首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The satellite-borne radar altimeters on GEOS 3 and SEASAT produce high-precision measurement of distance from the satellite to the ocean surface. However, the precision of the GEOS 3 altimeter (~50 cm) and especially the forthcoming SEASAT (~10 cm) instrument far exceeds our ability to determine the position of either satellite using conventional electronic or laser-tracking methods. Thus special techniques are required to prevent the uncertainty of the satellite position from degrading the value of the altimeter data. The altimeter data themselves provide a solution to this problem. Using the condition that intersections of passes of altimeter data must measure the same time-invariant part of the sea-surface height, the root-mean-square error of 292 intersections of 47 passes of GEOS 3 altimeter data from the Atlantic Ocean was reduced from 17 m to 44 cm. Simulations of the SEASAT problem also show that altimeter data can aid in determining the satellite orbit, and have their greatest value when radar or laser tracking is sparse.  相似文献   

2.
Abstract

Measurements of ocean directional wave spectra, significant wave height, and wind speed over the Grand Banks of Newfoundland were made using the combined capabilities of the radar ocean wave spectrometer (ROWS) and scanning radar altimeter (SRA). The instruments were flown aboard the NASA P‐3A aircraft in support of the Grand Banks ERS‐1 Synthetic Aperture Radar (SAR) Wave Experiment. The NASA sensors use proven techniques, which differ greatly from SAR, for estimating the directional long‐wave spectrum; thus they provide a unique set of measurements for use in evaluating SAR performance. ROWS and SRA data are combined with spectra from the SAR aboard the Canadian Centre for Remote Sensing (CCRS) CV‐580 aircraft, the first‐generation Canadian Spectral Ocean Wave Model (CSOWM) hindcast, and other available in situ measurements to assess the ERS‐1 SAR's ability to correctly resolve wave field components along a 200‐ to 300‐km flight line for four separate satellite passes. Given the complex seas present on the Grand Banks, the complementary nature of viewing the sea spectrum from the perspectives of multiple sensors and a wave prediction model is apparent. The data intercomparisons show the ERS‐1 SAR to be meeting the expected goals for measuring swell, but the data also show evidence of this remote sensor's inability to detect the shorter waves travelling in the azimuth or along‐track direction. Example SAR spectra simulations are made using a non‐linear forward transform with ROWS measurements as input. Additionally, surface wind and wave height estimates made using the ROWS altimeter channel are presented. These data demonstrate the utility of operating the system in its new combined altimeter and spectrometer configuration.  相似文献   

3.
Four bulk schemes (LKB, FG, D and DB), with the flux-profile relationships of Liuet al. (1979), Francey and Garratt (1981), Dyer (1974), and Dyer and Bradley (1982), are derived from the viscous interfacial-sublayer model of Liuet al. These schemes, with stability-dependent transfer coefficients, are then tested against the eddy-correlation fluxes measured at the 50 m flight level above the western Atlantic Ocean during cold-air outbreaks. The bulk fluxes of momentum (), sensible heat (H), and latent heat (E) are found to increase with various von Kármán constants (k M for k H forH, andk E forE). Except that the LKB scheme overestimates by 28% (46Wm–2), on the average, the fluxes estimated by the four bulk schemes appear to be in fairly good agreement with those of the eddy correlation method (magnitudes of biases within 10% for , 17% forH, and 13% forE). The results suggest that the overall fluxes and surface-layer scaling parameters are best estimated by FG and thatk H <k E . On the average, the FG scheme underestimates by 10% (0.032N m–2) andE by 4% (12Wm–2), and overestimatesH by 0.3% (0.5W m–2). The equivalent neutral transfer coefficients at 10 m height of the FG scheme compare well with some schemes of those tested by Blanc (1985).The relative importance of various von Kármán constants, dimensionless gradients and roughness lengths to the oceanic transfer coefficients is assessed. The dependence of transfer coefficients on wind speeds and roughness lengths is discussed. The transfer coefficients for andE agree excellently between LKB and FG. However, the ratio of the coefficient forH of LKB to that of FG, increasing with decreasing stability, is very sensitive to stability at low winds, but approaches the neutral value of 1.25 at high winds.  相似文献   

4.
Under growing wind-wave conditions the shear velocity,u *, over the water surface equalsg 2 H s 2 B a 2 C p 3 , whereg is the gravitational acceleration,H s is the significant wave height,B a is a constant, andC p is the wave celerity. From an independent field experiment in a lake environment which provided all three parameters (u *,H s , andC p ), the value ofB a is found to be 0.89, which is slightly lower than but consistent (within 20%) with the literature value between 0.90 and 1.06 obtained from an oceanic environment. Since thisu * equation does not include the wind speed,U 10, anotheru * formulation withU 10 in addition to the wave information is also evaluated. It is shown that the latter equation which includesU 10 is superior to the former withoutU 10.  相似文献   

5.
An attempt is made to apply the modern methods of surface wave simulation developed for oceanic conditions to the modeling of waves in medium-size inland reservoirs (10–100 km). The results of field measurements of wind speed and waves are described, and on their basis the parameterization C D (U 10) is proposed. WAVEWATCH III spectral wave model was adapted to the conditions of a medium-size inl and reservoir. The simulated data are compared with the field data. The use of the new parameterization C D (U 10) allowed reducing the values of the wind wave growth rate that improved consistency in data from the field experiment and numerical modeling concerning the height of significant waves. Further steps towards improving the quality of prediction of the adapted WAVEWATCH III model are discussed.  相似文献   

6.
Turbulence measurements above a pine forest   总被引:1,自引:0,他引:1  
Eddy fluxes of momentum, sensible and latent heat, and turbulence spectra measured over the Thetford Forest during 10 days in the Spring of 1973 are described. The measured total heat flux (H + E) for 122 20-min periods agreed closely on average with independent estimates from an energy balance method. There was evidence that the energy balance data gave small systematic overestimates of available energy during the hours before noon, compensated by slight underestimates for the remainder of the day. A comparison of measured wind speeds and friction velocities in neutral stability confirmed the validity of the aerodynamic method for estimating momentum fluxes at heights of a few roughness lengths above the canopy. In stable conditions the log-linear wind profileU = (u */k)(ln ((z -d)/z o) + (z -d -z o)/L) with = 3.4 ± 0.4 provided a good fit to the data. Spectra in unstable conditions were generally more sharply peaked than those measured by other workers over smoother terrain: differences were less marked in the case of vertical velocity in stable conditions. Temperature spectra in these stable conditions showed high energy at relatively low wavenumbers, andwT cospectra showed a cospectral gap; both of these results were associated with an intermittent sawtooth structure in the temperature fluctuations.Now at the Meteorological Office, Bracknell  相似文献   

7.
Radar measurements of wave height are compared with independent measurements made during the JONSWAP-2 experiment by Waverider and pitch-roll buoys, a shipborne wave recorder and a laser profilometer. The radar data were recorded by a Naval Research Laboratory (NRL) nanosecond-pulse X-band radar altimeter flown in a NASA C-54 aircraft at 3-km altitude under various wind and sea conditions. Averages of 800 pulses of the pulse-limited altimeter data were used to calculate maximum-likelihood estimates of significant wave height (SWH) and skewness of the sea-surface height distribution. The mean values of the radar-estimated SWH were in good agreement with the other measurements. The standard deviation of the values of the radar measurements was typically 10% of the average wave height. A two-dimensional computer simulation of the sea surface indicates that the major portion of the observed standard deviation is attributable to the relatively small sea-surface area illuminated by the radar (125 m × 900 m) rather than to instrumental error. Increasing the number of pulses averaged reduced the variance in the estimates without changing the means. The mean value of the skewness parameter was generally near zero but the standard deviation was typically 0.25. The estimate of SWH did not change when the skewness parameter was constrained to zero.  相似文献   

8.
Air-sea bulk transfer coefficients in diabatic conditions   总被引:13,自引:0,他引:13  
On the basis of recent data for the roughness Reynolds number of the sea surface, and using the Owen-Thomson theory on the transfers of heat and mass between a rough surface and the flow above it, the bulk transfer coefficients of the sea surface have been estimated. For a reference height of 10 m, the neutral-lapse transfer coefficient for water vapor is larger by only a few percent than that for sensible heat. When the wind speed at the 10-m height is u 10>3 m s–1, the coefficient for sensible heat C H is larger by about 10% than that for momentum C D . For u 10<5 m s–1, however, the value of C D exceeds the value of C H , and for u 10=15 m s–1 it is shown that C H 0.8C D . It may be also proposed that 103 C D =1.11 to 1.70, 103 C E =1.18 to 1.30, and 103 C H =1.15 to 1.26 for a range of u 10=4 to 20 m s–1. A plot of diabatic transfer coefficients versus wind speed is obtained by using a parameter of the sea-air temperature difference. For practical purposes, the coefficients are approximated by empirical formulae.  相似文献   

9.
A systematic comparison of wind profiles and momentum exchange at a trade wind site outside Oahu, Hawaii and corresponding data from the Baltic Sea is presented. The trade wind data are to a very high degree swell dominated, whereas the Baltic Sea data include a more varied assortment of wave conditions, ranging from a pure growing sea to swell. In the trade wind region swell waves travel predominantly in the wind direction, while in the Baltic, significant cross-wind swells are also present. Showing the drag coefficient as a function of the 10-m wind speed demonstrates striking differences for unstable conditions with swell for the wind-speed range 2 m s?1 < U 10 < 7 m s?1, where the trade-wind site drag values are significantly larger than the corresponding Baltic Sea values. In striking contrast to this disagreement, other features studied are surprisingly similar between the two sites. Thus, exactly as found previously in Baltic Sea studies during unstable conditions and swell, the wind profile in light winds (3 m s?1) shows a wind maximum at around 7–8 m above the water, with close to constant wind speed above. Also, for slightly higher wind speeds (4 m s?1 < U 10 < 7 m s?1), the similarity between wind profiles is striking, with a strong wind-speed increase below a height of about 7–8 m followed by a layer of virtually constant wind speed above. A consequence of these wind-profile features is that Monin–Obukhov similarity is no longer valid. At the trade-wind site this was observed to be the case even for wind speeds as high as 10 m s?1. The turbulence kinetic energy budget was evaluated for four cases of 8–16 30- min periods at the trade-wind site, giving results that agree very well with corresponding figures from the Baltic Sea.  相似文献   

10.
Surface renewal analysis for sensible and latent heat flux density   总被引:1,自引:1,他引:0  
High frequency temperature measurements were recorded at five heights and surface renewal (SR) analysis was used to estimate sensible heat flux density (H) over 0.1 m tall grass. Traces of the temperature data showed ramp-like structures, and the mean amplitude and duration of these ramps were used to calculate H using structure functions. Data were compared with H values measured with a sonic anemometer. Latent heat flux density (E) was calculated using an energy balance and the results were compared with E computed from the sonic anemometer data. SR analysis provided good estimates of H for data recorded at all heights but the canopy top and at the highest measurement level, which was above the fully adjusted boundary layer.  相似文献   

11.
The present study involved determination of the experimental energy receipt partitioning over the tropical Amazon forest. Diurnal variation of net radiation (Q *), sensible heat flux (Q H) and latent heat flux (Q E) is presented. The daytimeQ E is in phase withQ * and it is always an important term in the energy balance. The daily averagedQ E is 59 to 100% of the dailyQ * whereasQ H is 5 to 28% at the Amazon forest site (2° 57 S; 59° 57 W) for the sample periods. The results present evidence thatQ E over the Amazon forest is greater thanQ * in the afternoon hours. The role of sensible heat advection in maintaining largeQ E over the forest surface is discussed. Hourly Bowen ratio () values for two campaigns of the Amazon forest micrometeorological experiment are presented. During daylight hours, the differences in are not significant, and exhibit a systematic pattern. The only time that the variation in Bowen ratio increased significantly was at sunrise and sunset when the thermal structure of the air was changing from a strong inversion to lapse and vice versa. The diurnal values changed from –3.50 to 0.85. The mean hourly calculated from values from 07.00 to 16.00 h, varied from 0.05 to 0.85.Diese Studie beschäftigt sich mit der Aufteilung der empfangenen Energie über dem tropischen Amazonasurwald. Es wird der Tagesgang der Strahlungsbilanz (Q *), des fühlbaren (Q H) und des latenten Wärmestromes (Q E) vorgestellt. Während der Tagesstunden istQ E in Phase mitQ * und ist immer ein wichtiger Term der Energiebilanz. Das Tagesmittel vonQ E beträgt 59 bis 100%,Q H 5 bis 28% des täglichenQ * an den Meßtagen bei der Amazonasurwaldstation (2° 57 S; 59° 57 W). Die Ergebnisse legen nahe, daß in den NachmittagsstundenQ E über dem Amazonasurwald größer ist alsQ *. Die Rolle der Advektion von fühlbarer Wärme zur Aufrechterhaltung des großenQ E über der Waldoberfläche wird diskutiert. Für zwei Meßkampagnen wurden die stündlichen Bowenverhältnisse () vorgestellt. Während der Tagesstunden ergaben sich keine signifikanten Änderungen von, während bei Sonnenaufgang und -untergang, wenn der thermische Aufbau der Luft von einer starken Inversion zu neutral und umgekehrt wechselt, die Unterschiede deutlich anstiegen. Die Tageswerte von lagen zwischen –3.50 und 0.85. Die Stundenmittel von 7.00 bis 16.00 Uhr schwankten zwischen 0.05 und 0.85.
With 3 Figures  相似文献   

12.
Abstract

Ocean backscatter data obtained with a Ku‐band airborne radar are presented along with coincident altimeter and directional wave spectral estimates. These data were collected using one sensor, NASA's radar ocean wave spectrometer (ROWS). The measurements are compared with an electromagnetic scattering model for perfectly conducting Gaussian random surfaces. The normalized radar cross‐section (NRCS) data cover those incidence angles (0–20°) where both quasi‐specular and Bragg scattering mechanisms are expected. Under certain conditions, identification and separation of these two mechanisms is possible. The scanning radar allows observations of the azimuthal variations in NRCS that are at times indicative of short‐scale wave generation in the wind direction.  相似文献   

13.
For the first time, the exchange coefficient of heat CH has been estimated from eddy correlation of velocity and virtual temperature fluctuations using sonic anemometer measurements made at low wind speeds over the monsoon land atJodhpur (26°18' N, 73°04' E), a semi arid station. It shows strong dependence on wind speed, increasing rapidly with decreasing wind speed, and scales according to a power law CH = 0.025U10 -0.7 (where U10 is the mean wind speed at 10-m height). A similar but more rapid increase in the drag coefficient CDhas already been reported in an earlier study. Low winds (<4 m s-1) are associated with both near neutral and strong unstable situations. It is noted that CH increases with increasing instability. The present observations best describe a low wind convective regime as revealed in the scaling behaviour of drag, sensible heat flux and the non-dimensional temperature gradient. Neutral drag and heat cofficients,corrected using Monin–Obukhov (M–O) theory, show a more uniform behaviour at low wind speeds in convective conditions, when compared with the observed coefficients discussed in a coming paper.At low wind convective conditions, M-O theory is unable to capture the observed linear dependence of drag on wind speed, unlike during forced convections. The non-dimensional shear inferred from the present data shows noticeable deviations from Businger's formulation, a forced convection similarity. Heat flux is insensitive to drag associated with weak winds superposed on true free convection. With heat flux as the primary variable, definition of new velocity scales leads to a new drag parameterization scheme at low wind speeds during convective conditionsdiscussed in a coming paper.  相似文献   

14.
In this paper we study the effect of atmospheric stability on the growth of surface gravity waves. To that end we numerically solved the Taylor-Goldstein equation for wind profiles which deviate from a logarithmic form because stratification affects the turbulent momentum transport. Using Charnock's relation for the roughness height z 0 of the wind profile, it is argued that the growth rate of the wave depends on the dimensionless phase velocity c/u * (where u * is the friction velocity) and a measure of the effect of atmospheric stability, namely the dimensionless Obukhov length gL/u * 2, whereas it only depends weakly on gz t /u * 2 (where z t is the roughness height of the temperature profile). Remarkably for a given value of u * /c, the growth rate is larger for a stable stratification (L > 0) than for an unstable one (L < 0). We explain why this is the case. If, on the other hand, one considers the growth rate as a function of c/U 10 (where U 10 is the windspeed at 10 m), the situation reverses for c/U 10 < 1. For practical application in wave prediction models, we propose a new parameterization of the growth rate of the waves which is an improvement of the Snyder et al. (1981) proposal because the effect of stability is taken into account.  相似文献   

15.
Stably stratified flow in a marine atmospheric surface layer   总被引:3,自引:1,他引:2  
Data from the marine atmospheric surface layer have been analysed. The data set consists of about two weeks with tower measurements up to 31 m of mean profiles of wind, temperature, and humidity, together with 20 Hz turbulence data. Mean wind, temperature, and humidity profiles up to 2000 m are also available from pibal trackings and radio soundings. Wave height was measured at 2 Hz, using an inverted echo-sounder.It was found from pibal wind profiles that low level jets were present during 2/3 of the measurements, having their maxima in the height interval 40 to 300 m. Here only data from the remaining 1/3 of the measurements, without low level jets, have been analysed.Non-dimensional wind and temperature gradients agree with results over homogeneous land surfaces as regards stability dependence during stable conditions that prevailed during this experiment. Linear regression gave m = 1 + 6.8z/L and m = 1 + 8.3z/L. No significant sea wave influence was found. The same was vrue for me dimensionless standard deviations of the three wind components, except for the vertical component. The expected wind speed dependence was found for the neutral drag coefficient, givingC dN = 0.109U + 0.33 at 10 m, and a dependence on the wave parameter,C/u *, was confirmed. Note, however, that the data set was restricted to low and moderate wind speeds and that stratification was mainly stable.Power spectra, non-dimensionalized according to suface-layer theories, do not follow the expected stability dependence. It was shown that this may be a consequence of the presence of gravity waves in the stable marine boundary layer. Indicators of gravity waves were found in most runs. The TKE budget agrees with findings over homogeneous land areas. The pressure transport term was found to be a source of energy also for near neutral conditions.  相似文献   

16.
X波段双偏振雷达水凝物粒子相态识别应用研究   总被引:2,自引:1,他引:1  
对云中水凝物粒子分类识别是双偏振雷达的主要应用之一。本文利用IAP-714XDP-A X波段双偏振雷达观测数据,在对其进行质量控制的基础上,利用滑动自适应订正算法对雷达反射率及差分反射率进行衰减订正,进而采用纹理参数SD(ZH)和SD(?DP)区分气象回波与非气象回波,最后建立基于X波段双偏振雷达偏振参量(ZH、ZDR、KDP、ρHV)、环境温度T和纹理参数(SD(ZH)、SD(?DP))的模糊逻辑水凝物粒子分类识别算法。本文通过对2016年8月7日一次低仰角的观测,检验了纹理参数SD(ZH)和SD(?DP)对气象回波和非气象回波的识别效果,结果表明:SD(ZH)与SD(?DP)两者结合可有效区分气象回波和非气象回波;用2015年8月7日北京一次较大范围的降雹个例,对建立的模糊逻辑水凝物粒子分类识别算法进行效果验证,识别降雹落点与地面观测降雹落点一致,表明各种水凝物粒子对应偏振参量取值范围合理;对2016年9月14日一次处于不同发展阶段的多单体对流云进行水凝物粒子分类识别,结果显示处于发展阶段对流云中存在过冷水柱,其形成的微物理过程是对流云中强烈的上升气流将暖层的水滴抬升到0℃层之上形成过冷云雨水,进而冻结形成雹胚并发展成为冰雹。  相似文献   

17.
A spectral approach is applied to shear-induced turbulence in stratified layers. A system of spectral equations for stationary balance of turbulent energy and temperature variances was deduced in the vicinity of the local shear scale LU = (ε/UZ3)1/2. At wavenumbers between the inertial-convective (k−5/3) and wak turbulence (k−3) subranges, additional narrow spectral intervals—‘production’ subranges—may appear (E k−1, ET k−2). The upper boundary of these subranges is determined as LU, and the lower boundaries as LR (ε/UZN2)1/2(χ/TZ2). It is shown that the scale LU is a unique spectral scale that is uniform up to a constant value for every hydrophysical field. It appears that the spectral scale LU is equivalent to the Thorpe scale LTh for the active turbulence model. Therefore, if turbulent patches are generated in a background of permanent mean shear, a linear relation between temperature and mass diffusivities exists. In spectral terms, the fossil turbulence model corresponds to the regime of the Boldgiano-Obukhov buoyancy subrange (E k−11/5, ET k−7/5). During decay the buoyancy subrange is expanded to lower and higher wavenumbers. At lower wavenumbers the buoyancy subrange is bounded by L** = 3(χ1/2/N1/2TZ), which is equivalent to the Thorpe scale LTh. In such a transition regime only, when the viscous dissipation rate is removed from the set of main turbulence parameters, the Thorpe scale does not correlate with the buoyancy scale LN ε1/2/N3/2 and fossil turbulence is realized. Oceanic turbulence measurements in the equatorial Pacific near Baker Island confirm the main ideas of the active and fossil turbulence models.  相似文献   

18.
A Forest SO2 Absorption Model (ForSAM) was developed to simulate (1) SO2 plume dispersion from an emission source, (2) subsequent SO2 absorption by coniferous forests growing downwind from the source. There are three modules: (1) a buoyancy module, (2) a dispersion module, and (3) a foliar absorption module. These modules were used to calculate hourly abovecanopy SO2 concentrations and in-canopy deposition velocities, as well as daily amounts of SO2 absorbed by the forest canopy for downwind distances to 42 km. Model performance testing was done with meteorological data (including ambient SO2 concentrations) collected at various locations downwind from a coal-burning power generator at Grand Lake in central New Brunswick, Canada. Annual SO2 emissions from this facility amounted to about 30,000 tonnes. Calculated SO2 concentrations were similar to those obtained in the field. Calculated SO2 deposition velocities generally agreed with published values.Notation c air parcel cooling parameter (non-dimensional) - E foliar absorption quotient (non-dimensional) - f areal fraction of foliage free from water (non-dimensional) - f w SO2 content of air parcel - h height of the surface layer (m) - H height of the convective mixing layer (m) - H stack stack height (m) - k time level - k drag coefficient of drag on the air parcel (non-dimensional) - K z eddy viscosity coefficient for SO2 (m2·s–1) - L Monin-Obukhov length scale (m) - L A single-sided leaf area index (LAI) - n degree-of-sky cloudiness (non-dimensional) - N number of parcels released with every puff (non-dimensional) - PAR photosynthetically active radiation (W m–2) - Q emission rate (kg s–2) - r b diffusive boundary-layer resistance (s m–1) - r c canopy resistance (s m–1) - r cuticle cuticular resistance (s m–1) - r m mesophyllic resistance (s m–1) - r s stomatal resistance (s m–1) - r exit smokestack exit radius (m) - R normally distributed random variable with mean of zero and variance of t (s) - u * frictional velocity scale, (m s–1) - v lateral wind vector (m s–1) - v d SO2 dry deposition velocity (m s–1) - VCD water vapour deficit (mb) - z can mean tree height (m) - Z zenith position of the sun (deg) - environmental lapse rate (°C m–1) - dry adiabatic lapse rate (0.00986°C m–1) - von Kármán's constant (0.04) - B vertical velocities initiated by buoyancy (m s–1) - canopy extinction coefficient (non-dimensional) - ()a denotes ambient conditions - ()can denotes conditions at the top of the forest canopy - ()h denotes conditions at the top of the surface layer - ()H denotes conditions at the top of the mixed layer - ()s denotes conditions at the canopy surface - ()p denotes conditions of the air parcels  相似文献   

19.
Sensible heat (H) and latent heat (LE) fluxes and turbulence statistics in St. Louis, Missouri and the surrounding region are presented. The urban-scale analyses were derived from a series of aircraft transects at 150 m above ground across the metropolitan area during the afternoon convective period. The results revealed that H varied by a factor of two to four in the region; the largest values were associated with the urban heat island. LE varied across the urban area by about a factor of four, but low values of LE overlaid the urban heat island. Consequently, the Bowen ratio (H/LE) exhibited large spatial variability, with a maximum value greater than 1.5 over the city and values less than 0.2 in nonurban areas. The areas along the Mississippi River and adjacent low lying marshland northeast of the downtown area displayed significantly smaller H and Bowen ratio. The derived surface heat storage term (G) for this area as well as for the urban area exceeded either H or LE.The spatial patterns for the standard deviations of the three velocity components ( u,v,w ), temperature ( T ), and absolute humidity ( q ), are also presented. The patterns of u,v,w were similar to the pattern of H. the highest values associated with the urban heat island. The correlation coefficient between the vertical velocity and temperature fluctuations was highest over the city, and a noteworthy minimum was observed in the upwind area over the river and marshland in association with low H. The convective similarity relationships for u,v,w appeared to be approximately valid spatially, as variations were typically less than 10% from theory over the urban area and nonurban region, except for a 40% anomaly in the lowland around the river northeast of the city.Measurements of H from 30-m towers within various land-use areas were contrasted with the aircraft data. Land-use differences in H at the surface were at least as large as those observed at 150 m across the city. This was primarily because of the measurement requirement that the minimum resolvable fetch increases with measurement height.  相似文献   

20.
Potential temperature, specific humidity and wind profiles measured by radiosondes under unstable but windy conditions during FIFE in northeastern Kansas were analyzed within the framework of Monin-Obukhov similarity. Around 86% of these profiles were found to have a height range over which the similarity, formulated in terms of the Businger-Dyer functions, is valid and for which the resulting surface fluxes are in good agreement with independent measurements at ground stations. When scaled with the surface roughness z 0 = 1.05 m and the displacement height d 0 = 26.9 m, for the potential temperature this height range was 45 (±31) (z – d 0 )/z 0 104 (±54) and the comparison of the profile-derived surface fluxes with the independent measurements gave a correlation coefficient of r = 0.96. For the specific humidity these values are 42 (±29) (z – d 0 )/z 0 96 (±38) and r = 0.94. In terms of the height of the bottom of the inversion H i , in the morning hours the upper limit of (z – d 0 ) in the Monin-Obukhov layer is approximately 0.3H i , whereas for a fully developed ABL it is closer to 0.1H i . Probably, as a result of the short sampling times and perhaps also of the small gradients under the windy conditions, the exact height range of validity was difficult to establish from a mere inspection of these profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号