首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 620 毫秒
1.
The earthquakes with magnitude M 6 which occurred in North China (30°–42°N, 105°–124°E) from 780 B.C. to 1978 A.D. have been analysed. Most of them appear in groups, each of which is confined to a definite region and period of time, called respectively the active region and active period. From 780 B.C. to 1000 A.D., groupings of earthquakes were not apparent, due to scanty data. Since 1000 A.D., 16 groups of earthquakes can be recognized. Statistics show that about 73% of the earthquakes occurred in groups. This implies that grouping of earthquakes of M 6 is a characteristic feature of seismic activity in North China. On this basis, a concept of a unified seismogenic process of major earthquakes has been proposed with the support of the geodetic data. Finally, the significance of this concept with regards to earthquake prediction has been discussed.  相似文献   

2.
According to previous observations [Geophys. Res. Lett. 27 (2000) 3957], the generation of large (M≥7.0) earthquakes in the western part of the north Anatolian fault system (Marmara Sea) is followed by strong earthquakes along the Northern Boundary of the Aegean microplate (NAB: northwestermost Anatolia–northern Aegean–central Greece–Ionian islands). Therefore, it can be hypothesized that a seismic excitation along this boundary should be expected after the occurrence of the Izmit 1999 earthquake (M=7.6). We have applied the method of accelerating seismic crustal deformation, which is based on concepts of critical point dynamics in an attempt to locate more precisely those regions along the NAB where seismic excitation is more likely to occur. For this reason, a detailed parametric grid search of the broader NAB area was performed for the identification of accelerating energy release behavior.Three such elliptical critical regions have been identified with centers along this boundary. The first region, (A), is centered in the eastern part of this boundary (40.2°N, 27.2°E: southwest of Marmara), the second region, (B), has a center in the middle part of the boundary (38.8°N, 23.4°E: East Central Greece) and the third region, (C), in the westernmost part of the boundary (38.2°N, 20.9°E: Ionian Islands). The study of the time variation of the cumulative Benioff strain in two of the three identified regions (A and B) revealed that intense accelerating seismicity is observed especially after the occurrence of the 1999 Izmit mainshock. Therefore, it can be suggested that the seismic excitation, at least in these two regions, has been triggered by the Izmit mainshock.Estimations of the magnitudes and origin times of the expected mainshocks in these three critical regions have also been performed, assuming that the accelerating seismicity in these regions will lead to a critical point, that is, to the generation of mainshocks.  相似文献   

3.
A catalogue of 1873–1972 earthquakes with M > 6.9 for the New Guinea—Solomon Islands region (130–165° E) is compiled. There are 152 events listed. Duda's (1965) results for 1900–1968 are improved for the Papua New Guinea area (141–156° E) because of the availability of historical data for that area.Although there is evidence of rapid Holocene uplift in the main seismic zones, there is little historical evidence for visible uplift or subsidence resulting directly from modern major earthquakes. Coastal subsidences commonly reported as a result of earthquakes are of smaller extent and appear to be due to settlement. However, the occurrence of tsunamigenic earthquakes does suggest that surface deformations do take place off-shore.Using Davies and Brune's (1971) method, regional fault slip rates over 5° -segments of the shallow seismic zone are determined from the seismicity catalogue. The slip rate for the island of New Guinea (Gutenberg and Richter's Region 16) is found to be at least 4.4 cm/y which is almost double the very anomalously low rate of 2.3 cm/y found by Davies and Brune (1971). If allowance is made for shear movement without seismicity and for the approximately ratio of dip-slip versus strike-slip faulting indicated by fault plane solutions, the agreement with Le Pichon's (1970) approach value of 10.7 cm/y for the Pacific—India (Australia) plates is reasonable. The fault slip rate in the area between east New Britain and Bougainville at the Pacific—Bismarck—Solomon triple junction is extremely high (20.6 cm/y at least). The smallest slip rate (1.5 cm/y) is found for westernmost New Guinea (130–135° E).Temporal cumulative summation of moments curves show a periodicity of approximately 25 years in the seismic activity at the triple junction (150–155° E). Elsewhere the rate of seismic activity is aperiodic.  相似文献   

4.
An inversion of P-wave travel time residuals from selected earthquakes in the distance range 30°–98° to two seismic station networks was used to model P-wave velocity anomalies down to 250 km depth. In the first inversion experiment a region between 43.5°–47.5°N and 21°–29°E was modelled, using 35 seismic stations, while in the second one a region between 44°–47°N and 25°–29°E was modelled, using 19 seismic stations. The 4-layer block model of the first inversion offers 19% reduction in residual variance, while the 5-layer block model of the second one offers 26% reduction, the rest being explained by noise and smaller scale heterogeneities. The obtained velocity anomalies correlate remarkably well with the gravity anomalies and with the tectonic model for the Vrancea region of Fuchs et al. (1979).  相似文献   

5.
The recent tectonics of the Arctic Basin and northeastern Asia are considered as a result of interaction between three lithospheric plates: North-America, Eurasia and Spitsbergen. Seismic zones (coinciding in the Norway-Greenland basin with the Kolbeinsey, Mohns and Knipovich ridges, and in the Arctic Ocean with the Gakkel Ridge) clearly mark the boundaries between them. In southernmost Svalbard (Spitsbergen), the secondary seismic belt deviates from the major seismic zone. This belt continues into the seismic zone of the Franz Josef Land and then merges into the seismic zone of the Gakkel Ridge at 70°–90°E. The smaller Spitsbergen plate is located between the major seismic zone and its secondary branch.Within northeastern Asia, earthquake epicenters with magnitude over 4.5 are concentrated within a 300-km wide belt crossing the Eurasian continent over a distance of 3000 km from the Lena estuary to the Komandorskye Islands. A single seismic belt crosses the northern sections of the Verkhoyansky Ridge and runs along the Chersky Ridge to the Kolymo-Okhotsk Divide.To compute the poles of relative rotation of the Eurasian, North-American and Spitsbergen plates we use 23 new determinations of focal-mechanism solutions for earthquakes, and 38 azimuths of slip vectors obtained by matching of symmetric mountain pairs on both sides of the Knipovich and Gakkel ridges; we also use 14 azimuths of strike-slip faults within the Chersky Ridge determined by satellite images. The following parameters of plate displacement were obtained: Eurasia/North America: 62.2°N, 140.2°E (from the Knipovich Ridge section south of the triple junction); 61.9°N, 143.1°E (from fault strikes in the Chersky Ridge); 60.42°N, 141.56°C (from the Knipovich section and from fault strikes in the Chersky Ridge); 59.48°N, 140.83°E, α = 1.89 · 10−7 deg/year (from the Knipovich section, from fault strikes in the Chersky Ridge and from the Gakkel Ridge section east of the triple junction). The rate was calculated by fitting the 2′ magnetic lineations within the Gakkel Ridge).North-America/Spitsbergen: 70.96°N, 121.18°E, α = −2.7 · 10−7 deg/year from the Knipovich Ridge section north of the triple junction, from earthquakes in the Spitsbergen fracture zone and from the Gakkel Ridge section west of the triple junction). Eurasia/Spitsbergen: 70.7°N, 25.49°E, α = −0.99 · 10−7 deg/year (from closure of vector triangles).  相似文献   

6.
The microstructure of a quartzite experimentally deformed and partially recrystallised at 900 °C, 1.2 GPa confining pressure and strain rate 10−6/s was investigated using orientation contrast and electron backscatter diffraction (EBSD). Boundaries between misoriented domains (grains or subgrains) were determined by image analysis of orientation contrast images. In each domain, EBSD measurements gave the complete quartz lattice orientation and enabled calculation of misorientation angles across every domain boundary. Results are analysed in terms of the boundary density, which for any range of misorientations is the boundary length for that range divided by image area. This allows a more direct comparison of misorientation statistics between different parts of a sample than does a treatment in terms of boundary number.The strain in the quartzite sample is heterogeneous. A 100×150 μm low-strain partially recrystallised subarea C was compared with a high-strain completely recrystallised subarea E. The density of high-angle (>10°) boundaries in E is roughly double that in C, reflecting the greater degree of recrystallisation. Low-angle boundaries in C and E are produced by subgrain rotation. In the low-angle range 0–10° boundary densities in both C and E show an exponential decrease with increasing misorientation. The densities scale with exp(−θ/λ) where λ is approximately 2° in C and 1° in E; in other words, E has a comparative dearth of boundaries in the 8–10° range. We explain this dearth in terms of mobile high-angle boundaries sweeping through and consuming low-angle boundaries as the latter increase misorientation through time. In E, the density of high-angle boundaries is larger than in C, so this sweeping would have been more efficient and could explain the relative paucity of 8–10° boundaries.The boundary density can be generalised to a directional property that gives the degree of anisotropy of the boundary network and its preferred orientation. Despite the imposed strain, the analysed samples show that boundaries are not, on average, strongly aligned. This is a function of the strong sinuosity of high-angle boundaries, caused by grain boundary migration. Low-angle boundaries might be expected, on average, to be aligned in relation to imposed strain but this is not found.Boundary densities and their generalisation in terms of directional properties provide objective measures of microstructure. In this study the patterns they show are interpreted in terms of combined subgrain rotation and migration recrystallisation, but it may be that other microstructural processes give distinctive patterns when analysed in this fashion.  相似文献   

7.
Burial depth, cumulative displacement, and peak temperature of frictional heat of a fault system are estimated by thermal analysis in the fold–thrust belt of the Western Foothills complex, western Taiwan based on the vitrinite reflectance technique. The regional thermal structure across the complex reveals that the rocks were exposed to maximum temperatures ranging from 100 °C to 180 °C, which corresponds to a burial depth of 3.7–6.7 km. A large thermal difference of 90 °C were observed at the Shuilikeng fault which make the eastern boundary of the fold–thrust belt where it is in contact with metamorphic rock of Hsuehshan Range. The large thermal difference corresponds to cumulative displacements on the Shuilikeng fault estimated to be in the range of 5.2–6.9 km. However, thermal differences in across the Shuangtung and Chelungpu faults cannot be determined apparently due to small vertical offsets. The large displacement observed across the Shuilikeng fault is absent at the other faults which are interpreted to be younger faults within the piggyback thrust system. Localized high temperatures adjacent to fault zones were observed in core samples penetrating the Chelungpu fault. Three major fracture zones were observed at core lengths of 225 m, 330 m, and 405 m and the two lower zones which comprise dark gray narrow shear zones. A value of vitrinite reflectance of 1.8%, higher than the background value of 0.8%, is limited at a narrow shear zone of 1 cm thickness at the fracture zone at 330 m. The estimated peak temperature in the range of 550–680 °C in the shear zone is far higher than the background temperature of 130 °C, and it is interpreted as due to frictional heating during seismic faulting.  相似文献   

8.
The Polish Geophysical Expedition to West Antarctica in the summer of 1979–1980 was organized by the Institute of Geophysics of the Polish Academy of Sciences. The purpose of the expedition was to carry out studies of deep structures of the Earth's crust by reflection, refraction and deep seismic sounding methods. Special attention was paid to tectonically active zones and to the contact zones between the blocks of the Earth's crust and the lithospheric plates. Geophysical measurements were carried out in the area extending between 61° and 65°S and between 56° and 66°W. The measurements covered the southern Shetlands, the Antarctic Peninsula, the Bransfield Strait, the Drake Passage, the Palmer Archipelago, the Gerlache Strait and the Bismarck Strait towards the southern Pacific.Deep seismic soundings were made along profiles with a total length of about 2000 km. Seismic reflection measurements were made along profiles about 1100 km long. A detailed analysis of the seismic wave field shows that the structure of the Earth's crust in this part of West Antarctica is very complex. Numerous deep fractures divide the Earth's crust into blocks of different physical properties. The thickness of the Earth's crust changes from 32 km in the region of the South Shetland Islands to 40–45 km in the region of the Antarctic Peninsula. A preliminary geodynamical model of this part of West Antarctica is presented.  相似文献   

9.
The paper describes an integrated approach to seismic hazard assessment, which was applied for the Taiwan region. First, empirical modelsfor ground motion estimation in the region were obtained on the basisof records from recent (1993-1999) earthquakes. The databaseincludes strong-motion data collected during the recent Chi-Chiearthquake (M=7.6, 21 September 1999) and large (M=6.8)aftershocks. The ground-motion database was also used for evaluationof generalised site amplification functions for typical soil classes(B, C and D). Second, the theoretical seismic catalogue (2001–2050)for the Taiwan region had been calculated using the 4D-model(location, depth, time) for dynamic deformation of the Earth' crustand 5D-model (location, depth, time, magnitude) for seismic process.The models were developed on the basis of available geophysical andgeodynamic data that include regional seismic catalogue. Third, theregion & site & time-dependent seismic analysis, which is basedon schemes of probable earthquake zones evaluated from the theoreticalcatalogue, regional ground motion models, and local site responsecharacteristics, has been performed. The seismic hazard maps arecompiled in terms of Peak Ground Acceleration (PGA) and ResponseSpectra (RS) amplitudes. The maps show distribution of amplitudesthat will not be exceeded with certain probability in condition oftypical soil classes during all possible earthquakes that may occur inthe region during time period of 2003–2025. The approach allowsintroducing new parameter that describes dependency of seismichazard on time, so-called 'period of maximum hazard'. Theparameter shows the period, during which every considered sitewill be subjected by the maximum value of ground motioncharacteristic (PGA or RS).  相似文献   

10.
We have studied the focal mechanisms of the 1980, 1997 and 1998 earthquakes in the Azores region from body-wave inversion of digital GDSN (Global Digital Seismograph Network) and broadband data. For the 1980 and 1998 shocks, we have obtained strike–slip faulting, with the rupture process made up of two sub-events in both shocks, with total scalar seismic moments of 1.9 × 1019 Nm (Mw = 6.8) and 1.4 × 1018 Nm (Mw = 6.0), respectively. For the 1997 shock, we have obtained a normal faulting mechanism, with the rupture process made up of three sub-events, with a total scalar seismic moment of 7.7 × 1017 Nm (Mw = 5.9). A common characteristic of these three earthquakes was the shallow focal depth, less than 10 km, in agreement with the oceanic-type crust. From the directivity function of Rayleigh (LR) waves, we have identified the NW–SE plane as the rupture plane for the 1980 and 1998 earthquakes with the rupture propagating to the SE. Slow rupture velocity, about of 1.5 km/s, has been estimated from directivity function for the 1980 and 1998 earthquakes. From spectral analysis and body-wave inversion, fault dimensions, stress drop and average slip have been estimated. Focal mechanisms of the three earthquakes we have studied, together with focal mechanisms obtained by other authors, have been used in order to obtain a seismotectonic model for the Azores region. We have found different types of behaviour present along the region. It can be divided into two zones: Zone I, from 30°W to 27°W; Zone II, from 27°W to 23°W, with a change in the seismicity and stress direction from Zone I. In Zone I, the total seismic moment tensor obtained corresponded to left-lateral strike–slip faulting with horizontal pressure and tension axes in the E–W and N–S directions, respectively. In Zone II, the total seismic moment tensor corresponded to normal faulting, with a horizontal tension axis trending NE–SW, normal to the Terceira Ridge. The stress pattern for the whole region corresponds to horizontal extension with an average seismic slip rate of 4.4 mm/yr.  相似文献   

11.
Seismic attenuation of coda waves in the eastern region of Cuba   总被引:1,自引:0,他引:1  
Cuba's seismic attenuation had never been studied in detail. In this paper we present the results of the research on the seismic attenuation of Cuba's eastern zone based upon the information collected by the seismological Cuban network from 1998 to 2003. 581 earthquakes were selected from the Cuban catalogue to make this study. All of them, recorded by at least three seismic stations, had their epicenters located in the eastern Cuban region (19.3–22 N, 79–73 W), epicentral distances between 15 km and 213 km, their coda duration magnitudes ranging from 2 and 4.1 and their focal depths reaching up to 30 km. The seismic wave attenuation was studied using coda waves. The single scattering method proposed by Sato in 1977 was applied, the attenuation and frequency dependency for different paths and the correlation of the results with the geotectonics of the region are presented in this paper.The mean Qc value calculated was Qc = (64 ± 2)f0.84 ± 0.01. The relatively low Q0 and the high frequency dependency agree with the values of a region characterized by a high tectonic activity. The Qc values of seven subregions of eastern Cuba were calculated and correlated with the geology and tectonics of the area.  相似文献   

12.
Historically, the Tuareg shield is divided into three parts bordered by mega-shear zones with the centre, the Central Polycyclic Hoggar, characterized by Archaean and Palaeoproterozoic lithologies. Nearly 10 years ago, the Tuareg shield was shown to be composed of 23 displaced terranes [Geology 22 (1994) 641] whose relationships were deciphered in Aïr to the SE [Precambr. Res. 67 (1994) 59]. The Polycyclic Central Hoggar terranes were characterized by the presence of well preserved Archaean/Palaeoproterozoic and Neoproterozoic lithologies.We show here that the terranes from Central Hoggar (Laouni, Azrou-n-Fad, Tefedest, Egéré-Aleksod) belonged to a single old passive margin, to which we gave the acronym name LATEA, which behaved as a craton during the Mesoproterozoic and the Early-Middle Neoproterozoic but was partly destabilized and dissected during the Late Neoproterozoic as a consequence of its involvement as a passive margin in the Pan-African orogen.An early Pan-African phase consisted of thrust sheets including garnet-bearing lithologies (eclogite, amphibolite, gneiss) that can be mapped and correlated in three LATEA terranes. In the Tin Begane area, PTt paths have been established from>15 kbar––790 °C (eclogite) to 4 kbar––500 °C (greenschist retrogression) through 12 kbar––830 °C (garnet amphibolite) and 8 kbar––700 °C (garnet gneiss), corresponding to the retrograde path of a Franciscan-type loop. Sm–Nd geochronology on minerals and laser ablation ICP-MS on garnet show the mobility of REE, particularly LREE, during the retrograde greenschist facies that affects, although slightly, some of these rocks. The amphibolite-facies metamorphism has been dated at 685 ± 19 Ma and the greenschist facies at 522 ± 27 Ma. During the thrust phase, the Archaean–Palaeoproterozoic basement was only locally affected by the Pan-African tectonics. LATEA behaved as a craton. Other juvenile terranes were also thrust early onto LATEA: the Iskel island arc at ≈850 Ma to the west of LATEA, the Serouenout terrane in the 700–620 Ma age range to the east. No subduction-related magmas have intruded LATEA during this epoch, which behaved as a passive margin.During the main Pan-African phase (625–580 Ma), LATEA was dissected by mega-shear zones that induced several hundreds km of relative displacement and allowed the emplacement of high-K calc-alkaline batholiths. Smaller movements continued till 525 Ma, accompanied by the emplacement of subcircular plutons with alkaline affinity. Here is dated the Ounane granodiorite (624 ± 15 Ma; 87Sr/86Sri=0.70839 ± 0.00016; 6WR, MSWD=0.87) and the Tisselliline granite (552 ± 15 Ma; 87Sr/86Sri=0.7074 ± 0.0001; 5WR, MSWD=1.4). Nd isotopes indicate a preponderant Palaeoproterozoic crustal source for these two plutons: Nd=−14 to −21 at 624 Ma and TDM=1650–2320 Ma for Ounane and Nd=−13 to −15 at 555 Ma and TDM=1550–1720 Ma for Tisselliline. Our model links these intrusions to a linear lithospheric delamination along mega-shear zones, allowing the hot asthenosphere to rise, melt by adiabatic pressure release and inducing the melting of the Palaeoproterozoic and Archaean lower crust.The LATEA cratonic microcontinent remained however sufficiently rigid to preserve Archaean and Palaeoproterozoic lithologies as well as Middle Neoproterozoic oceanic thrust sheets. This corresponds to the notion of metacraton [J. African Earth Sci. 34 (2002) 119], i.e. a craton that has been remobilized during an orogenic event but is still recognizable dominantly through its rheological, geochronological, isotopic and sometimes petrological characteristics.  相似文献   

13.
Recent U–Pb age determinations and PT estimates allow us to characterize the different levels of a formerly thickened crust, and provide further constraints on the make up and tectono-thermal evolution of the Grenville Province in the Manicouagan area. An important tectonic element, the Manicouagan Imbricate zone (MIZ), consists of mainly 1.65, 1.48 and 1.17 Ga igneous rocks metamorphosed under 1400–1800 MPa and 800–900 °C at 1.05–1.03 Ga, during the Ottawan episode of the Grenvillian orogenic cycle, coevally with intrusion of gabbro dykes in shear zones. The MIZ has been interpreted as representing thermally weakened deep levels of thickened crust extruded towards the NW over a parautochthonous crustal-scale ramp. Mantle-derived melts are considered as in part responsible for the high metamorphic temperatures that were registered.New data show that mid-crustal levels structurally above the MIZ are represented by the Gabriel Complex of the Berthé terrane, that consists of migmatite with boudins of 1136±15 Ma gabbro and rafts of anatectic metapelite with an inherited monazite age at 1478±30 Ma. These rocks were metamorphosed at about the same time as the MIZ (metamorphic zircon in gabbro: 1046±2 Ma; single grains of monazite in anatectic metapelite: 1053±2 Ma) and under the same T range (800–900 °C) but at lower P conditions (1000–1100 MPa). They are mainly exposed in an antiformal culmination above a high-strain zone, which has tectonic lenses of high PT rocks from the MIZ and is intruded by synmetamorphic gabbroic rocks. This zone is interpreted as part of the hangingwall of the MIZ during extrusion. A gap of 400 MPa in metamorphic pressures between the tectonic lenses and the country rocks, together with the broad similarity in metamorphic ages, are consistent with rapid tectonic transport of the high PT rocks over a ramp prior to the incorporation of the mafic lenses in the hangingwall.Between the antiformal culmination of the Gabriel Complex and the MIZ 1.48 Ga old granulites of the Hart Jaune terrane are exposed. They are intruded by unmetamorphosed 1228±3 Ma gabbro sills and 1166±1 Ma anorthosite. Hart Jaune Terrane represents relatively high crustal levels that truncate the MIZ-Gabriel Complex contact and are preserved in a synformal structure.Farther south, the Gabriel Complex is overlain by the Banded Complex, a composite unit including 1403+32/−25 Ma granodiorite and 1238+16/−13−1202+40/−25 Ma granite. This unit has been metamorphosed under relatively low-P (800 MPa) granulite-facies conditions. Metamorphic U–Pb data, limited to zircon lower intercept ages (971±38 Ma and 996±27 Ma) and a titanite (990±5 Ma) age, are interpreted to postdate the metamorphic peak.The general configuration of units along the section is consistent with extrusion of the MIZ during shortening and, finally, normal displacement along discrete shear zones.  相似文献   

14.
W.P. Schellart   《Tectonophysics》2007,445(3-4):363-372
A geodynamic model exists, the westward lithospheric drift model, in which the variety of overriding plate deformation, trench migration and slab dip angles is explained by the polarity of subduction zones. The model predicts overriding plate extension, a fixed trench and a steep slab dip for westward-dipping subduction zones (e.g. Mariana) and predicts overriding plate shortening, oceanward trench retreat and a gentle slab dip for east to northeastward-dipping subduction zones (e.g. Chile). This paper investigates these predictions quantitatively with a global subduction zone analysis. The results show overriding plate extension for all dip directions (azimuth α = − 180° to 180°) and overriding plate shortening for dip directions with α = − 90° to 110°. The wide scatter in data negate any obvious trend and only local mean values in overriding plate deformation rate indicate that overriding plate extension is somewhat more prevalent for west-dipping slabs. West-dipping subduction zones are never fixed, irrespective of the choice of reference frame, while east to northeast-dipping subduction zones are both retreating and advancing in five out of seven global reference frames. In addition, westward-dipping subduction zones have a range in trench-migration velocities that is twice the magnitude of that for east to northeastward-dipping slabs. Finally, there is no recognizable correlation between slab dip direction and slab dip angle. East to northeast-dipping slabs (α = 30° to 120°) have shallow (0–125 km) slab dip angles in the range 10–60° and deep (125–670 km) slab dip angles in the range 40–82°, while west-dipping slabs (α = − 60° to − 120°) have shallow slab dip angles in the range 19–50° and deep slab dip angles in the range 25–86°. Local mean deep slab dip angles are nearly identical for east and west-dipping slabs, while local mean shallow slab dip angles are lower by only 4.7–8.1° for east to northeast-dipping slabs. It is thus concluded that overall, there is no observational basis to support the three predictions made by the westward drift model, and for some sub-predictions the observational basis is very weak at most. Alternative models, which incorporate and underline the importance of slab buoyancy-driven trench migration, slab width and overriding plate motion, are better candidates to explain the complexity of subduction zones, including the variety in trench-migration velocities, overriding plate deformation and slab dip angles.  相似文献   

15.
A statistical analysis was carried out to investigate spatial associations between natural seismicity and faults in southeastern Ontario and north-central New York State (between 73°18′ and 77°00′W and 43°30′ and 45°18′N). The study area is situated to the west of the seismically active St. Lawrence fault zone, and to the east of the Lake Ontario basin where recently documented geological and geophysical evidence points to possible neotectonic faulting. The weights of evidence method was used to judge the spatial associations between seismic events and populations of faults in eight arbitrarily defined orientation groups. Spatial analysis of data sets for seismic events in the periods 1930–1970 and post-1970 suggest stronger spatial associations between earthquake epicentres and faults with strikes that lie in the NW–SE quadrants, and weaker spatial associations of epicentres with faults that have strikes in the NE–SW quadrants. The strongest spatial associations were determined for groups of faults with strikes between 101° and 146°. The results suggest that faults striking broadly NW–SE, at high angles to the regional maximum horizontal compressive stress, are statistically more likely to be spatially associated with seismic events than faults striking broadly NE–SW. If the positive spatial associations can be interpreted as indicating genetic relationships between earthquakes and mapped faults, then the results may suggest that, as a population, NW–SE trending faults are more likely to be seismically active than NE–SW striking faults. Detailed geological studies of faults in the study area would be required to determine possible neotectonic displacements and the kinematics of the displacements.  相似文献   

16.
Ferrous granulites in the area of Tidjénouine (Central Hoggar) exhibit a remarkable mineralogical composition characterized by the association orthoferrossilite–fayalite–quartz. These granulites are metamorphosed mafic igneous rocks showing the juxtaposition of different metamorphic parageneses. Peak paragenesis with garnet–clinopyroxene–amphibole–plagioclase–quartz reach to assemblage with orthopyroxene–plagioclase2. Secondary orthopyroxene reacted with garnet to produce symplectites with fayalite + plagioclase + quartz. The latest stage corresponds to an orthopyroxene–fayalite–quartz–plagioclase assemblage. The metamorphic history of the ferrous granulites is inferred by combining the study of phase relations with the construction of a petrogenetic grid and pseudosection in the CFMASH and CFAS systems using the Thermocalc program of [J. Metamorph. Geol. 6 (1988) 173]. The evolution of paragenetic minerals indicates a metamorphic PT path through the following conditions: 7.1 ± 1 kbar at 880 °C, 4.9 ± 1.6 kbar at 750 °C and 3–4 kbar at 700 °C, which is consistent with a clockwise PT path recorded throughout the area.  相似文献   

17.
Non-steady state deformation and annealing experiments on vein quartz are designed to simulate earthquake-driven episodic deformation in the middle crust. Three types of experiments were carried out using a modified Griggs-type solid medium deformation apparatus. All three start with high stress deformation at a temperature of 400 °C and a constant strain rate of 10− 4 s− 1 (type A), some are followed by annealing in the stability field of α-quartz for 14–15 h at zero nominal differential stress and temperatures of 800–1000 °C (type A + B), or by annealing for 15 h at 900 °C and at a residual stress (type A + C).The quartz samples reveal a very high strength > 2 GPa at a few percent of permanent strain. The microstructures after short-term high stress deformation (type A) record localized brittle and plastic deformation. Statisc annealing (type A + B) results in recrystallisation restricted to the highly damaged zones. The new grains aligned in strings and without crystallographic preferred orientation, indicate nucleation and growth. Annealing at non-hydrostatic conditions (type A + C) results in shear zones that also develop from deformation bands or cracks that formed during the preceding high stress deformation. In this case, however, the recrystallised zone is several grain diameters wide, the grains are elongate, and a marked crystallographic preferred orientation indicates flow by dislocation creep with dynamic recrystallisation. Quartz microstructures identical to those produced in type A + B experiments are observed in cores recovered from Long Valley Exploratory Well in the Quaternary Long Valley Caldera, California, with considerable seismic activity.The experiments demonstrate the behaviour of quartz at coseismic loading (type A) and subsequent static annealing (type A + B) or creep at decaying stress (type A + C) in the middle crust. The experimentally produced microfabrics allow to identify similar processes and conditions in exhumed rocks.  相似文献   

18.
We present the results of a systematic search for the identification of accelerating seismic crustal deformation in the broader northern Aegean area and in northwestern Turkey. We found that accelerating seismic deformation release, expressed by the generation of intermediate magnitude earthquakes, is currently observed in NW Turkey. On the basis of the critical earthquake model and by applying certain constraints which hold between the basic quantities involved in this phenomenon, it can be expected that this accelerating seismic activity may culminate in the generation of two strong earthquakes in this area during the next few years.The estimated epicenter coordinates of the larger of these probably impending earthquakes are 39.7°N–28.8°E, its magnitude is 7.0 and its occurrence time tc=2003.5. The second strong event is expected to occur at tc=2002.5 with a magnitude equal to 6.4 and epicenter coordinates 40.0°N–27.4°E. The uncertainties in the calculated focal parameters for these expected events are of the order of 100 km for the epicenter, ±0.5 for their magnitude and ±1.5 years for their occurrence time.  相似文献   

19.
We present a revision and a seismotectonic interpretation of deep crust strike–slip earthquake sequences that occurred in 1990–1991 in the Southern Apennines (Potenza area). The revision is motivated by: i) the striking similarity to a seismic sequence that occurred in 2002  140 km NNW, in an analogous tectonic context (Molise area), suggesting a common seismotectonic environment of regional importance; ii) the close proximity of such deep strike–slip seismicity with shallow extensional seismicity (Apennine area); and iii) the lack of knowledge about the mechanical properties of the crust that might justify the observed crustal seismicity. A comparison between the revised 1990–1991 earthquakes and the 2002 earthquakes, as well as the integration of seismological data with a rheological analysis offer new constraints on the regional seismotectonic context of crustal seismicity in the Southern Apennines. The seismological revision consists of a relocation of the aftershock sequences based on newly constrained velocity models. New focal mechanisms of the aftershocks are computed and the active state of stress is constrained via the use of a stress inversion technique. The relationships among the observed seismicity, the crustal structure of the Southern Apennines, and the rheological layering are analysed along a crustal section crossing southern Italy, by computing geotherms and two-mechanism (brittle frictional vs. ductile plastic strength) rheological profiles. The 1990–1991 seismicity is concentrated in a well-defined depth range (mostly between 15 and 23 km depths). This depth range corresponds to the upper pat of the middle crust underlying the Apulian sedimentary cover, in the footwall of the easternmost Apennine thrust system. The 3D distribution of the aftershocks, the fault kinematics, and the stress inversion indicate the activation of a right-lateral strike–slip fault striking N100°E under a stress field characterized by a sub-horizontal N142°-trending σ1 and a sub-horizontal N232°-trending σ3, very similar to the known stress field of the Gargano seismic zone in the Apulian foreland. The apparent anomalous depths of the earthquakes (> 15 km) and the confinement within a relatively narrow depth range are explained by the crustal rheology, which consists of a strong brittle layer at mid crustal depths sandwiched between two plastic horizons. This articulated rheological stratification is typical of the central part of the Southern Apennine crust, where the Apulian crust is overthrusted by Apennine units. Both the Potenza 1990–1991 and the Molise 2002 seismic sequences can be interpreted to be due to crustal E–W fault zones within the Apulian crust inherited from previous tectonic phases and overthrusted by Apennine units during the Late Pliocene–Middle Pleistocene. The present strike–slip tectonic regime reactivated these fault zones and caused them to move with an uneven mechanical behaviour; brittle seismogenic faulting is confined to the strong brittle part of the middle crust. This strong brittle layer might also act as a stress guide able to laterally transmit the deviatoric stresses responsible for the strike–slip regime in the Apulian crust and may explain the close proximity (nearly overlapping) of the strike–slip and normal faulting regimes in the Southern Apennines. From a methodological point of view, it seems that rather simple two-mechanism rheological profiles, though affected by uncertainties, are still a useful tool for estimating the rheological properties and likely seismogenic behaviour of the crust.  相似文献   

20.
The significant discordance of the radiometric (Rb-Sr, Pb-U, K-Ar and fission track) ages from various orogenic cycles of the Dharwar, Satpura, Aravalli and Himalayan orogenic belts in India, coupled with their corresponding blocking temperatures for various radiometric clocks in whole rocks and minerals, has been used to evaluate the cooling and the uplift histories of the respective orogenic belts. The blocking temperatures used in the present study of various Rb-Sr (isotopic homogenization at 600°C, muscovite at 500°C and biotite at 300°C), Pb-U (monazite at 530°C), K-Ar (muscovite at 350°C and biotite at 300°C) and fission-track clock (zircon at 350°C, sphene at 300°C, garnet at 280°C, muscovite at 130°C, hornblende at 120°C and apatite at 100°C for the cooling rate l°C/Ma) have been found suitable to explain the differences in mineral ages by different radiometric techniques. The nature of the cooling curves drawn using the temperature versus age data for various orogenic cycles in India has also been discussed. The cooling and the uplift patterns determined for various orogenic cycles of India, suggest comparatively slow cooling (5.0–0.2°C/Ma) and uplift (180–2 m/Ma) for the Peninsular regions and rapid cooling (25.0–1.0° C/Ma) and fast uplift (800–30 m/Ma) during the Himalayan Orogenic Cycle (Upper Cretaceous—Tertiary) in the Extra-Peninsular region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号