极端最大冻结深度为向北2个纬度加深30 cm左右。地温和冻结深度与纬度关系显著,与经度和海拔也有一定相关性,但在东北北部的多年冻土区基本不受后两者影响。不同深度的地温季节特征不同,地表温度季节特征与气温一致,160 cm以下深度四季温度从高到低为秋、夏、冬、春。地表夏季与冬季温差达到33.5 ℃,而320 cm深处最热季与最冷季的温差仅为7 ℃。气候变暖使得东北地区各层地温升高、冻结深度减小、冻结期缩短,尤其在多年冻土区及其临近的高纬度季节冻土区更为显著。相对于下层土壤,地表升温最大。伊春地表升温趋势达到1.16 ℃?(10a)-1,40~320 cm土层升温趋势为0.60 ℃?(10a)-1左右,冻结深度减小、冻结期缩短趋势分别达到 23 cm?(10a)-1、8 d?(10a)-1,大幅升温不利于多年冻土的存在。  相似文献   

13.
基于2000 - 2014年新疆伊犁地区不同海拔区域观测的冻融期内的冻土、 积雪和气象数据, 应用相关性分析和回归分析方法, 分析该地区季节冻土沿海拔的分布规律, 以及气温、 积雪对季节冻土特征的影响。结果表明: 伊犁地区表层土壤存在着每年11月份开始结冻, 于次年4月份完全融化的周期性变化。每个周期内土壤冻结时长随海拔以4 d·(100m)-1的趋势增加, 土壤最大冻结深度随海拔以3.9 cm·(100m)-1的趋势增加。土壤冻结时长与冻结期的平均气温具有显著负相关关系, 相关系数为-0.98(P<0.05)。土壤冻结日数与积雪覆盖历时呈正相关关系, 土壤的最大冻结深度与最大雪深呈负相关关系。随着海拔升高, 温度递减, 导致伊犁地区土壤最大冻结深度和土壤冻结日数整体呈现增加趋势。但在海拔相对较高的地区, 由于相对较厚积雪的影响, 出现土壤最大冻结深度随海拔升高而减小的反常现象。研究结果可为新疆伊犁地区季节冻土的分布对气候变化的响应研究提供支持, 帮助研究区域生态规划和水资源管理, 为农业发展制定适应气候变化对策。  相似文献   

14.
1936—2017年北极勒拿河流域气候变化及其对径流的影响   总被引:2,自引:2,他引:0  
胡弟弟  康世昌  许民 《冰川冻土》2020,42(1):216-223
北极河流径流的变化会影响海冰热力过程和海洋温盐环流。基于全球降水气候学中心(GPCC)及俄罗斯水文气象部提供的1936—2017年间的气温、 降水和径流数据, 分析了北极勒拿河(Lena River)流域近80年来的气候和径流变化特征, 并探究了气候变化对径流的影响。通过分析得出: 研究期内勒拿河流域气温上升0.18 ℃·(10a)-1, 降水量增加率为4.7 mm·(10a)-1, 径流增加399 m3·s-1·(10a)-1。各个季节的径流均呈增加趋势, 其中春季径流增加最为明显, 冬季次之。春季径流的增加主要是由春季气温升高所致的积雪加速消融造成的, 其次是春季降水的补给。夏、 秋季径流增加的主要原因是降水的贡献, 气温升高加剧蒸发反而使径流减少。冬季径流的增加, 是由于气温升高导致冻土退化或活动层厚度增加, 促进更多冻结水进入径流过程, 致使径流增加。  相似文献   

15.
1953 - 2016年华山积雪变化特征及其与气温和降水的关系   总被引:2,自引:1,他引:1  
李亚丽  雷向杰  李茜  余鹏  韩婷 《冰川冻土》2020,42(3):791-800
利用华山气象站1953 - 2016年气象观测资料和1989 - 2016年Landsat TM卫星遥感影像数据, 分析华山积雪变化的基本特征及其与气温、 降水和大气环流的关系。结果表明: 1953 - 2016年华山平均积雪日数78.5 d, 积雪主要出现在每年的10月 - 次年5月, 64 a来积雪初日推迟, 终日提前, 初终间日数减少, 年度、 冬半年、 冬季积雪日数分别以8.3 d?(10a)-1、 7.6 d?(10a)-1、 4.7 d?(10a)-1的减少率显著减少。1981 - 2016年华山年度最大积雪深度减少趋势不显著, 年度累积积雪深度以88.2 cm?(10a)-1的减少率显著减少, 一年中积雪日数、 最大积雪深度和累积积雪深度的减少(小)趋势均以3月最为显著。1989 - 2016年华山区域积雪面积、 浅雪和深雪面积减少趋势不明显。1953 - 2016年华山年度、 冬半年、 冬季平均气温升高, 降水量减少。积雪日数与平均气温存在显著的负相关, 与降水量存在显著的正相关, 气温是影响华山积雪日数的最主要因素。年度、 冬半年和冬季积雪日数突变年份与相应时段平均气温突变年份相近。1953 - 2016年华山冬半年、 冬季平均气温和降水量均与大气环流指数相关显著, 华山冬半年和冬季积雪日数与同期西藏高原指数、 印缅槽强度指数、 南极涛动指数和西太平洋副高西伸脊点指数为明显的负相关, 与850 hPa东太平洋信风指数、 亚洲区极涡面积指数为明显正相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号