首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Seiche oscillations of the Azov Sea level are studied on the basis of the developed two-dimensional numerical hydrodynamic model grounded on the shallow water theory and recent data on the morphometric characteristics of the Sea of Azov. Frequency and spatial characteristics of the first five modes corresponding to seiche oscillations of the Azov Sea level are computed. It is shown that the frequency and spatial characteristics of the first five modes obtained for the Sea of Azov level changes correspond to seiche oscillations. The calculated parameters are compared with the field observations, which show their realistic character.  相似文献   

2.
Sea level oscillations in Wellington Harbour   总被引:1,自引:1,他引:0  
Periods of oscillations of sea level in Wellington Harbour, New Zealand (41° 17'S, 174° 52’ E), are calculated by spectral analysis of the residual elevations observed in tide gauge records. These periods are compared with those computed by numerically integrating a one‐dimensional linear momentum equation and the continuity equation. The two main oscillations are the first harmonics along and across the harbour with periods of about 27 and 22 min respectively — the second harmonics were also observed. The quarter wavelength oscillation with forcing at the mouth which was excited by the 1960 Chilean Tsunami has a period of about 160 min.  相似文献   

3.
Seiche modes in a compound harbour (an “Outer Harbour” connected both to the sea and to an “Inner Harbour”) were studied using water level data and a numerical model. A variety of harbour oscillations are present, with periods up to 67 min. Periods longer than 25 min exceed resonant modes of the harbour. This paper addresses the characteristics and causes of the open-basin modes. The dual harbour open-basin mode is modified by constriction at the connection between harbours, by partial reflection at the antinode, and by the geometry of the entrance. The single-harbour open-basin mode excites the dual harbour closed-basin mode, which has nearly the same period. This forcing moves the closed-basin antinode and slightly changes the modal period, but the coupling permits the amplitude to increase through the closed-basin resonance. The water level response to wind stress is weak, but significant residual currents can occur, which take the form of clockwise gyres in each basin. Energetic peaks in the water level spectrum at 26, 35, and 67 min are shown to correspond to possible edge waves on the local shelf. The work has practical implications to port design, e.g. towards minimisation of ship ranging while at anchor.  相似文献   

4.
The variations in the free surface of Lake Baikal at three stations (Bol’shie Koty, Listvyanka, and Baikal’sk) are measured. A modern recording method and an advanced technique of record processing are used. Based on 1-year-long observation data, the amplitudes of seiche oscillations and their seasonal changes are analyzed. It is found, in particular, that 67-min seiches are manifested in different seasons. Numerical calculations of seiches in Lake Baikal are made with the use of up-to-date bathymetric data on one-dimensional, plan, and spherical models. Spatial structures of oscillations with periods of 277, 152, 84, 67, and 59 min, corresponding to the well-expressed peaks of power spectral density, are studied. It is shown that the first four periods correspond to uninodal, binodal, trinodal, and quadrinodal longitudinal seiche modes of Lake Baikal. The periods of three solutions can correspond to the value of 59 min. The first of them is the seiche of the lake’s South Basin, and two others are characterized by significant amplitude growth in the Small Sea and Chivyrkui Bay.  相似文献   

5.
We numerically investigated the physical process of water exchange caused by fluctuations of the front. This front is formed in a vertically two-dimensional NH-model (non-hydrostatic model) under steady forcing and simulates well the front observed during winter in the Kii Channel, Japan. The velocity field in the model has two kinds of oscillations. The first has a period of 6∼12 hr and is caused by intermittent gravitational convection in the frontal zone. The period and the intensity of intermittent convection are determined by buoyancy flux through the side boundaries as well as surface cooling. The other is associated with large scale circulation driven at the side boundaries and is controlled by the Coriolis force and the bottom stress. Its period of 3∼4 days is determined by the sum of the inertial period and the spin down time for the baroclinic mode of the along-front velocity component. These oscillations make the position of the front fluctuate with the same periods. We next examined water exchange across the fluctuating front by numerically tracking a number of labelled particles. Intermittent convection induces exchange of particles in the frontal zone and large scale circulations transport the exchanged particles toward offshore or onshore through the lower layer. The exchange rate and the dispersion coefficient are calculated in the NH-model as 0.85 and 2.3×103 cm2 sec−1, respectively. On the other hand, in the H-model (hydrostatic model) parameterizing gravitational convections with a convective adjustment method, these values are reduced to 0.68 and 3.2×102 cm2 sec−1, respectively. This result implies that intermittent convections in the frontal zone have a large effect on water exchange across the front, and that no little water is exchanged across the fluctuating front in an actual shallow sea, such as observed in the Kii Channel.  相似文献   

6.
To investigate the response characteristics of a bay to tsunamis, field measurements of long-period waves have been carried out at Onagawa and Okachi Bays, both of which face the Pacific Ocean in northern Japan. In Onagawa Bay, the observed transfer function is in good agreement with the prediction based on the one-dimensional numerical model, in the period range larger than about 15 minutes. The response of shorter periods seems to be influenced by the two-dimensionality of the bay. The oscillations within Onagawa Harbor are also discussed with respect to the relative amplitude and phase at two stations inside the harbor and it is estimated that the reflection coefficient at the waterfront is about 0.7. In Okachi Bay, the oscillations in the period range larger than about 10 minutes could be explained by a Y-shaped model of the bay. The dominant oscillations offshore of these two-bays are found to be the mode with the motion predominantly in the direction normal to the shelf orientation, and the estimated power spectral density of incoming waves in deep water varies asf –2,f being the frequency. The waves of lateral modes, such as edge waves on the shelf, are small and of minor importance to generate bay oscillations of longer periods.  相似文献   

7.
Effect of ice cover on oscillations of fluid in a closed basin   总被引:1,自引:0,他引:1  
Within the framework of the linear theory of long waves, the problem of the effect of ice cover on seiche oscillations of fluid in a two-dimensional constant-depth basin is solved. The eigenfrequencies and eigenfunctions of seiche oscillations are obtained for different boundary conditions at ice edges: rigid coupling and free edges. The forced oscillations of fluid and ice under the action of a moving disturbance of atmospheric pressure are investigated. The change in the stress of ice bending is considered and it is shown that the coast ice can be broken.  相似文献   

8.
During the South China Sea monsoon experiment (SCSMEX),three autonomous temperature line acquisition system (ATLAS) buoys with acoustic Doppler current profiler (ADCP) were moored in the South China Sea to measure temperature,salinity and current velocity.Typhoon Faith passed through about 250 km south to one of the mooring buoys located at 12 58.5 N,114 24.5 E from December 11 to 14,1998.The data analysis indicates that the typhoon winds induce a great increase in the kinetic energy at near-inertial frequencies with two maxima in the mixed layer and thermocline.The near-inertial oscillations were observed at the upper 270 m in the wake of Typhoon Faith.The oscillations were originally excited in the sea surface layer and propagated downward.The amplitudes of the oscillations decrease with depth except in the thermocline.The near-inertial oscillation signals are also remarkable in temperature and salinity fields.  相似文献   

9.
The process of hydrostatic adjustment to horizontally homogeneous heating in a stably stratified atmosphere of arbitrary thermal structure is investigated in the limit of small perturbations. A linear differential equation is derived for the vertical pressure distribution in the final balanced state. Solutions of this equation are compared with the time dependent solution which is found by numerically integrating the equations in time. During the process of hydrostatic adjustment acoustic‐buoyancy oscillations are generated. The amplitudes of these oscillations become so great that static instability is generated at heights above 100 km, depending on where and how abruptly the heat is added. As a crude representation of the unstable breakdown and damping of these waves, Rayleigh damping is introduced. If the associated damping coefficient in the upper atmosphere is sufficiently large (greater than the Brunt Väisälä frequency), the oscillations vanish. Below a height of about 50 km the steady state predicted by the above mentioned differential equation is reached approximately in 10 min.  相似文献   

10.
A short cut numerical method for evaluation of the modes of free oscillations of the basins which have irregular geometry and bathymetry is presented in this paper. In the method, a single wave is inputted to the basin as an initial impulse. The respective agitation in the basin is computed by using the numerical method solving the nonlinear form of long wave equations. The time histories of water surface fluctuations at different locations due to propagation of the waves in relation to the initial impulse are stored and analyzed by the fast Fourier transform technique (FFT) and energy spectrum curves for each location are obtained. The frequencies of each mode of free oscillations are determined from the peaks of the spectrum curves. The method is tested by using regular shaped flat bottom basins with different depths. The computed periods of free oscillations are compared with the theoretical values. The accuracy and performance of the method are discussed. As a case study for the application to the basins of irregular shape and bathymetry, the periods of free oscillations of the sea of Marmara is determined and discussed.  相似文献   

11.
The data collected during an 18-day station and nine hydrologic surveys have been analysed. Mesoscale and large-scale temperature and salinity oscillations were revealed. Mesoscale oscillations in the sea surface layer are induced by the diurnal course of solar radiation, and in the seasonal thermocline layer by internal waves with a predominant 6–10 h periodicity. Large-scale fluctuations are related to the passage of clockwise (cold) and anticlockwise (warm) meanders and vortices. It has been determined that the contribution of large-scale temperature and salinity oscillations to the total variability is 1·5 to 3-fold larger than that of the mesoscale ones.Translated by Vladimir A. Puchkin.  相似文献   

12.
Low-frequency disturbances responsible for the excitation of torsional oscillations—variations in the zonal mean flow intensity with a characteristic scale of 15–20 days—propagating along the meridian at mid and low latitudes of both hemispheres are investigated [1]. As data observed over the eastern parts of continents and the western parts of oceans are processed with the lag correlation statistics, traveling waves intersecting the eastern parts of continents from northwest to southeast and then returning to the north along the ocean coasts are identified. In this case, trains of anomalies oriented in the zonal direction periodically appear and are destructed in the western parts of continents. The simulation of the propagation of disturbances in the quasi-geostrophic approximation made it possible to explain the specific features of lag correlation statistics over continents by the dispersion of two-dimensional Rossby waves from traveling sources. The turnover of disturbances over Asia and wave trains to the west from the pole were reproduced. Torsional oscillations caused by the dispersion of two-dimensional Rossby waves have a characteristic form of inclined bands in the latitude-time diagram, whose steepness is controlled by the velocity of displacement of the vorticity source along the meridian.  相似文献   

13.
Frictional influence on sea level oscillations in Otago Harbour,New Zealand   总被引:1,自引:1,他引:0  
Oscillations in Otago Harbour, (45° 49’ S, 170° 38’ E) produced by the 1960 Chilean Tsunami are found by spectral analysis to have most of their energy at a period of about 80 min. By numerically integrating a one‐dimensional linear momentum equation and the continuity equation for various sections of the harbour, this period is found to correspond to the quarter wavelength oscillation in the main channel between the mouth of the harbour and the Halfway Islands. The large value of the linear frictional coefficient, calculated from the phase of the tide in the harbour, and the resulting excessive damping, indicates why long period non‐tidal oscillations are generally not found in the harbour.  相似文献   

14.
Signals from the tsunami waves induced by the March 11, 2011 moment magnitude (Mw) 9.0 Tohoku-Oki earthquake and from subsequent resonances were detected as radial velocity variability by a high-frequency ocean surface radar (HF radar) installed on the eastern coast of the Kii Channel, at a range of about 1000 km from the epicenter along the eastern to southern coasts of Honshu Island. A time–distance diagram of band-passed (9–200 min) radial velocity along the beam reveals that the tsunami waves propagated from the continental shelf slope to the inner channel as progressive waves for the first three waves, and then natural oscillations were excited by the waves; and that the direction of the tsunami wave propagation and the axis of the natural oscillations differed from that of the radar beam. In addition, spectral analyses of the radial velocities and sea surface heights obtained in the channel and on the continental shelf slope suggest complex natural oscillation modes excited by the tsunami waves.  相似文献   

15.
王岗  郑金海  梁秋华  张蔚  黄诚 《海洋工程》2015,29(6):821-834
The general features of oscillations within a rectangular harbor of exponential bottom are investigated analytically. Based on the linear shallow water approximation, analytical solutions for longitudinal oscillations induced by the incident perpendicular wave are obtained by the method of matched asymptotics. The analytic results show that the resonant frequencies are shifted to larger values as the water depth increases and the oscillation amplitudes are enhanced due to the shoaling effect. Owing to the refraction effect, there could be several transverse oscillation modes existing in when the width of the harbor is on the order of the oscillation wavelength. These transverse oscillations are similar to standing edge waves, and there are m node lines in the longshore direction and n node lines running in the offshore direction corresponding to mode (n, m). Furthermore, the transverse eigen frequency is not only related to the width of the harbor, but also to the boundary condition at the backwall and the bottom shape.  相似文献   

16.
Characteristics of seiches in Onagawa Bay are investigated on the basis of observations at the bay head, Konorihama, from May 1972 to May 1973 and at the outside of the bay, Enoshima during the same period. At Konorihama seiches with the double amplitude of 7 to 11 cm occurred most frequently (63 percent of the total samples) and the maximum reached 31 cm. Short-time spectral analyses indicate that the periods of the spectral peaks shift considerably with the lapse of time, and that the location of the nodal line near the bay mouth moves offshore and inshore of Enoshima. The cause of these phenomena seems to be attributed to the change of incident angle of waves coming from the open sea to excite seiches. Amplitudes of the fundamental and of the lateral modes of seiches increase or decrease alternately with time, suggesting the energy transfer between these modes. Bay oscillations induced by remarkable atmospheric pressure-waves were observed. However, the amplitudes of the oscillations were within a few centimeters and dissipated in a few hours.  相似文献   

17.
Sea-bottom pressure gauges were used to measure sea levels at two points on the shelf off the southern coast of Satsuma Peninsula, Kyushu, Japan. Spectral analysis of the observed records and the tide-gauge record of Makurazaki Harbor revealed several predominant common peaks. At the same time, the eigenmodes for the trapped waves on the shelf and inside Makurazaki Bay were obtained numerically using a two-dimensional model, and the periods and the spatial distribution of amplitudes of the proper modes were obtained. A comparison of the calculated modes with the periods and phase patterns of the observed peaks clarified that peaks with periods of 19.5, 16, 13.3, and 12.2 minutes in the shelf region were the modes of standing-edge waves, and the peak with the period of 16 minutes in Makurazaki Harbor was the fundamental mode of the harbor. Among the modes of standing-edge waves, the mode of the period 16 minutes on the shelf had nearly the same period as that of the fundamental mode of Makurazaki Harbor. An analysis of changes of spectral densities of these two modes confirmed that the fundamental mode of the Makurazaki Harbor was induced by this standing-wave mode.  相似文献   

18.
Large oscillations of water level in Nagasaki Bay are calledAbiki and are most frequently observed in winter. The largestAbiki recorded in the past 20 years at the tide station at Nagasaki occurred on March 31, 1979. Simultaneously, a distinct atmospheric pressure disturbance of solitary type with an amplitude of about 3 mb was recorded at several neighbouring stations in Kyûshû, which indicated the pressure disturbance probably travelled eastward with an average speed of about 110 km h–1.The quantitative relation between this pressure disturbance and notable seiches observed in Nagasaki Bay is examined by means of numerical simulation, and it is confirmed that the exceptionally large range of oscillations in the bay, which reached 278 cm at the tide station, was indeed produced by this travelling pressure disturbance.The leading part of shallow water waves induced by the atmospheric pressure disturbance was amplified up to about 10 cm in amplitude, over the broad continental shelf region off China, because of near resonant coupling to the pressure disturbance. After leaving this continental shelf region, the amplified water wave converged into the shelf region (Gotô Nada) surrounded by the north-western coast of Kyûshû and the Gotô Islands and excited eigenoscillations on the shelf. A train of waves thus formed with a period of about 35 min entered Nagasaki Bay and was resonantly amplified at periods of 36 min and 23 min which are the eigen periods of the bay. Besides resonance, the combined effects of shoaling and reflection inside Nagasaki Bay also enhanced the amplification.  相似文献   

19.
We here investigate the frequency and intensity of oscillations in oceanographic data within intraseasonal time scales using spectral analysis of surface wind and wave time-series data collected at off-island weather stations or moored buoys around Taiwan. Data from marine weather stations were used to trace atmospheric conditions, while we used buoy data to examine sea states. The spectra and wavelet scalogram of the wind fields revealed oscillations with a period of around 20–33 days, and the energy density of the wind field at the off-island stations was stronger than that at the data buoy stations. However, the wavelet scalogram of the wave height measured at the buoy stations was stronger than its associated wind field. This long-period oscillation is consistent with the wavelet scalogram of the wind field calculated from the off-island weather stations. About 20–33 day oscillations exist within intraseasonal variations, which are closely linked to the atmospheric environment and to wind and ocean wave fields. Oscillations with a period of 5–10 days are a pronounced feature over northeastern Taiwan waters during the winter season and can be interpreted as the wave pattern following synoptic weather systems.  相似文献   

20.
Oscillations within a rectangular harbor of constant slope induced by submerged sliding masses are investigated numerically based on Boussinesq-type equations and results are used to reveal the characteristics of the generated oscillations. The numerical result of each transverse eigenfrequency is very close to the theoretical prediction and the spatial structure of each mode of the oscillations may also be well captured by the existing analytical solutions based on shallow water equations. The investigation shows that relatively small-scale sliding masses whose width is small compared with the harbor width may induce obvious transverse oscillations. The predominant transverse components are those with small mode numbers when the solid slides start moving from the backwall. In comparing the oscillations induced by the slides of constant velocity and those accelerated by gravity force with bottom friction, it is observed that the movements accelerated by gravity force may facilitate the development of very low transverse oscillation modes while those with constant velocity may also be in favor of the higher ones. The augmentation of the sliding velocity along the constant slope may shift the amplitudes of the oscillation components to smaller values, which corresponds to the physical understandings of the waves generated by underwater sliding masses or landslides. While the sliding masses may not act on an isolated point of the bottom but follow a certain trajectory along the harbor, the transverse oscillations induced by them are sensitive to their position of departure in both the cross-harbor direction and the offshore direction. Longitudinal oscillations may be induced by relatively large sliding masses of harbor width on a constant slope within the harbor. Although the longitudinal oscillations may not reach a steady state without forcing terms at the entrance of the harbor, some patterns of several low-mode ones occur and wavelet spectra are used to analyze their evolutions and comparisons are made with theoretical predictions. It is revealed that the longitudinal oscillations are also sensitive to the moving velocity and initial location of the sliding masses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号