首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flapping wings located beneath or to the side of the hull of the ship are investigated as unsteady thrusters, augmenting ship propulsion in waves. The main arrangement consists of horizontal wing(s) in vertical oscillatory motion which is induced by ship heave and pitch, while rotation about the wing pivot axis is actively controlled. In this work we investigate the energy extraction by the system operating in irregular wave conditions and its performance concerning direct conversion to propulsive thrust. More specifically, we consider operation of the flapping foil in waves characterised by a spectrum, corresponding to specific sea state, taking into account the coupling between the hull and the flapping foil dynamics. The effect of the wavy free surface is accounted for through the satisfaction of the corresponding boundary conditions and the consideration of the wave velocity on the formation of the incident flow. Numerical results concerning thrust and power coefficients are presented, indicating that significant thrust can be produced under general operating conditions. The present work can be exploited for the design and optimum control of such systems extracting energy from sea waves for augmenting marine propulsion in rough seas, with simultaneous reduction of ship responses offering also dynamic stabilisation.  相似文献   

2.
The response of an array of sensors to coherent undesired noise interfering with the measurement of a desired signal can be optimized if special filters are applied to the outputs of the sensors. In this paper, we derive analytic expressions for filters which minimize the power spectrum of the array response to the undesired coherent signal while simultaneously providing an all-pass condition for the desired signal. These filters are shown to yield an array rejection response which has zero-width main lobes and no sidelobes. An example illustrating the results is also presented.  相似文献   

3.
We consider the role played by the sensor locations in the optimal performance of an array of acoustic vector sensors, First we derive an expression for the Cramer-Rao bound on the azimuth and elevation of a single far-field source for an arbitrary acoustic vector-sensor array in a homogeneous wholespace and show that it has a block diagonal structure, i.e., the source location parameters are uncoupled from the signal and noise strength parameters. We then derive a set of necessary and sufficient geometrical constraints for the two direction parameters, azimuth and elevation, to be uncoupled from each other. Ensuring that these parameters are uncoupled minimizes the bound and means they are the natural or “canonical” location parameters for the model. We argue that it provides a compelling array design criterion. We also consider a bound on the mean-square angular error and its asymptotic normalization, which are useful measures in three-dimensional bearing estimation problems. We derive an expression for this bound and discuss it in terms of the sensors' locations. We then show that our previously derived geometrical conditions are also sufficient to ensure that this bound is independent of azimuth. Finally, we extend those conditions to obtain a set of geometrical constraints that ensure the optimal performance is isotropic  相似文献   

4.
Previous work on the classical problem of shocks in a 2‐layer density‐stratified fluid used either a parameterized momentum exchange or an assumed Bernoulli loss. We propose a new theory based on a set of viscous model equations. We define an idealized shock in two‐layer density stratified flow under a rigid lid as a jump or drop of the interface in which (1) the force balance remains nearly hydrostatic in the shock, (2) there is no exchange of momentum between the two layers except by pressure forces on the sloping interface, and (3) dissipative processes can be treated with a constant viscosity. We proceed in two steps. First, we derive a necessary condition for shock existence based on a requirement for wave steepening. Second, we formulate and solve a set of viscous model equations. Some results are the following: Shocks require strong layer asymmetry; one layer must be much faster and/or shallower than the other layer. The linearized equations describing the shock tails provide boundary conditions and a proof of shock uniqueness. It is possible to derive an analytical solution for weak shocks if the steepening condition is met. The weak shock solutions provide closed form expressions for the Bernoulli loss in each layer. Bernoulli losses are strongly concentrated in the expanding layer as the relative layer depth change is much larger in that layer. Bernoulli losses are independent of layer viscosity. A sudden cessation of shock existence is found for strong shocks when the possible end state migrates into the supercritical regime. Surprisingly, the new ideal shock theory compares well with a 2‐D, time‐dependent shallow water model (SWM) with a flux formulation, but with no viscous formulation. Both the Bernoulli drop and shock cessation condition agree quantitatively.  相似文献   

5.
A practical, low order and potential-based surface panel method is presented to predict the flow around a three-dimensional rectangular foil section including the effect of boundary layer. The method is based on a boundary-integral formulation, known as the “Morino formulation” and the boundary layer effect is taken into account through a complementary thin boundary layer model. The numerical approach used in the method presents a strongly convergent solution based on the iterative wake roll-up and contraction model including the boundary layer effect. The method is applied to a three-dimensional foil section for which the velocity distribution around the foil was measured using a 2D Laser Doppler Velocimetry system in a large cavitation tunnel. Comparison of the predicted velocity distributions both inside and outside of the boundary layer of the foil as well as the boundary layer shapes obtained from the numerical model show fairly good correlation with the measurements, indicating the robustness and practical worthiness of the proposed method.  相似文献   

6.
P. Bonneton   《Ocean Engineering》2007,34(10):1459-1471
In this paper, we analyse the ability of the nonlinear shallow-water (NSW) equations to predict wave distortion and energy dissipation of periodic broken waves in the inner surf zone. This analysis is based on the weak-solution theory for conservative equations. We derive a new one-way model, which applies to the transformation of non-reflective periodic broken waves on gently sloping beaches. This model can be useful to develop breaking-wave parameterizations (in particular broken-wave celerity expression) in both time-averaged wave models and time-dependent Boussinesq-type models. We also derive a new wave set-up equation which provides a simple and explicit relation between wave set-up and energy dissipation. Finally, we compare numerical simulations of both, the NSW model and the simplified one-way model, with spilling wave breaking experiments and we find a good agreement.  相似文献   

7.
A device/system VCK is built to replace the physical damper/springs of the VIVACE Converter with virtual elements. VIVACE harnesses hydrokinetic energy of currents by converting mechanical energy of cylinders in Vortex Induced Vibrations (VIV) into electricity. VCK enables conducting high number of model tests rapidly as damping/springs are set by software rather than hardware. VCK consists of a cylinder, a belt–pulley transmission, a motor/generator, and a controller. The controller provides a damper–spring force feedback using displacement/velocity measurements, thus introducing no artificial force–displacement phase lag, which biases energy conversion. Damping is nonlinear, particularly away from the system natural frequency, and affects modeling near the VIV synchronization ends. System identification (SI) in air reveals nonlinear viscous damping, static and dynamic friction. Hysteresis, occurring in the zero velocity limit, is modeled by a nonlinear dynamic damping model Linear Autoregression with Nonlinear Static model (LARNOS). SI performed in air is verified using monochromatic excitation in air and VIV tests in water using physical damper and springs. A resistor bank added to the device provides an integrated VCK/Power Take-Off (PTO) system. VIV testing is performed in the Low Turbulence Free Surface Water Channel of the University of Michigan at 40,000<Re<120,000 and damping 0<ζ<0.16.  相似文献   

8.
For distributed sensor technologies whose costs are understood (or which may be estimated in some reasonable manner), we derive a simple analytic means by which to estimate the most cost-effective sensor detection range. Specifically, we consider design of sensor nodes whose purpose is to exploit a set of coherent acoustic array technologies to detect a target with a specified radiated signature in an environment characterized by the sonar equation. We define a simplified calculus of distributed search that exploits simple target motion as a means to enhance spatial coverage for a sparse field of uniformly distributed sensor nodes. We examine this strategy in the context of both area (two-dimensional) and volume (three-dimensional) surveillance coverage under both cylindrical and spherical spreading models. In all situations, cost-effective design guidance is given based on maintaining spatial detection coverage  相似文献   

9.
10.
Floating oscillating bodies constitute a large class of wave energy converters, especially for offshore deployment. Usually the Power-Take-Off (PTO) system is a directly linear electric generator or a hydraulic motor that drives an electric generator. The PTO system is simplified as a linear spring and a linear damper. However the conversion is less powerful with wave periods off resonance. Thus, a nonlinear snap-through mechanism with two symmetrically oblique springs and a linear damper is applied in the PTO system. The nonlinear snap-through mechanism is characteristics of negative stiffness and double-well potential. An important nonlinear parameter is defined as the ratio of half of the horizontal distance between the two springs to the original length of both springs. Time domain method is applied to the dynamics of wave energy converter in regular waves. And the state space model is used to replace the convolution terms in the time domain equation. The results show that the energy harvested by the nonlinear PTO system is larger than that by linear system for low frequency input. While the power captured by nonlinear converters is slightly smaller than that by linear converters for high frequency input. The wave amplitude, damping coefficient of PTO systems and the nonlinear parameter affect power capture performance of nonlinear converters. The oscillation of nonlinear wave energy converters may be local or periodically inter well for certain values of the incident wave frequency and the nonlinear parameter , which is different from linear converters characteristics of sinusoidal response in regular waves.  相似文献   

11.
基于神经网络的黄东海春季二类水体三要素浓度反演方法   总被引:2,自引:0,他引:2  
介绍了一种基于人工神经网络的二类水体海域的三要素浓度反演方法。根据2003年春季黄东海试验中获得的高质量现场数据,建立了由现场测量遥感反射率分别反演三要素浓度的神经网络模型。反演的平均相对误差分别叶绿素32.5%,黄色物质8.9%,总悬浮物24.2%。同时分析了神经网络模型在水色反演模式应用中的稳定性。  相似文献   

12.
The author addresses the spatial coherence of high-frequency acoustic signals that have been forward scattered from the sea surface. The Fresnel-corrected Kirchhoff approximation is applied to derive closed-form expressions for the spatial coherence. These expressions are used to study the influence of geometrical and environmental factors on the coherence. An application of the theory involving the rejection of the surface image of a source by a vertical adaptive line array is presented. The author concludes that the environment has a strong impact on the array processing of surface-scattered fields through its influence on both vertical and horizontal spatial coherence  相似文献   

13.
《Coastal Engineering》2001,43(2):131-148
Four different expressions for wave energy dissipation by bottom friction are intercompared. For this purpose, the SWAN wave model and the wave data set of Lake George (Australia) are used. Three formulations are already present in SWAN (ver. 40.01): the JONSWAP expression, the drag law friction model of Collins and the eddy–viscosity model of Madsen. The eddy–viscosity model of Weber was incorporated into the SWAN code. Using Collins' and Weber's expressions, the depth- and fetch-limited wave growth laws obtained in the nearly idealized situation of Lake George can be reproduced. The wave model has shown the best performance using the formulation of Weber. This formula has some advantages over the other formulations. The expression is based on theoretical and physical principles. The wave height and the peak frequency obtained from the SWAN runs using Weber's bottom friction expression are more consistent with the measurements. The formula of Weber should therefore be preferred when modelling waves in very shallow water.  相似文献   

14.
Compared with solar and wind energy, wave energy is a kind of renewable resource which is enormous and still under development. In order to utilize the wave energy, various types of wave energy converters (WECs) have been proposed and studied. And oscillating-body WEC is widely used for offshore deployment. For this type of WEC, the oscillating motion of the floater is converted into electricity by the power take off (PTO) system, which is usually mathematically simplified as a linear spring and a damper. The linear PTO system is characteristic of frequency-dependent response and the energy absorption is less powerful for off resonance conditions. Thus a nonlinear snap through PTO system consisting of two symmetrically oblique springs and a linear damper is applied. A nonlinear parameter γ is defined as the ratio of half of the horizontal distance between the two oblique springs to the original length of both springs. JONSWAP spectrum is utilized to generate the time series of irregular waves. Time domain method is used to establish the motion equation of the oscillating-body WEC in irregular waves. And state space model is applied to replace the convolution term in the time domain motion equation. Based on the established motion equation, the motion response of both the linear and nonlinear WEC is numerically calculated using 4th Runge–Kutta method, after which the captured power can be obtained. Then the influences of wave parameters such as peak frequency, significant wave height, damping coefficient of the PTO system and the nonlinear parameter γ on the power capture performance of the nonlinear WEC is discussed in detail. Results show that compared with linear PTO system, the nonlinear snap through PTO system can increase the power captured by the oscillating body WEC in irregular waves.  相似文献   

15.
The potential energy available in a two-dimensional progressive water wave can be calculated in numerous ways. One derivation of this energy based on the first law of thermodynamics and on the linearized velocity potential for waves, is presented in this paper. The energy densities and total energy expressions are given for deep and finite depth water waves. It is also shown that the travelling component of the energy for deep water waves is the potential energy component.  相似文献   

16.
《Ocean Modelling》2008,20(1):61-89
This paper focuses on the energy conservation properties of a hydrostatic, Boussinesq, coastal ocean model using a classic finite difference method. It is shown that the leapfrog time-stepping scheme, combined with the sigma-coordinate formalism and the motions of the free surface, prevents the momentum advection from exactly conserving energy. Because of the leapfrog scheme, the discrete form of the kinetic energy depends on the product of velocities at odd and even time steps and thus appears to be possibly negative when high-frequency modes develop. Besides, the study of the energy balance clarifies the numerical choices made for the computation of mixing processes. The time-splitting technique used to reduce the computation costs associated to the resolution of surface waves leads to the well-known external and internal mode equations. We show that these equations do not conserve energy if the coupling of these two modes is forward in time. Even if non-linear terms are negligible, this shortcoming can be significant regarding the pressure gradient term ‘frozen’ over a baroclinic time step. An alternative energy-conserving time-splitting technique is proposed in this paper. Discussion and conclusions are conducted in the light of a set of numerical experiments dedicated to surface and internal gravity waves.  相似文献   

17.
为考虑桩土相互作用的高桩码头体系等效阻尼比,将地震作用下高桩码头的滞回耗能定义为各桩塑性铰耗能和桩-土相互作用耗能之和,桩-土相互作用耗能根据p-y曲线和Masing准则定义的滞回环确定,码头结构的塑性铰总耗能为各桩塑性铰耗能的总和,按照正弦激励下一个振动循环内高桩码头体系与相应单自由度体系粘滞耗能相等的原则,推导得到了高桩码头体系等效阻尼比计算公式,并对两个高桩码头进行了Pushover分析。分析表明,土体耗能对高桩码头体系阻尼贡献较大,根据码头各桩塑性铰出现顺序和转动情况计算码头的等效阻尼比更符合实际情况。  相似文献   

18.
《Coastal Engineering》2005,52(7):633-645
New experimental laboratory data are presented on swash overtopping and sediment overwash on a truncated beach, approximating the conditions at the crest of a beach berm or inter-tidal ridge-runnel. The experiments provide a measure of the uprush sediment transport rate in the swash zone that is unaffected by the difficulties inherent in deploying instrumentation or sediment trapping techniques at laboratory scale. Overtopping flow volumes are compared with an analytical solution for swash flows as well as a simple numerical model, both of which are restricted to individual swash events. The analytical solution underestimates the overtopping volume by an order of magnitude while the model provides good overall agreement with the data and the reason for this difference is discussed. Modelled flow velocities are input to simple sediment transport formulae appropriate to the swash zone in order to predict the overwash sediment transport rates. Calculations performed with traditional expressions for the wave friction factor tend to underestimate the measured transport. Additional sediment transport calculations using standard total load equations are used to derive an optimum constant wave friction factor of fw = 0.024. This is in good agreement with a broad range of published field and laboratory data. However, the influence of long waves and irregular wave run-up on the overtopping and overwash remains to be assessed. The good agreement between modelled and measured sediment transport rates suggests that the model provides accurate predictions of the uprush sediment transport rates in the swash zone, which has application in predicting the growth and height of beach berms.  相似文献   

19.
《Ocean Modelling》2007,16(1-2):47-60
The symmetry and stability properties of two unstructured C-grid discretisations of the shallow water equations are discussed. We establish that a scheme in which the circumcentres of the mesh triangles are used as the surface elevation points has advantageous symmetry properties and derive a Coriolis discretisation which preserves these properties. It is shown that the resulting scheme is conservative in a discretised energy norm. We then establish that schemes in which the water surface elevations are stored at the mesh triangle centroids do not share these advantageous symmetry properties. Finally we show examples which demonstrate that the centroid based scheme is subject to unstable growing modes, particularly in long timescale, Coriolis dominated problems; while the energy conservative circumcentre based scheme suffers from no such limitation. We conclude that unstructured C-grid methods using the triangle circumcentres and the conservative Coriolis scheme derived here therefore have advantages for this sort of problem over those schemes based on centroids.  相似文献   

20.
A numerical model that solves the unsteady, incompressible, Reynolds averaged, Navier–Stokes equations has been utilized to simulate 57 cases of monochromatic, breaking waves over a sloping bed. The Volume of Fluid technique is used to track the complex, discontinuous free surface and the Renormalized Group turbulence model is used for closure. The model is validated by comparing predictions with Particle Image Velocimetry data and other empirical results. The model results are used to determine a relationship between the incipient wave breaking height and the maximum orbital velocity as well as a relationship between surf zone width and breaker type. Such expressions may be useful for remote sensing methods like Synthetic Aperture Radar to derive breaker height and classification from image data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号