首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
傅云飞  潘晓  刘国胜  李锐  仲雷 《大气科学》2016,40(1):102-120
本文利用热带测雨卫星(TRMM, Tropical Rain Measuring Mission)第七版逐日逐轨测雨雷达(PR, Precipitation Radar)及可见光和红外扫描仪(VIRS, Visible and Infrared Scanner)的融合数据集,研究了夏季青藏高原上降水类型的特征.统计结果表明第七版PR降水回波强度及降水率廓线资料(2A25)仍旧误判青藏高原上以层云降水为主(比例高达85%);以云顶相态定义的青藏高原降水类型统计表明,冰相云顶和冰水混合相云顶的降水分别占43%和56%;以降水回波顶高度定义的降水类型统计表明,深厚弱对流降水和浅薄降水分别占77%和22%,而深厚强对流降水仅占1%.空间分布的统计表明,冰相云顶降水和冰水混合相云顶降水的频次和强度自高原西部向高原东部和东南部增加,其降水回波顶高度自高原西、中部向东部降低.深厚强对流降水和浅薄降水的频次由西向东增加,而深厚弱对流降水频次分布是西少、北少、南多,高原南部比北部的深厚弱对流降水频次高出近1倍;深厚弱对流降水和浅薄降水的平均强度也表现了自高原西部、中部向东部的增大,而其降水回波顶高度分布则相反.总体上,夏季青藏高原降水频次和强度自西向东增多和增大,而云顶和降水回波顶高度则相反.  相似文献   

2.
利用热带测雨卫星测雨雷达的10年探测结果,对夏季亚洲对流降水与层云降水雨顶高度分布、雨顶高度与地表降水强度的关系、雨顶高度日变化特征进行了研究。结果表明,青藏高原和中国东部平原的多数(70%以上)对流降水雨顶高度分布在8—12和5—10km,其他地区分布在5—9km;陆面对流降水雨顶平均高度高于洋面。洋面和陆面层云降水雨顶高度没有明显差异,多在5—8km。夏季亚洲浅对流降水比例少,而深厚对流主要出现在中国东部平原、西南、印度次大陆西部至伊朗高原东部地区,比例约40%。洋面和陆面的弱对流降水的雨顶平均高度在7—8km,弱层云降水相应的雨顶平均高度多小于7.5km;陆面约90%的强对流降水雨顶平均高度在9km以上,而强层云降水雨顶的平均高度通常不超过8.5km。夏季亚洲对流降水和层云降水的雨顶平均高度均随着地面平均降水率的增大而升高,两者遵从二次函数关系。对流降水及层云降水频次、强度和雨顶高度的日变化峰值分析表明,陆面这些参量的日变化强于洋面,并且三者的日变化基本同步。  相似文献   

3.
本文基于2000~2014年共计15年夏季(6~8月)的TRMM卫星PR(测雨雷达)探测结果 2A25资料,对高原东坡及临近区域降水的水平、垂直分布特征,以及日变化特征进行了分析,结果揭示了高原对降水的影响。由降水样本数占PR总观测样本数的比例可知,降水频次表现为高原低、东部盆地高的特点,平均降水强度也类似。层云降水频次高于对流降水,但平均降水率低于对流降水。降水的垂直分布表明,下垫面高度超过3km时,降水率廓线峰值出现在5~6km,而其它地区峰值出现在3~4km高度。该区域的降水以夜雨为主;高原上的对流类型降水主要发生在白天,盆地和丘陵地区降水主要发生在夜间。  相似文献   

4.
王梦晓  王瑞  傅云飞 《高原气象》2019,38(3):539-551
利用热带测雨卫星测雨雷达(TRMM PR)降水回波反射率因子廓线(降水率廓线)与全球探空大气温湿廓线(IGRA)的多年融合资料,研究了青藏高原拉萨站夏季降水结构及相应的大气温湿结构特征。结果表明,该站降水回波反射率因子分布在17~45 dBz,大部分小于26 dBz;回波顶高度达17 km,呈现“瘦高”外形;相应的大气低层湿润,降水云内大气并非饱和,但温度露点差比全部状态时的值小。深厚降水系统的回波外形也呈现“瘦高”,按照降水率随高度的非线性变化,其垂直结构可分为三层,而浅薄降水系统的垂直结构呈现一层,即平均降水率斜率随高度呈对数线性变化,最大平均降水率(0.7 mm·h^-1)出现在地面。深厚降水与浅薄降水云体内400 hPa高度(7.5 km)上下的露点温度递减的速率不同。降水云体内的零度层高度大约6.3 km,但PR没有探测到零度层亮带。统计结果还表明拉萨探空站及附近的大气可降水量为20.89 mm·d^-1,降水转化率为27.0%,深厚降水系统的降水转化率是浅薄降水系统的2.9倍,深厚降水系统和浅薄降水系统的CAPE值分别为1941.7 J·kg^-1和1451.8 J·kg^-1。本研究结果为模式模拟青藏高原降水云内的温湿结构提供了观测依据。  相似文献   

5.
利用热带测雨卫星(TRMM)搭载的测雨雷达(PR)和可见光/红外扫描仪(VIRS)探测结果的融合数据,结合ECMWF再分析资料,分析了1998年6月22日(轨道号:03257)和2011年7月3日(轨道号:77642)两个夏季青藏高原横切变线个例的云降水特征。结果表明,高原横切变线降水回波顶高度多分布于4~10 km,局部可达12 km,其降水强度85%以上为0. 5~2. 5 mm·h-1,仅局部达20 mm·h-1以上。云粒子尺度(云粒子有效半径)分布较为均匀,多数尺度分布在10~30μm之间,尺度峰值均为16μm,局部尺度可达30μm以上,液态水路径的峰值均在1. 50 kg·m-2左右。降水回波顶高度最高可达17 km,近地面降水回波强度最大可达50 d BZ,降水回波主要出现在6~10 km高度,其强度大体在17~25 d BZ。横切变线降水中浅薄降水、深厚弱对流降水、深厚强对流降水的垂直结构差异明显,并相应产生不同的近地面降水强度。  相似文献   

6.
TRMM卫星对青藏高原东坡一次大暴雨强降水结构的研究   总被引:3,自引:0,他引:3  
利用热带测雨卫星(TRMM)探测资料,NCEP、ERA-Interim再分析资料,结合C波段多普勒雷达和其他地面观测资料,研究了2013年7月21日发生在青藏高原东坡的一次大暴雨强降水结构。结果表明,高能、高湿的不稳定大气在700 hPa切变线及地面辐合线的触发下产生了此次大暴雨,降水具有明显的强对流性质。从水平结构来看,降水系统由成片的层云雨团中分散分布的多个对流性雨团组成,对流样本数远少于层云,但平均雨强是层云的4.7倍,对总降水的贡献达到25.6%;以超过10 mm/h雨强为强度标准,3个20-50 km、回波强度在45-50 dBz的β中尺度对流雨团零散地分布在主雨带中,对应 < 210 K的微波辐射亮温区和≥ 32 mm/h的地面强降水;对流降水的雨强谱集中在1-50 mm/h,其中20-30 mm/h的雨强对总雨强的贡献最大,这与中国东部降水有着显著区别,而90%的层云降水的雨强均小于10 mm/h。从垂直结构来看,对流降水云呈柱状自地面伸展,平均雨顶高度随地面雨强的增强而不断升高(5-12 km),强降水中心区域的质心在2-6 km;降水廓线反映出强降水系统中降水主要集中在6 km以下高度范围,且降水强度在垂直方向分布不均匀,对流降水和层云降水的强度随高度升高的总趋势是趋于减弱,但在一定高度范围内,对流降水强度随高度升高而增大,并且在多个地表雨强廓线中都有体现。此外,地基雷达的探测结果也表明了强降水的低质心特点及显著的逆风区演变特征,这是对TRMM PR探测的验证和补充。   相似文献   

7.
青藏高原和四川盆地夏季对流性降水特征的对比分析   总被引:3,自引:1,他引:2  
李典  白爱娟  薛羽君  王鹏 《气象》2014,40(3):280-289
本文利用TRMM(Tropical Rainfall Measure Mission)多种探测结果,针对青藏高原和四川盆地各两次对流性降水天气进行了对比分析,结果表明:(1)高原降水系统以对流云降水为主,弱降水样本数量高,由孤立零散的块状降水云团组成,对流中心离散,降水范围小,雨区极不均匀,垂直发展厚度浅薄,降水粒子数量少,雨滴小,潜热释放以地面以上2~5 km高度层为主,夏季近地面层冰晶粒子含量高,降水过程中云顶亮温与地表雨强之间的相关性差,云顶亮温越高的对流云团其闪电频数越高。(2)盆地降水系统强降水样本数量高,由一个主降水系统和周边零散的降水云团组成,降水范围大,对流中心相对集中,雨区较均匀,垂直发展厚度高,对流系统深厚,雨滴大并集中,潜热释放呈一致的双峰型结构,峰值分别出现在7和16km高度上,冰雹粒子在对流层较高层含量高,云顶亮温与地表雨强之间呈显著的负相关,盆地的闪电频数显著高于高原地区,且闪电活动主要集中在亮温偏低的降水云体中。  相似文献   

8.
基于PR和VIRS融合资料的东亚台风和非台风降水结构分析   总被引:1,自引:0,他引:1  
借助JAXA/EORC热带台风数据集资料,实现了台风区和非台风区的分离,在此基础上,利用热带测雨卫星搭载的测雨雷达和可见光/红外扫描仪的融合观测资料,对1998~2007年东亚雨季台风及非台风降水的气候特征和降水云红外信号特征进行了分析。结果表明:1)东亚台风降水强度谱较非台风降水谱更宽,特别是对流降水主要分布在5~20 mm/h之间;强降水更多,主要分布在东亚洋面。2)雨季东亚降水的主要形式是非台风层云降水,但台风降水对局地降水量的贡献也不容忽视,例如台湾以东附近洋面可达20%。3)台风降水云亮温海陆分布差异显著;其雨顶高度在4~9 km(层云)和4.5~12.5 km(对流)之间均有分布,较非台风降水雨顶高度谱更宽。4)不同等级的台风在降水强度、覆盖区域和云顶10.8μm亮温分布上差异大。  相似文献   

9.
利用TRMM卫星资料对"07.7"川南特大暴雨的诊断研究   总被引:2,自引:0,他引:2  
利用TRMM卫星探测结果,结合多普勒雷达风廓线资料,研究了2007年7月9日发生于四川盆地南部的一次特大暴雨过程在不同阶段的降水粒子风廓线、潜热和降水结构特征。结果表明:(1)大暴雨区存在低层辐合、高层辐散的典型垂直环流结构。(2)强降水系统由一个主降水云团和多个零散降水云团组成;降水系统中对流降水所占面积比层云降水面积小,但对流降水具有很强的降水率,对总降水量的贡献超过层云降水。(3)降水发展旺盛阶段,强对流降水的雨顶高度可达17 km,强降水主体中垂直方向和水平方向均存在非均匀的降水强度分布;减弱阶段,强降水雨顶高度仅10 km左右,且其层云降水有清晰亮度带。  相似文献   

10.
第二次青藏高原综合科学考察研究项目在墨脱布设了一部X波段相控阵偏振雷达(X-PAR),实现了首次对河谷地区云降水的雷达连续观测。为了揭示高原东南河谷地区云降水的宏观特征,本文利用墨脱X-PAR2019年11月至2020年10月的观测数据定量分析了墨脱地区云降水回波强度、回波顶高等参数的月变化、日变化和高度变化,并与那曲地区夏季季风时期多普勒雷达观测数据进行了比较。研究发现:(1)墨脱地区回波顶高、面积、强回波所占比例以及回波分布范围在4~10月大于11~3月,4~10月降水频次高、对流性降水多,其中以6月最为显著。而进入4月后弱回波数量的大幅度增加导致了4~10月回波强度小于11~3月。降水回波月变化特征结合高原季风指数,将一年分为旱季(11~3月)与雨季(4~10月)。(2)雨季降水回波频次、顶高、面积均大于旱季,说明雨季降水频次更高、对流性活动更旺盛。降水回波频次、顶高、面积的日变化表明,旱季日降水主要发生在下午与上半夜,雨季主要发生在下半夜。(3)墨脱降水回波强度大部分小于30 dBZ,旱季在海拔高度3 km以上回波发生频次高,雨季在3 km以下高。(4)夏季季风期间墨脱回波顶高...  相似文献   

11.
基于TRMM资料的西南涡强降水结构分析   总被引:1,自引:0,他引:1  
利用热带测雨卫星TRMM资料和NCEP再分析资料,研究了2007年7月17日发生在四川东部和重庆西部地区的一次西南涡强降水系统的水平和垂直结构特征。结果表明,此次强降水系统由一个主降水云团(云带)和多个零散降水云团组成,属于对流性降水,强降水雨强大、范围广。降水系统中对流云降水的样本数量比层云降水少,但对流云降水的平均降水率大,对总降水量的贡献比层云大。对流云降水的雨强谱主要集中在1~50 mm·h-1范围内,而90%层云降水的雨强都在10 mm·h-1以下。从降水系统的垂直结构来看,强降水系统的雨顶高度可伸展到16 km,最大降水率位于地面上空2~6 km的大气层,降水强度的垂直和水平分布不均匀,对流层低层云滴的碰并增长过程对降水起主要作用。西南涡引发的强降水中不管是层云降水还是对流云降水,6 km高度以下降水量的贡献最大,不同高度降水量对总降水量贡献的大小随着高度的升高而减小。  相似文献   

12.
热带测雨卫星测雨雷达探测的亚洲夏季积雨云云砧   总被引:6,自引:1,他引:5  
热带测雨卫星(TRMM)测雨雷达探测产品资料中"其他"类型降水一直被忽略,它具有什么物理含义也无从知晓。文中利用个例分析和统计分析方法,对10年夏季亚洲"其他"类型降水进行了研究。个例分析结果表明"其他"类型降水的平均廓线表现了积雨云云砧特征,其廓线峰值(约0.6—1.0 mm/h)高度位于8—10 km,且云砧顶部具有0.8以上的可见光平均反射率和低于215 K远红外平均亮温;根据个例中积雨云云砧廓线特点,文中定义5 km以上各层累计降水率大于1 mm/h为云砧廓线,对亚洲夏季积雨云云砧样本进行了统计,结果表明该地区夏季云砧样本占"其他"类型降水样本总数的近70%;统计结果还表明夏季亚洲积雨云云砧出现频次为0.1%—0.4%,它至少超过对流降水频次的十分之一,亚洲云砧出现频次的特点是陆面高于洋面;云砧的结构特点表明云砧平均厚度3—4 km,其底部高度约6 km,顶部高度在10—12 km;云砧的平均可见光反射率在0.8—0.9,远红外平均亮温低于220 K。  相似文献   

13.
利用热带测雨卫星搭载的测雨雷达10年探测结果,就季尺度亚洲对流降水和层云降水的降水频次和强度及降水垂直结构的特点进行了研究.结果表明春、秋、冬三季东亚季平均降水环西太平洋副热带高压呈带状分布,雨强一般不超过10 mm/d;夏季,沿孟加拉湾、中国西南、中国东部至日本的大片雨区中出现了大于12 mm/d强降水;亚洲陆面对流和层云降水强度均弱于洋面.亚洲山地强迫不但可引起迎风坡上千公里长度的高降水频次和强降水带,而且导致其下风方向降水频次减少.季尺度降水频次分析表明,亚洲大部分地区对流降水频次小于3%;而层云降水频次一般大于3%,最高可超过10%;副热带高压南侧及西南侧的热带地区对流和层云降水频次均高于副热带高压北侧及西北侧的中纬度地区;降水频次的区域分布还表明,春季中南半岛至中国华南及南海南部对流活动多于同期的印度次大陆.季平均对流和层云降水廓线的季节变化主要表现为"雨顶"高度的季节变化,即降水云的厚度变化;两类降水平均廓线季节变化的区域性差异表明,热带外地区较热带地区显著、陆面较同纬度洋面显著、孟加拉湾比南海显著,而南海和西太平洋暖池无明显的季节变化.此外,降水结构的剖面分析还表明对流降水存在4层结构、层云降水存在3层结构.  相似文献   

14.
华南汛期作为我国雨季爆发的第一阶段一直是预报与研究的热点问题,对其降水-云宏微观垂直特性的认识还不够深入。双频星载雷达资料对强、弱降水三维探测进行优化,并补充对洋面降水的探测。借助这两方面优势,对华南对流性、层云性两类主要降水类型的垂直特征进行统计,分析降水反射率因子与降水粒子垂直分布、亮带特征与垂直分层降水贡献,对比华南陆地在回波顶高方面与南海洋面的异同,最后针对华南前后汛期的降水垂直分布特征进行分析。(1)对流性降水反射率因子快速增长区域主要发生在低层,层云性降水反射率因子快速增长区域位于亮带层附近。(2)当发生强降水时,对流性降水的粒子浓度并不是总高于层云性降水,但前者粒子半径大于后者;强层云性降水往往来自于大小均一的粒子聚集,并没有形成更大直径的液滴。(3)华南陆地回波顶高季节变化较南海洋面强烈,浅薄对流降水发生频率受季风影响从春至秋存在先增后减特征,深对流发生频率在夏季增幅显著。南海地区回波顶高虽无明显季节变化但在3 km和5.5 km存在明显的双峰特征。(4)前汛期对流性降水的高浓度、大尺度的粒子更利于向更高高度发展,而层云性降水粒子浓度及半径的垂直分布在华南前后汛期无明显差异。前后汛期回波顶高异同主要出现在广西中部,广东中部和沿海地区。   相似文献   

15.
9914号台风降水云系雨强的三维结构初探   总被引:12,自引:3,他引:12  
利用TRMM卫星的测雨雷达资料,研究了9914号台风降水云系在3个不同时次雨强的水平和垂直结构。结果表明:3个时次层状云降水在像素数量上及对总降水量的贡献上均比对流性降水大;3个时次层状云降水和对流性降水的平均雨强均随台风强度加强有较大的增幅;对流性降水与层状云降水的雨强的垂直廓线有明显的差别,但两类降水廓线本身在3个时次差别不大。对流性降水廓线按斜率不同大致分为3段,雨强均随高度减小,5~6km高度段减速最快。层状云降水廓线大致分为4段,在4.5km高度附近出现明显的亮带结构。  相似文献   

16.
西太平洋副热带高压下热对流降水结构特征的个例分析   总被引:19,自引:6,他引:13  
利用热带测雨卫星的测雨雷达和红外辐射计的探测结果,对2003年8月2日15时(北京时)中国东南部副热带高压下发生的热对流降水结构特征、云和降水云之间的关系进行了分析研究。大气背景分析表明,500 hPa副热带高压中心附近的较强上升运动和850 hPa的水汽通量辐合为此次午后热对流降水云团的发生提供了动力和水汽条件。热带测雨卫星的测雨雷达探测结果表明,热对流降水云团的水平尺度多为30~40 km,平均垂直尺度均超过10 km,最高达17.5 km;云团的最大近地面雨强超过50 mm/h。热对流降水云团的平均降水廓线表明,其最大降水率出现在5 km的高度,这一高度比估计的环境大气0℃层高度低1 km。与“98.7.20”中尺度强降水的对流降水廓线比较表明,两者的最大降水率高度相同,但热对流降水云团更深厚;在4 km高度至近地面,热对流的降水率减少速度比“98.7.20”强对流降水的快,表明前者雨滴在下降过程中因气温高而发生强烈蒸发。对降水云团顶部特征与近地面雨强关系的分析结果表明,雨顶高较低时,云顶高度变化范围大;当雨顶越高时,云顶高度与雨顶高度越相近;平均而言,给定地面降水率,云顶高度比雨顶高度高出1~4 km;当近地面雨强越大,则云顶高度和雨顶高度越高、且越相近。结果还表明,非降水云面积约占86%,晴空面积仅占2%,而降雨云面积约为云面积的1/8。  相似文献   

17.
文中利用TRMM卫星的测雨雷达和微波成像仪探测结果,研究了1998年7月20日21时(世界时)和1999年6月9日21时发生在武汉地区附近和皖南地区的两个中尺度强降水系统的水平结构和垂直结构,以及TMI微波亮温对降水强弱和分布的响应。研究结果表明:这两个中尺度强降水系统中对流降水所占面积比层云降水面积小,但对流降水具有很强的降水率,它对总降水量的贡献超过了层云降水。降水水平结构表明,两个中尺度强降水系统由多个强雨团或雨带组成,它们均属于对流性降水;降水垂直结构分析表明,强对流降水的雨顶高度可达15km,强对流降水主体中存在垂直方向和水平方向非均匀降水率分布区,层云降水有清晰的亮度带,层云降水的上方存在多层云系结构。降水廓线分布表明:对流降水廓线与层云降水廓线有明显的区别,并且降水廓线清晰地反映了降水微物理过程的垂直分布。整个中尺度强降水系统中对流降水与层云降水的区别还反映在标准化的总降水率随高度的分布。微波信号分析表明:TMI85 GHz极化修正亮温,19.4与37.0,19.4与85.5,37.0与85.5 GHz的垂直极化亮温差均能较好地指示陆面附近的降水分布。  相似文献   

18.
基于TRMM资料的高原涡与西南涡引发强降水的对比研究   总被引:4,自引:0,他引:4  
利用TRMM(Tropical Rainfall Measuring Mission)卫星探测结果结合NCEP(National Centers for Environmental Prediction)再分析资料, 对2007年7月17日四川、重庆地区的一次西南涡强降水系统和2008年7月21日四川东部的东移高原涡强降水系统的三维结构特征、雨顶高度以及降水廓线特征进行对比分析研究。结果表明:(1)两次降水过程均是发生在西南—东北向的水汽辐合带中, 且降水云群均位于低涡的东南方。(2)两次强降水在水平结构上均表现为由一个主降水雨带和多个零散降水云团组成, 高原涡强降水过程比西南涡强降水的降水强度和范围都要大。降水雷达探测到的两个中尺度降水系统均以降水范围大、强度弱的层云降水为主, 但对流性降水对总降水量的贡献较大, 其中西南涡降水中对流降水所占比例比高原涡的大, 对总降水率的贡献也大。(3)垂直结构上:两次强降水的雨顶高度均是随地表雨强的增加而增加, 且最大雨顶高度接近16 km, 但西南涡强降水中的雨顶高度比高原涡更高, 说明西南涡降水过程中对流旺盛程度强于高原涡。(4)两次强降水中雨滴碰并增长过程以及凝结潜热的释放主要集中在8 km以下, 但8 km以上西南涡降水变化大于高原涡, 且前者在8~12 km高度层的降水量对总降水量贡献百分比大于后者。  相似文献   

19.
利用TRMM卫星资料对青藏高原地区强对流天气特征分析   总被引:5,自引:0,他引:5  
李典  白爱娟  黄盛军 《高原气象》2012,31(2):304-311
利用热带测雨卫星TRMM(Tropical Rainfall Measure Mission)多种探测结果,结合NCEP再分析资料,研究了发生在青藏高原地区的一次强对流天气特征,综合分析了高原地区对流云特殊的水平、垂直结构特征。结果表明:(1)该强对流降水系统由几个孤立、零散的块状降水云团组成,以深厚弱对流降水为主,微波亮温的低值区也呈孤立、零散的块状分布,并且整个对流系统的云顶高度一致偏高,深厚强对流降水的雨谱主要集中在1~20mm.h-1的范围内,90%以上的深厚弱对流降水样本数和降水量都集中在0~5mm.h-1范围内,在垂直方向上呈被"挤压"状态。除云冰粒子集中在6~18km高度外,可降冰、可降水和云水粒子都集中在低层8km以下,冰雹天气表现为可降冰粒子在低层含量偏高。(2)高原地区强对流天气的特征与其他地方的不同,表现为雨强较小,比平原地区明显偏弱,且对流云降雨样本在不同降雨率范围内分布不均匀,降水云团雨顶高度也远低于平原地区的对流云,地表降水率大值区与微波辐射亮温低值区呈不完全对称分布,潜热释放呈单峰型。(3)高原地区强对流系统发生时,垂直上升运动在400hPa达到最大,水汽主要集中在400hPa高度以下的范围内。  相似文献   

20.
利用GPM卫星的双频反演产品DPR_MS和ERA5再分析数据,对2016~2020年夏季青藏高原上空能被GPM卫星探测到的32例高原涡降水特征进行研究。结果表明:(1)高原涡在高原上降水强度偏小,绝大部分低于2 mm/h,雨顶高度主要在6~9 km。降水类型以深厚弱对流为主(占59.64%),其次是浅薄降水(占40.35%),深厚强对流极少。(2)高原西部降水涡绝大多数为深厚弱对流、平均雨顶高度明显高于东部涡,但东、西部涡的平均降水强度没有明显差异。浅薄降水频次呈“东高西低、北高南低”的空间分布特征,深厚弱对流降水则相反。(3)深厚弱对流降水受高原涡强上升运动影响显著,在6.5~7.5 km高度有大量有效半径为1.1 mm的雨滴粒子堆积,近地面较强降水(7 mm/h)的雨滴破碎过程明显。浅薄降水的反射率因子在各个高度持续增大,其地面降水主要由雨滴粒子碰并形成,地表雨强受雨滴浓度影响明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号