首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Anaerobic oxidation of methane (AOM) and sulfate reduction (SR) were investigated in sediments of the Chilean upwelling region at three stations between 800 and 3000 m water depth. Major goals of this study were to quantify and evaluate rates of AOM and SR in a coastal marine upwelling system with high organic input, to analyze the impact of AOM on the methane budget, and to determine the contribution of AOM to SR within the sulfate-methane transition zone (SMT). Furthermore, we investigated the formation of authigenic carbonates correlated with AOM. We determined the vertical distribution of AOM and SR activity, methane, sulfate, sulfide, pH, total chlorins, and a variety of other geochemical parameters. Depth-integrated rates of AOM within the SMT were between 7 and 1124 mmol m−2 a−1, effectively removing methane below the sediment-water interface. Single measurements revealed AOM peaks of 2 to 51 nmol cm−3 d−1, with highest rates at the shallowest station (800 m). The methane turnover was higher than in other diffusive systems of similar ocean depth. This higher turnover was most likely due to elevated organic matter input in this upwelling region offering significant amounts of substrates for methanogenesis. SR within the SMT was mostly fuelled by methane. AOM led to the formation of isotopically light DIC (δ13C: −24.6‰ VPDB) and of distinct layers of authigenic carbonates (δ13C: −14.6‰ VPDB).  相似文献   

2.
Microbial methane turnover at mud volcanoes of the Gulf of Cadiz   总被引:2,自引:0,他引:2  
The Gulf of Cadiz is a tectonically active area of the European continental margin and characterised by a high abundance of mud volcanoes, diapirs, pockmarks and carbonate chimneys. During the R/V SONNE expedition “GAP-Gibraltar Arc Processes (SO-175)” in December 2003, several mud volcanoes were surveyed for gas seepage and associated microbial methane turnover. Pore water analyses and methane oxidation measurements on sediment cores recovered from the centres of the mud volcanoes Captain Arutyunov, Bonjardim, Ginsburg, Gemini and a newly discovered, mud volcano-like structure called “No Name” show that thermogenic methane and associated higher hydrocarbons rising from deeper sediment strata are completely consumed within the seabed. The presence of a distinct sulphate-methane transition zone (SMT) overlapping with high sulphide concentrations suggests that methane oxidation is mediated under anaerobic conditions with sulphate as the electron acceptor. Anaerobic oxidation of methane (AOM) and sulphate reduction (SR) rates show maxima at the SMT, which was found between 20 and 200 cm below seafloor at the different mud volcanoes. In comparison to other methane seeps, AOM activity (<383 mmol m−2 year−1) and diffusive methane fluxes (<321 mmol m−2 year−1) in mud volcano sediments of the Gulf of Cadiz are low to mid range. Corresponding lipid biomarker and 16S rDNA clone library analysis give evidence that AOM is mediated by a mixed community of anaerobic methanotrophic archaea and associated sulphate reducing bacteria (SRB) in the studied mud volcanoes. Little is known about the variability of methane fluxes in this environment. Carbonate crusts littering the seafloor of mud volcanoes in the northern part of the Gulf of Cadiz had strongly 13C-depleted lipid signatures indicative of higher seepage activities in the past. However, actual seafloor video observations showed only scarce traces of methane seepage and associated biological processes at the seafloor. No active fluid or free gas escape to the hydrosphere was observed visually at any of the surveyed mud volcanoes, and biogeochemical measurements indicate a complete methane consumption in the seafloor. Our observations suggest that the emission of methane to the hydrosphere from the mud volcano structures studied here may be insignificant at present.  相似文献   

3.
We investigated coupling between sulfate reduction (SR) and anaerobic oxidation of methane (AOM) by quantifying pore water geochemical profiles, determining rates of microbial processes, and examining microbial community structure at two sites within Mississippi Canyon lease block 118 (MC118) in the Northern Gulf of Mexico. Sediments from the northwest seep contained high concentrations of methane while sediments from the southwest seep contained methane, gaseous n-alkanes and liquid hydrocarbons and had abundant surficial accumulations of gas hydrate. Volumetric (21.5 μmol cm−3 day−1) and integrated (1429 mmol m−2 day−1) rates of SR at MC118 in ex situ incubations are the highest reported thus far for seafloor environments. AOM rates were small in comparison, with volumetric rates ranging from 0.1 to 12.6 nmol cm−3 day−1. Diffusion cannot adequately supply the sulfate required to support these high SR rates so additional mechanisms, possibly biological sulfide oxidation and/or downward advection, play important roles in supplying sulfate at these sites. The microbial communities at MC118 included sulfate-reducing bacteria phylogenetically associated with Desulfobacterium anilini, which is capable of complex hydrocarbon degradation. Despite low AOM rates, the majority of archaea identified were phylogenetically related to previously described methane oxidizing archaea. To evaluate whether weak coupling between SR and AOM occurs in habitats lacking the complex hydrocarbon milieu present at MC118, we compiled available SR and AOM rates and found that the global median ratio of SR to AOM was 10.7:1 rather than the expected 1:1. The global median integrated AOM rate was used to refine global estimates for AOM rates at cold seeps; these new estimates are only 5% of the previous estimate.  相似文献   

4.
Blake Ridge hosts an extensive gas hydrate system where escaping CH4 is consumed through anaerobic oxidation of methane (AOM) at a sulfate–methane transition (SMT) in shallow sediment. Previous geochemical work on ridge crest sediment has documented Ba fronts above the SMT, and has suggested that these horizons can be used to constrain the evolution of the SMT and AOM over time. We expand on this concept and further test it by determining the labile Ba contents of sediment and the dissolved Ba2+ concentrations of pore waters at four ODP sites on Blake Ridge (on the crest at Sites 994, 995 and 997, and on the southern flank at Site 1059). Labile Ba contents are fairly low at all four sites (0.44 and 1.32 mmol/kg), except within 3 m above the SMT at Sites 994, 995 and 997, where they typically exceed 1.24 mmol/kg and can reach 11.3 mmol/kg. These Ba fronts have a diagenetic origin, and SEM analyses show them to be composed of microcrystalline barite. Site 1059 lacks a prominent Ba front. The lowest labile Ba contents generally underlie the Ba fronts and correlate to the base of the SMT. Dissolved Ba2+ concentrations are low (< 1–4 μM) from the seafloor to within 2 m above the main Ba front. Below this depth, they rapidly increase at Sites 994, 995, and 1059, reaching peak concentrations (to 57 μM) at the base of the SMT. By contrast, a rapid rise in dissolved Ba2+ is not observed at Site 997. Dissolved Ba2+ concentrations are only moderately high (10–25 μM) below the SMT at all four sites. Collectively, this information supports a diagenetic model where barite passing into the SMT dissolves, and some of the dissolved Ba2+ then migrates up to form an authigenic barite peak. The contrasting signatures at the different sites indicate non-steady-state differences in the overall process. The size of the peaks on the crest of Blake Ridge necessitates that the recycling of Ba across the SMT has been operating at the current sub-bottom depths for > 100 kyr. Thus, CH4 escaping through the AOM has likely been fairly constant over this time. It is possible that the SMT is currently rising toward the seafloor at Site 1059.  相似文献   

5.
Estimates of glacial sediment delivery to the oceans have been derived from fluxes of meltwater runoff and iceberg calving, and their sediment loads. The combined total (2900 Tg yr−1) of the suspended sediment load in meltwaters (1400 Tg yr−1) and the sediment delivered by icebergs (1500 Tg yr−1) are within the range of earlier estimates. High-resolution microscopic observations show that suspended sediments from glacial meltwaters, supraglacial, and proglacial sediments, and sediments in basal ice, from Arctic, Alpine, and Antarctic locations all contain iron (oxyhydr)oxide nanoparticles, which are poorly crystalline, typically ∼5 nm in diameter, and which occur as single grains or aggregates that may be isolated or attached to sediment grains. Nanoparticles with these characteristics are potentially bioavailable. A global model comparing the sources and sinks of iron present as (oxyhydr)oxides indicates that sediment delivered by icebergs is a significant source of iron to the open oceans, beyond the continental shelf. Iceberg delivery of sediment containing iron as (oxyhydr)oxides during the Last Glacial Maximum may have been sufficient to fertilise the increase in oceanic productivity required to drawdown atmospheric CO2 to the levels observed in ice cores.  相似文献   

6.
南海北部白云凹陷08CF7岩心沉积物的磁化率特征及其意义   总被引:2,自引:0,他引:2  
陈忠  陈翰  颜文  颜彬  向荣  刘建国 《现代地质》2010,24(3):515-520
海洋沉积物的磁性异常与甲烷渗漏活动及其产物密切相关。为揭示南海北部天然气水合物区沉积物磁化率的变化特征及其意义,对白云凹陷08CF7岩心331个沉积物样品的磁化率进行测定和分析。08CF7岩心沉积物磁化率变化范围为554×10-6~2656×10-6SI,平均值为1141×10-6SI。磁化率随深度变化可分为0~188 cm、188~240 cm及240 cm以下等3段,分别与硫酸盐富集带、硫酸盐-甲烷转换界面(SMT)的上部过渡带及SMT相对应。研究表明,海底天然气渗漏是08CF7岩心沉积物磁化率异常变化的可能原因,其机理是:在强烈的还原环境中,甲烷厌氧氧化反应的产物HS-与沉积物中的Fe3+发生反应,形成顺磁性的黄铁矿。沉积物磁化率变化能快速了解SMT状况及其深度,提供了一种识别南海北部天然气水合物的间接方法。  相似文献   

7.
The universally known subsidence theory of Darwin, based on Bora Bora as a model, was developed without information from the subsurface. To evaluate the influence of environmental factors on reef development, two traverses with three cores, each on the barrier and the fringing reefs of Bora Bora, were drilled and 34 uranium‐series dates obtained and subsequently analysed. Sea‐level rise and, to a lesser degree, subsidence were crucial for Holocene reef development in that they have created accommodation space and controlled reef architecture. Antecedent topography played a role as well, because the Holocene barrier reef is located on a Pleistocene barrier reef forming a topographic high. The pedestal of the fringing reef was Pleistocene soil and basalt. Barrier and fringing reefs developed contemporaneously during the Holocene. The occurrence of five coralgal assemblages indicates an upcore increase in wave energy. Age–depth plots suggest that barrier and fringing reefs have prograded during the Holocene. The Holocene fringing reef is up to 20 m thick and comprises coralgal and microbial reef sections and abundant unconsolidated sediment. Fringing reef growth started 8780 ± 50 yr bp ; accretion rates average 5·65 m kyr?1. The barrier reef consists of >30 m thick Holocene coralgal and microbial successions. Holocene barrier‐reef growth began 10 030 ± 50 yr bp and accretion rates average 6·15 m kyr?1. The underlying Pleistocene reef formed 116 900 ± 1100 yr bp , i.e. during marine isotope stage 5e. Based on Pleistocene age, depth and coralgal palaeobathymetry, the subsidence rate of Bora Bora was estimated to be 0·05 to 0·14 m kyr?1. In addition to subsidence, reef development on shorter timescales like in the late Pleistocene and Holocene has been driven by glacioeustatic sea‐level changes causing alternations of periods of flooding and subaerial exposure. Comparisons with other oceanic barrier‐reef systems in Tahiti and Mayotte exhibit more differences than similarities.  相似文献   

8.
Field, micromorphological, pollen, whole soil (XRF), and stable isotope geochemical methods were used to evaluate the latest Pleistocene to Holocene climate record from a floodplain-terrace system in southeastern West Virginia. A late Pleistocene (22,940 ± 150 14C yr B.P.) silt paleosol with low-chroma colors formed from fluviolacustrine sediment deposited during the last glacial maximum (Wisconsinan) and records a cooler full-glacial paleoclimate. Fluvial gravel deposited between the latest Pleistocene and earliest Holocene (prior to 6360 ± 40 14C yr B.P.) was weathered in the middle Holocene under warmer, drier climate conditions, possibly correlated with the Hypsithermal and Altithermal Events of the eastern and southwestern United States, respectively. The glacial to interglacial climate shift is recorded by: (1) changes from a poorly drained landscape with fine-textured soil, characterized by high organic C and redoximorphic features related to Fe removal and concentration, to a well-drained, coarse-textured setting without gley and with significant argillic (Bt) horizon development; (2) changes from a high Zr and Ti silt-dominated parent material to locally derived, coarse fluvial gravels lower in Zr and Ti; (3) a shift from dominantly conifer and sedge pollen in the paleosol to a modern oak/hickory hardwood assemblage; and (4) a shift in δ13C values of soil organic matter from −28‰ to −24‰ PDB, suggesting an ecosystem shift from cooler, C3-dominated flora to one that was mixed C3 and C4, but still predominantly composed of C3 plants. A root-restrictive placic horizon developed between the late Pleistocene silt paleosol and the overlying fluvial gravel because of the high permeability contrast between the two textures of soil materials. This layer formed a barrier that effectively isolated the Pleistocene paleosol from later Holocene pedogenic processes.  相似文献   

9.
The effect of dissolved barium on biogeochemical processes at cold seeps   总被引:2,自引:0,他引:2  
A numerical model was applied to investigate and quantify the biogeochemical processes fueled by the expulsion of barium and methane-rich fluids in the sediments of a giant cold-seep area in the Derugin Basin (Sea of Okhotsk). Geochemical profiles of dissolved Ba2+, Sr2+, Ca2+, SO42−, HS, DIC, I and of calcium carbonate (CaCO3) were fitted numerically to constrain the transport processes and the kinetics of biogeochemical reactions. The model results indicate that the anaerobic oxidation of methane (AOM) is the major process proceeding at a depth-integrated rate of 4.9 μmol cm−2 a−1, followed by calcium carbonate and strontian barite precipitation/dissolution processes having a total depth-integrated rate of 2.1 μmol cm−2 a−1. At the low seepage rate prevailing at our study site (0.14 cm a−1) all of the rising barium is consumed by precipitation of barite in the sedimentary column and no benthic barium flux is produced. Numerical experiments were run to investigate the response of this diagenetic environment to variations of hydrological and biogeochemical conditions. Our results show that relatively low rates of fluid flow (<∼5 cm a−1) promote the dispersed precipitation of up to 26 wt% of barite and calcium carbonate throughout the uppermost few meters of the sedimentary column. Distinct and persistent events (several hundreds of years long) of more vigorous fluid flow (from 20-110 cm a−1), instead, result in the formation of barite-carbonate crusts near the sediment surface. Competition between barium and methane for sulfate controls the mineralogy of these sediment precipitates such that at low dissolved methane/barium ratios (<4-11) barite precipitation dominates, while at higher methane/barium ratios sulfate availability is limited by AOM and calcium carbonate prevails. When seepage rates exceed 110 cm a−1, barite precipitation occurs at the seafloor and is so rapid that barite chimneys form in the water column. In the Derugin Basin, spectacular barite constructions up to 20 m high, which cover an area of roughly 22 km2 and contain in excess of 5 million tons of barite, are built through this process. In these conditions, our model calculates a flux of barium to the water column of at least 20 μmol cm−2 a−1. We estimate that a minimum of 0.44 × 106 mol a−1 are added to the bottom waters of the Derugin Basin by cold seep processes, likely affecting the barium cycle in the Sea of Okhotsk.  相似文献   

10.
Sulfate reduction and sulfur-iron geochemistry were studied in 5-6 m deep gravity cores of Holocene mud from Aarhus Bay (Denmark). A goal was to understand whether sulfate is generated by re-oxidation of sulfide throughout the sulfate and methane zones, which might explain the abundance of active sulfate reducers deep below the main sulfate zone. Sulfate penetrated down to 130 cm where methane started to build up and where the concentration of free sulfide peaked at 5.5 mM. Below this sulfate-methane transition, sulfide diffused downwards to a sulfidization front at 520 cm depth, below which dissolved iron, Fe2+, accumulated in the pore water. Sulfate reduction rates measured by 35S-tracer incubations in the sulfate zone were high due to high concentrations of reactive organic matter. Within the sulfate-methane transition, sulfate reduction was distinctly stimulated by the anaerobic oxidation of methane. In the methane zone below, sulfate remained at positive “background” concentrations of <0.5 mM down to the sulfidization front. Sulfate reduction decreased steeply to rates which at 300-500 cm depth were 0.2-1 pmol SO42− cm−3 d−1, i.e., 4-5 orders of magnitude lower than rates measured near the sediment surface. The turn-over time of sulfate increased from 3 years at 12 cm depth to 100-1000 years down in the methane zone. Sulfate reduction in the methane zone accounted for only 0.1% of sulfate reduction in the entire sediment column and was apparently limited by the low pore water concentration of sulfate and the low availability of organic substrates. Amendment of the sediment with both sulfate and organic substrates immediately caused a 10- to 40-fold higher, “potential sulfate reduction” which showed that a physiologically intact community of sulfate reducing bacteria was present. The “background” sulfate concentration appears to be generated from the reaction of downwards diffusing sulfide with deeply buried Fe(III) species, such as poorly-reactive iron oxides or iron bound in reactive silicates. The oxidation of sulfide to sulfate in the sulfidic sediment may involve the formation of elemental sulfur and thiosulfate and their further disproportionation to sulfide and sulfate. The net reaction of sulfide and Fe(III) to form pyrite requires an additional oxidant, irrespective of the formation of sulfate. This could be CO2 which is reduced with H2 to methane. The methane subsequently diffuses upwards to become re-oxidized at the sulfate-methane transition and thereby removes excess reducing power and enables the formation of excess sulfate. We show here how the combination of these well-established sulfur-iron-carbon reactions may lead to the deep formation of sulfate and drive a cryptic sulfur cycle. The iron-rich post-glacial sediments underlying Holocene marine mud stimulate the strong sub-surface sulfide reoxidation observed in Aarhus Bay and are a result of the glacial to interglacial history of the Baltic Sea area. Yet, processes similar to the ones described here probably occur widespread in marine sediments, in particular along the ocean margins.  相似文献   

11.
The Dvurechenskii mud volcano (DMV) is located in permanently anoxic waters at 2060 m depth (Sorokin Trough, Black Sea). The DMV was studied during the RV Meteor expedition M72/2 as an example of an active mud volcano system, to investigate the significance of submarine mud volcanism for the methane and sulfide budget of the anoxic Black Sea hydrosphere. Our studies included benthic fluxes of methane and sulfide, as well as the factors controlling transport, consumption and production of both compounds within the sediment. The pie-shaped mud volcano showed temperature anomalies as well as solute and gas fluxes indicating high fluid flow at its summit north of the geographical center. The anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SR) was repressed in this zone due to the upward flow of sulfate-depleted fluids through recently deposited subsurface muds, apparently limiting microbial methanotrophic activity. Consequently, the emission of dissolved methane into the water column was high, with an estimated rate of 0.46 mol m−2 d−1. On the wide plateau and edge of the mud volcano surrounding the summit, fluid flow and total methane flux were lower, allowing higher SR and AOM rates correlated with an increase in sulfate penetration into the sediment. Here, between 50% and 70% of the methane flux (0.07-0.1 mol m−2 d−1) was consumed within the upper 10 cm of the sediment. The overall amount of dissolved methane released from the entire mud volcano structure into the water column was significant with a discharge of 1.3 × 107 mol yr−1. The DMV maintains also high areal rates of methane-fueled sulfide production and emission of on average 0.05 mol m−2 d−1. This is a difference to mud volcanoes in oxic waters, which emit similar amounts of methane, but not sulfide. However, based on a comparison of this and other mud volcanoes of the Black Sea, we conclude that sulfide and methane emission into the hydrosphere from deep-water mud volcanoes does not significantly contribute to the sulfide and methane inventory of the Black Sea.  相似文献   

12.
The free energy yield of microbial respiration reactions in anaerobic marine sediments must be sufficient to be conserved as biologically usable energy in the form of ATP. Anaerobic oxidation of methane (AOM) coupled to sulfate reduction (SRR) has a very low standard free energy yield of ΔG° = −33 kJ mol−1, but the in situ energy yield strongly depends on the concentrations of substrates and products in the pore water of the sediment. In this work ΔG for the AOM-SRR process was calculated from the pore water concentrations of methane, sulfate, sulfide, and dissolved inorganic carbon (DIC) in sediment cores from different sites of the European continental margin in order to determine the influence of thermodynamic regulation on the activity and distribution of microorganisms mediating AOM-SRR. In the zone of methane and sulfate coexistence, the methane-sulfate transition zone (SMTZ), the energy yield was rarely less than −20 kJ mol−1 and was mostly rather constant throughout this zone. The kinetic drive was highest at the lower part of the SMTZ, matching the occurrence of maximum AOM rates. The results show that the location of maximum AOM rates is determined by a combination of thermodynamic and kinetic drive, whereas the rate activity mainly depends on kinetic regulation.  相似文献   

13.
Holocene fringing reef development around Bora Bora is controlled by variations in accommodation space (as a function of sea‐level and antecedent topography) and exposure to waves and currents. Subsidence ranged from 0 to 0·11 m kyr?1, and did not create significant accommodation space. A windward fringing reef started to grow 8·7 kyr bp , retrograded towards the coast over a Pleistocene fringing reef until ca 6·0 kyr bp , and then prograded towards the lagoon after sea‐level had reached its present level. The retrograding portion of the reef is dominated by corals, calcareous algae and microbialite frameworks; the prograding portion is largely detrital. The reef is up to 13·5 m thick and accreted vertically with an average rate of 3·12 m kyr?1. Lateral growth amounts to 13·3 m kyr?1. Reef corals are dominated by an inner Pocillopora assemblage and an outer Acropora assemblage. Both assemblages comprise thick crusts of coralline algae. Palaeobathymetry suggests deposition in 0 to 10 m depth. An underlying Pleistocene fringing reef formed during the sea‐level highstand of Marine Isotope Stage 5e, and is also characterized by the occurrence of corals, coralline algal crusts and microbialites. A previously investigated, leeward fringing reef started to form contemporaneously (8·78 kyr bp ), but is thicker (up to 20 m) and solely prograded throughout the Holocene. A shallow Pocillopora assemblage and a deeper water Montipora assemblage were identified, but detrital facies dominate. At the Holocene reef base, only basalt was recovered. The Holocene windward–leeward differences are a consequence of less accommodation space on the eastern island side that eventually led to a more complex reef architecture. As a result of higher rates of exposure and flushing, the reef framework on the windward island side is more abundant and experienced stronger cementation. In the Pleistocene, the environmental conditions on the leeward island side were presumably unfavourable for fringing reef growth.  相似文献   

14.
Pyritization in late Pleistocene sediments of the Black Sea is driven by sulfide formed during anaerobic methane oxidation. A sulfidization front is formed by the opposing gradients of sulfide and dissolved iron. The sulfidization processes are controlled by the diffusion flux of sulfide from above and by the solid reactive iron content. Two processes of diffusion-limited pyrite formation were identified. The first process includes pyrite precipitation with the accumulation of iron sulfide precursors with the average chemical composition of FeSn (n = 1.10-1.29), including greigite. Elemental sulfur and polysulfides, formed from H2S by a reductive dissolution of Fe(III)-containing minerals, serve as intermediates to convert iron sulfides into pyrite. In the second process, a “direct” pyrite precipitation occurs through prolonged exposure of iron-containing minerals to dissolved sulfide. Methane-driven sulfate reduction at depth causes a progressive formation of pyrite with a δ34S of up to +15.0‰. The S-isotopic composition of FeS2 evolves due to contributions of different sulfur pools formed at different times. Steady-state model calculations for the advancement of the sulfidization front showed that the process started at the Pleistocene/Holocene transition between 6360 and 11 600 yr BP. Our study highlights the importance of anaerobic methane oxidation in generating and maintaining S-enriched layers in marine sediments and has paleoenvironmental implications.  相似文献   

15.
A steady-state reaction-transport model is applied to sediments retrieved by gravity core from two stations (S10 and S13) in the Skagerrak to determine the main kinetic and thermodynamic controls on anaerobic oxidation of methane (AOM). The model considers an extended biomass-implicit reaction network for organic carbon degradation, which includes extracellular hydrolysis of macromolecular organic matter, fermentation, sulfate reduction, methanogenesis, AOM, acetogenesis and acetotrophy. Catabolic reaction rates are determined using a modified Monod rate expression that explicitly accounts for limitation by the in situ catabolic energy yields. The fraction of total sulfate reduction due to AOM in the sulfate-methane transition zone (SMTZ) at each site is calculated. The model provides an explanation for the methane tailing phenomenon which is observed here and in other marine sediments, whereby methane diffuses up from the SMTZ to the top of the core without being consumed. The tailing is due to bioenergetic limitation of AOM in the sulfate reduction zone, because the methane concentration is too low to engender favorable thermodynamic drive. AOM is also bioenergetically inhibited below the SMTZ at both sites because of high hydrogen concentrations (∼3-6 nM). The model results imply there is no straightforward relationship between pore water concentrations and the minimum catabolic energy needed to support life because of the highly coupled nature of the reaction network. Best model fits are obtained with a minimum energy for AOM of ∼11 kJ mol−1, which is within the range reported in the literature for anaerobic processes.  相似文献   

16.
This study combines sediment geochemical analysis, in situ benthic lander deployments and numerical modeling to quantify the biogeochemical cycles of carbon and sulfur and the associated rates of Gibbs energy production at a novel methane seep. The benthic ecosystem is dominated by a dense population of tube-building ampharetid polychaetes and conspicuous microbial mats were unusually absent. A 1D numerical reaction-transport model, which allows for the explicit growth of sulfide and methane oxidizing microorganisms, was tuned to the geochemical data using a fluid advection velocity of 14 cm yr−1. The fluids provide a deep source of dissolved hydrogen sulfide and methane to the sediment with fluxes equal to 4.1 and 18.2 mmol m−2 d−1, respectively. Chemosynthetic biomass production in the subsurface sediment is estimated to be 2.8 mmol m−2 d−1 of C biomass. However, carbon and oxygen budgets indicate that chemosynthetic organisms living directly above or on the surface sediment have the potential to produce 12.3 mmol m−2 d−1 of C biomass. This autochthonous carbon source meets the ampharetid respiratory carbon demand of 23.2 mmol m−2 d−1 to within a factor of 2. By contrast, the contribution of photosynthetically-fixed carbon sources to ampharetid nutrition is minor (3.3 mmol m−2 d−1 of C). The data strongly suggest that mixing of labile autochthonous microbial detritus below the oxic layer sustains high measured rates of sulfate reduction in the uppermost 2 cm of the sulfidic sediment (100-200 nmol cm−3 d−1). Similar rates have been reported in the literature for other seeps, from which we conclude that autochthonous organic matter is an important substrate for sulfate reducing bacteria in these sediment layers. A system-scale energy budget based on the chemosynthetic reaction pathways reveals that up to 8.3 kJ m−2 d−1 or 96 mW m−2 of catabolic (Gibbs) energy is dissipated at the seep through oxidation reactions. The microorganisms mediating sulfide oxidation and anaerobic oxidation of methane (AOM) produce 95% and 2% of this energy flux, respectively. The low power output by AOM is due to strong bioenergetic constraints imposed on the reaction rate by the composition of the chemical environment. These constraints provide a high potential for dissolved methane efflux from the sediment (12.0 mmol m−2 d−1) and indicates a much lower efficiency of (dissolved) methane sequestration by AOM at seeps than considered previously. Nonetheless, AOM is able to consume a third of the ascending methane flux (5.9 mmol m−2 d−1 of CH4) with a high efficiency of energy expenditure (35 mmol CH4 kJ−1). It is further proposed that bioenergetic limitation of AOM provides an explanation for the non-zero sulfate concentrations below the AOM zone observed here and in other active and passive margin sediments.  相似文献   

17.
The concentrations of CH4, SO42−, σCO2 and the carbon isotope compositions of ΣCO2 and CH4 in the pore-water of the GS sedimentary core collected from Guishan Island (Pearl River Estuary), South China Sea, were determined. The methane concentration in the pore-water shows dramatic changes and sulfate concentration gradients are linear at the base of the sulfate reduction zone for the station. The carbon isotope of methane becomes heavier at the sulfate-methane transition (SMT) likely because of the Raleigh distillation effect; 12CH4 was oxidized faster than 13CH4, and this caused the enrichment of residual methane δ 13C and δ 13C-ΣCO2 minimum. The geochemical profiles of the pore-water support the existence of anaerobic oxidation of methane (AOM), which is mainly controlled by the quality and quantity of the sedimentary organic matter. As inferred from the index of δ 13C-TOC value and TOC/TN ratio, the organic matter is a mix of mainly refractory terrestrial component plus some labile alga marine-derived in the study area. A large amount of labile organic matter (mainly labile alga marine-derived) is consumed via the process of sedimentary organic matter diagenesis, and this reduces the amount of labile organic matter incorporated into the base of the sulfate reduction zone. Due to the scarcity of labile organic matter, the sulfate will in turn be consumed by its reaction with methane and therefore AOM takes place. Based on a diffussion model, the portion of pore-water sulfate reduction via AOM is 58.6%, and the percentage of ΣCO2 in the pore-water derived from AOM is 41.4%. Thus, AOM plays an important role in the carbon and sulfur cycling in the marine sediments of Pearl River Estuary.  相似文献   

18.
Formation of iron sulfide nodules during anaerobic oxidation of methane   总被引:1,自引:0,他引:1  
The biomarker compositions of iron sulfide nodules (ISNs; upper Pliocene Valle Ricca section near Rome, Italy) that contain the ferrimagnetic mineral greigite (Fe3S4) were examined. In addition to the presence of specific terrestrial and marine biomarkers, consistent with formation in coastal marine sediments, these ISNs contain compounds thought to originate from sulfate reducing bacteria (SRB). These compounds include a variety of low-molecular-weight and branched alkanols and several non-isoprenoidal dialkyl glycerol diethers (DGDs). In addition, archaeal biomarkers, including archaeol, macrocyclic isoprenoidal DGDs and isoprenoidal glycerol dialkyl glycerol tetraethers are also present. Both SRB and archaeal lipid δ13C values are depleted in 13C (δ13C values are typically less than −50‰), which suggests that the SRB and archaea consumed 13C depleted methane. These biomarker and isotopic signatures are similar to those found in cold seeps and marine sediments where anaerobic oxidation of methane (AOM) occurs with sulfate serving as the terminal electron acceptor. Association of AOM with formation of greigite-containing ISNs could provide an explanation for documented remagnetization of the Valle Ricca sediments. Upward migration of methane, subsequent AOM and associated authigenic greigite formation are widespread processes in the geological record that have considerable potential to compromise paleomagnetic records.  相似文献   

19.
Current models of Pleistocene fluvial system development and dynamics are assessed from the perspective of European Lower and Middle Palaeolithic stone tool assemblages recovered from fluvial secondary contexts. Fluvial activity is reviewed both in terms of Milankovitch‐scale processes across the glacial/interglacial cycles of the Middle and Late Pleistocene, and in response to sub‐Milankovitch scale, high‐frequency, low‐magnitude climatic oscillations. The chronological magnitude of individual phases of fluvial activity is explored in terms of radiocarbon‐dated sequences from the Late Glacial and early Holocene periods. It is apparent that fluvial activity is associated with periods of climatic transition, both high and low magnitude, although system response is far more universal in the case of the high magnitude glacial/interglacial transitions. Current geochronological tools do not permit the development of high‐resolution sequences for Middle Pleistocene sediments, while localised erosion and variable system responses do not facilitate direct comparison with the ice core records. However, Late Glacial and early Holocene sequences indicate that individual fluvial activity phases are relatively brief in duration (e.g. 102 and 103 yr). From an archaeological perspective, secondary context assemblages can only be interpreted in terms of a floating geochronology, although the data also permit a reinvestigation of the problems of artefact reworking. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
High‐resolution chirp sonar profiling in the northeastern Skagerrak shows acoustically stratified sediments draping a rough‐surfaced substratum. A 32 metre long sediment core retrieved from the survey area encompasses the entire Holocene and latest Pleistocene. The uppermost seismo‐acoustic units in the chirp profiles represent Holocene marine sediments. The lowermost unit is interpreted as ice‐proximal glacial‐marine sediments rapidly deposited during the last deglaciation. The end of ice‐proximal sedimentation is marked by a strong reflector, interpreted to have been formed during latest Pleistocene time as a consequence of rapid ice retreat and drastically lowered sedimentation rate. The subsequent distal glacial‐marine sediments were deposited with initially high sedimentation rates caused by an isostatic rebound‐associated sea‐level fall. Based on correlation between the core and the chirp sonar profiles using measured sediment physical properties and AMS 14C dating, we propose a revised position for the Pleistocene/Holocene boundary in the seismo‐acoustic stratigraphy of the investigated area. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号