首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 390 毫秒
1.
为了解贵州高原水库浮游植物中汞和甲基汞的分布特征及浮游植物对汞及甲基汞的富集特点,于2012年12月对贵州省的5座高原水库中浮游植物和汞形态进行采样调查.研究结果表明:冬季贵州高原水库浮游植物群落主要是由硅藻组成,5座水库浮游植物丰度有明显差异.百花湖大坝处浮游植物丰度最高,为29.05×104cells/L;三板溪水库浮游植物丰度最低,仅为0.49×104cells/L.浮游植物中总汞和甲基汞的浓度分别在29.29~277.07 ng/g和1.12~10.93 ng/g之间,总汞含量以百花湖岩脚寨最高,甲基汞含量以百花湖大坝最高.总汞和甲基汞在浮游植物中的生物富集系数分别在1.42×104~9.78×104和3.10×104~4.43×105之间.在浮游植物富集无机汞及甲基汞的系数中,百花湖中浮游植物对无机汞生物富集系数最高,而红枫湖中浮游植物对甲基汞的生物富集系数最高.浮游植物种类组成不同对汞及甲基汞的生物富集有影响.浮游植物中的总汞与水体中的总汞、甲基汞和溶解态甲基汞都存在显著的相关关系,浮游植物中的甲基汞与水体中的总汞及甲基汞不存在显著相关性.甲基汞在浮游植物中富集不是简单的吸收,存在着影响甲基汞在浮游植物中富集的其它因素.浮游植物中的甲基汞与水体富营养化环境因子(透明度、总氮、硝氮)均呈负相关关系,表明水体富营养化的程度不同对浮游植物中的甲基汞浓度有影响.  相似文献   

2.
运用金汞齐-冷原子荧光光谱法(CVAFS)和气相色谱技术(GC),对贵州省草海不同水文季节(枯水期和丰水期)表层水中汞的各种赋存形态,包括总汞(HgT)、溶解态汞(HgD)、活性汞(HgR)、颗粒态汞(HgP)、总甲基汞(MeHgT)、溶解态甲基汞(MeHgD)和颗粒态甲基汞(MeHgP)以及沉积物间隙水剖面中的溶解态总汞和甲基汞含量进行了测定.结果显示:草海表层水体总汞浓度为1.7-9.0ng/L,活性汞浓度为0.06-1.4ng/L,总甲基汞浓度为0.11-0.67ng/L.沉积物间隙水中溶解态汞浓度为8.6-39.6ng/L,溶解态甲基汞浓度为0.11-4.9ng/L.实验数据表明,草海湖水以溶解态汞为主,其占总汞的比例为枯水期87%,丰水期51%,溶解态汞与总汞呈显著相关(丰水期P<0.01;枯水期P<0.05),颗粒态汞与总汞也呈显著相关(丰水期P<0.01;枯水期P<0.05).溶解态甲基汞与总甲基汞呈显著相关(丰水期P<0.01;枯水期P<0.05),表明溶解态甲基汞控制总甲基汞的分布.沉积物间隙水溶解态汞与溶解态甲基汞浓度明显高于上覆水体,表明沉积物为草海湖水中汞的一个重要来源.  相似文献   

3.
季节性缺氧水库甲基汞的产生及其对下游水体的影响   总被引:14,自引:0,他引:14  
本文采用蒸馏-乙基化结合GC-CVAFS法对贵州红枫湖水库及其各入库和出库河流中的甲基汞时空分布和控制因素进行了研究.在春、秋、冬季节总甲基汞浓度和分布无明显时空变化,在0.053-0.333 ng/L之间.春季河流是水库甲基汞一个重要的输入源.夏季水库下层甲基汞显著升高,缺氧层最高值达0.923 ng/L.同时发现.缺氧层升高的甲基汞主要来自于水体自己产生或上层水体甲基汞的沉降,而不是来自于沉积物的释放.各季节湖水和河流样品的总甲基汞和溶解氧存在显著的负相关关系,Personal相关系数r为-0.81(n=78).在春、秋、冬季节溶解态甲基汞比例略低于颗粒态甲基汞,但在夏季,特别是缺氧层,甲基汞主要以溶解态存在.夏季河流入水经水库蓄水后,到再流出时已经富含甲基汞,出库河流中总甲基汞浓度已达到各入湖河流总甲基汞平均值的5.5倍,很明显在复季红枫湖已成为下游水体甲基汞的输入源,必将会对下游生态系统产生一定影响.  相似文献   

4.
贵州红枫湖越冬藻类的空间分布与实验室复苏实验   总被引:1,自引:0,他引:1  
本文选取贵州省红枫湖这一典型的亚深水型湖泊作为研究对象,在8个代表性湖区开展了为期一年的表层水体藻类浮游植物分布的月定量监测,并在4个采样点采集新鲜沉积物进行了越冬藻类赋存与复苏模拟实验研究.研究表明,红枫湖表层水体藻类种群密度蓝藻绿藻>硅藻>甲藻,蓝藻为优势门类,水体藻类种群密度秋季初期最高,其次是春季初期和夏季,具有明显的季节性演化特征.水体中越冬藻类以蓝藻为主,其次是硅藻和绿藻,水深对水体中藻类的种群密度及组成没有显著影响.沉积物中越冬藻类以硅藻为主,基本不含蓝藻.模拟实验表明,水体中的光照条件对藻类的复苏和生长有重要影响,温度和沉积物中藻类的种群密度与组成同样影响藻类的复苏.  相似文献   

5.
滤水速率的快慢是决定滤食性河蚌对水质改善与否的关键,但受蚌龄大小、食物多少和季节变化的影响.以背角无齿蚌(Anodonta woodiana)为研究对象,设置幼龄蚌组、成年蚌组和无蚌对照组,在惠州西湖生态修复后的清水态和未修复的富营养化水体同时进行中型系统原位实验,测定了各处理组水层中氮、磷、总悬浮物(TSS)浓度和浮游藻类生物量(用叶绿素a(Chl.a)浓度表示)的季节变化,以研究蚌龄、食物和季节变化对背角无齿蚌水质改善的影响.结果表明,与对照组相比,背角无齿蚌提高了清水态水体总磷(TP)和铵态氮浓度,但对总氮(TN)、TSS和浮游藻类Chl.a浓度的影响不显著,表明其不能有效改善清水态水体水质;富营养化水体中,背角无齿蚌虽对水中TN浓度影响不显著,但显著降低了TP浓度、浮游藻类Chl.a浓度和TSS浓度;表明背角无齿蚌可改善富营养化水体水质;且富营养化水体中幼龄蚌的滤水速率显著高于成年蚌;幼龄蚌的滤水速率春季最大(0.132±0.018 L/(g·h)),夏季最小.因此,在富营养化水体修复前期,可通过放养本地滤食性河蚌,如背角无齿蚌,以改善水质,春季放养幼龄蚌更佳,为接下来的修复创造有利条件;而在生态修复后期的清水态水体中,单独的河蚌对水质改善效果不明显.本研究可为水生态系统保护和富营养化水体生态修复提供参考.  相似文献   

6.
氮是影响和控制水体富营养化的重要因素,不同形态的氮对水体富营养化贡献不同.使用连续提取法对东苕溪干流悬浮物、表层沉积物样品中各形态氮含量进行测定,探讨各形态氮的分布特征及其影响因素.结果表明,东苕溪水体氮污染严重,总氮浓度均值为4.48 mg/L.悬浮物中各形态氮含量均高于沉积物,其中悬浮物中铁锰氧化态氮(IMOF-N)含量所占比例最大,均值为1506.94 mg/kg;沉积物中有机硫化物结合态氮(OSF-N)含量最高,均值为625.31 mg/kg.IMOFN、OSF-N含量受阳离子交换量、粒径影响显著,均与总氮浓度显著相关.相关性分析表明水体的性质对IMOF-N及OSF-N含量影响较显著,并且总体上对悬浮物的影响强于沉积物.另外,悬浮物有助于水体中的氮发生硝化反应向硝态氮转化,沉积物则有助于水体的氮发生还原作用向氨氮转化.在一定程度上,水体中的悬浮物对藻类具有抑制作用.  相似文献   

7.
姜欣  朱林  许士国  谢在刚 《湖泊科学》2019,31(2):375-385
铁和锰是氧化还原敏感的元素,水源水库热分层引起的底层水体缺氧造成了沉积物中铁和锰的释放,对城市供水造成了极大的影响.以往鲜有悬浮物行为对铁和锰在水库水-沉积物界面迁移影响的研究,于2014年2月-2015年2月对碧流河水库深水区的水、悬浮物以及沉积物铁和锰的垂向分布特征进行综合调查分析,并进一步分析铁和锰的季节性变化规律及悬浮物行为对其的影响.Spearman相关分析结果表明铁浓度与总悬浮固体、总氮和总磷的相关性较大;锰浓度与总悬浮固体、溶解氧、pH和总氮的相关性较大.进一步讨论分析表明碧流河水库的热分层、底层缺氧以及沉积物再悬浮是影响铁和锰浓度的重要因素,水库铁和锰的季节变化规律存在差异.分层期溶解态的锰在底层累积,平均浓度达到0.18 mg/L,而沉积物中溶解态的铁释放很少.混合期水库的中上层锰浓度升高,达到了0.07 mg/L.沉积物的再悬浮是水库底层水体中铁的主要来源,底层颗粒态铁的平均浓度约为0.3 mg/L.絮凝的颗粒物以及其吸附的锰在水库长期悬浮,难以沉积到水库底部,使得悬浮物中Mn的含量显著高于表层沉积物,约为沉积物的7倍.建议应在碧流河水库采用分层取水、水库曝气以及联合供水等措施,以减少铁和锰的浓度升高对供水产生的影响,保障大连市城市供水安全.  相似文献   

8.
调水型水库是一种以抽水入库为主要来水水源的水体,是沿海地区重要的供水水源地.为了解这类水库的富营养化特点,于2005年全年每月2次对地处我国南亚热带地区(广东珠海市)的大镜山水库进行采样和监测.监测和测定指标主要包括氮、磷营养盐浓度、水温、透明度及叶绿素a浓度等,结合水库水文数据对水库富营养化特征和主要的影响因素进行分析.结果表明,2005年,大镜山水库的富营养化状态TSI_M指数在45-53之间,水库处于中富营养状态,多数时间处于富营养状态.水体富营养化主要参数表现出明显的季节变化,即叶绿素a浓度和富营养化状态指数在早春和晚秋出现两个峰值,明显地与温带富营养化水体在夏季出现单个峰值的特征不同.调水入库增加了水库营养盐负荷的同时,也在很大程度上影响了水库水动力学过程,与夏季的集中强降雨一起成为影响该水库富营养化的关键因素,这些因素改变了浮游植物群落对营养盐的直接响应,导致叶绿素a浓度与总磷、总氮浓度之间呈弱相关关系,降水和调水量在时间上相对配置重要性决定了叶绿素a浓度与营养盐浓度的关系.  相似文献   

9.
郑鑫  王文静  盛彦清 《湖泊科学》2023,35(6):1917-1926
水体富营养化极易引起湖泊水库如藻类水华等水生态系统环境问题。氮素作为初级生产力的限制性生源要素之一,认识其在水华形成过程中潜在作用至关重要。本研究选取胶东半岛低碳高氮水库水体进行模拟实验,通过添加不同剂量硝态氮,探究高硝态氮输入对库区水体藻类和细菌群落结构的影响。结果表明:(1)当硝态氮作为唯一氮源,随着培养时间延长,硝态氮浓度显著下降,亚硝态氮和氨氮浓度逐渐升高,表明微藻和细菌共同作用可能将硝态氮转化为亚硝态氮和氨氮;(2)当硝态氮浓度为6 mg/L时,藻类叶绿素a浓度达到最高值,随着硝态氮浓度升高,叶绿素a浓度则会降低;(3)添加硝态氮后,蓝藻门成为优势藻类,绿藻门次之;变形菌门相对丰度显著升高。研究结果为低碳高氮类水体暴发蓝绿藻水华及有效防控提供理论依据和技术支撑。  相似文献   

10.
马松  魏榆  韩翠红  晏浩  刘再华  孙海龙  鲍乾 《湖泊科学》2021,33(6):1701-1713
为探究筑坝后不同水库物理、化学、生物过程对水化学和碳循环的影响,本研究对贵州三岔河流域的平寨水库、普定水库以及猫跳河流域的红枫湖水库进行研究,于2018年3月2019年1月分别在入库河流和库区采集了分层水样和沉降颗粒物,并探究水中主要离子及颗粒物通量的时空变化特征及其控制因素.结果表明,水体主要离子的主要来源受碳酸盐溶解影响,并且离子浓度受光合作用控制.红枫湖水库水体水化学类型为Ca-Mg-HCO3-SO4型,普定水库、平寨水库水化学类型均为Ca-HCO3-SO4.夏季藻类光合作用诱导碳酸盐沉淀导致水体表层Ca2+、HCO3-及溶解态Si浓度降低,其降低幅度分别为20.87%~44.25%、33.12%~51.18%、48.55%~96.34%.此外,藻类光合作用也影响C、N、Si等生源要素间的化学计量关系.Mg2+/Ca2+比值在水体垂向剖面上主要受碳酸钙沉淀的控制,而在不同水库之间则主要受流域岩性的控制.根据沉积物捕获器通量计算的平寨水库、普定水库、红枫湖水库夏季颗粒无机碳沉积通量分别为0.74、1.36、0.27 t/(km2·d),而根据水体Ca2+浓度降低计算的通量分别为0.31~0.64、0.35~0.99、0.09~0.29 t/(km2·d),根据水体HCO3-浓度降低计算的通量分别为0.30~0.65、0.29~1.26、0.12~0.33 t/(km2·d).其红枫湖水库无机碳沉降通量的实测值与计算值接近,而平寨、普定水库实际沉降通量高于计算值,这可能是有外源输入导致.因此,利用水化学分层数据能对喀斯特水库中的无机碳沉降通量进行合理估算,并且能够得到较好的估算结果,从而指示碳循环的过程.  相似文献   

11.
北京官厅水库轮虫群落结构与水体富营养化状况   总被引:9,自引:4,他引:5  
于2007年1-12月对官厅水库上游(北京段)进行调查,利用非生物环境因子对水体的营养状况进行了评价,并通过种类组成、优势种、生物量及多样性指数等指标探讨了轮虫群落结构与水体富营养化的关系.结果表明,官厅水库(北京段)已达到了富营养的水平,在轮虫的种类组成中,10个富营养化的指示种类大部分都有出现,其中螺形龟甲轮虫(Keratella cochlearis)和针簇多肢轮虫(Polyarthra trigla)为优势种;轮虫密度均在1000ind./L以上,生物量在1mg/L以上,轮虫的密度、生物量的季节分布与水温显著正相关(P0.05),水平分布与水体的营养状况显著正相关(P0.05),垂直分布没有明显的规律性;轮虫多样性指数较低,但与水体营养水平显著相关(P0.05).证明轮虫群落结构与水体富营养化之间存在着密切的关系,富营养化是导致轮虫群落结构变化的主要动因.  相似文献   

12.
广东长潭水库富营养化与浮游植物分布特征   总被引:2,自引:1,他引:1  
为掌握梅州市长潭水库富营养化状态与浮游植物分布特征,为控制藻类水华暴发提供科学依据,2011年10月至2012年7月,在长潭水库关键断面选取10个监测点,测定水体理化特征、浮游植物种类、丰度等指标,采用营养状态指数(TLI)和Shannon-Wiener多样性指数法对水质污染现状进行评价,并分析浮游植物类群分布特征.结果表明:长潭水库水体富营养状态在4、10和12月处于中营养级,7月份处于富营养级,营养指数从库区中游上游逐渐降低;观测期间共检出浮游植物4门11科16属,通过丰度比较,发现长潭水库以蓝绿藻为优势种,并且季节变化明显,总体表现为7月 >4月 >10月 >12月;藻类多样性指数分析显示,水库水体污染水平为中度,中游和库区(除7月)为轻度污染,与综合营养指数结果一致;长潭水库污染源调查分析结果表明,该水库主要为氮、磷污染,污染源主要为上游禽畜养殖废水.  相似文献   

13.
The Seine’s estuary (France) waters are the receptacle of effluents originating from wastewater treatment plants (WWTP). In this estuary, mudflats are deposition zones for sediments and their associated contaminants, and play an essential role in the mercury (Hg) biogeochemical cycle mainly due to indigenous microorganisms. Microcosms were used to assess the impact of WWTP-effluents on mercury methylation by monitoring Hg species (total dissolved Hg in porewater, methylmercury and total mercury) and on microbial communities in sediments. After effluent amendment, methylmercury (MeHg) concentrations increased in relation with the total Hg and organic matter content of the WWTP-effluents. A correlation was observed between MeHg and acid-volatile-sulfides concentrations. Quantification of sulfate-reducing microorganisms involved in Hg methylation showed no increase of their abundance but their activity was probably enhanced by the organic matter supplied with the effluents. WWTP-effluent spiking modified the bacterial community fingerprint, mainly influenced by Hg contamination and the organic matter amendment.  相似文献   

14.
Sediment (surface and core) sampling was conducted during the period from August 96-December 98 from intertidal and offshore areas in Kuwait Bay. The highest (and most variable) concentrations of total mercury (T-Hg; 36500+/-34930 ng g(-1)) are encountered around the previous industrial outfall where sediments are disturbed by shipping activities. The concentrations of T-Hg are lower in the Shuwaikh Port area (650+/-210 ng g(-1)) and continue to decrease towards the northern coastline of Kuwait Bay (average concentrations in the wider Bay region are 50+/-30 ng g(-1)). These values are still above background concentrations of 15-20 ng g(-1). Calculation of the total inventory of mercury in all the surface sediments of the studied area indicates that approximately 22.5 ton is present which is similar to the estimated industrial discharges of approximately 20 ton suggesting that the contamination is largely confined to the Bay and that releases to the wider Gulf region are small. The distributions of MeHg are similar to those of T-Hg and represent ranges between 0.23% and 0.5% of the T-Hg indicating that surface sediments within Kuwait Bay contain approximately 80 kg of this chemical.  相似文献   

15.
Guanabara Bay, in Rio de Janeiro state, is impacted by organic matter, oil and heavy metals. The present study evaluated the total mercury (THg) and methylmercury (MeHg) concentrations and the MeHg to THg ratio (%MeHg) in water samples from different points of the bay and in 245 organisms of three different trophic levels sampled between 1990 and 2000. Dissolved mercury concentration in estuarine water samples ranged from 0.72 to 5.23 ngl(-1). THg and MeHg in mussel, ranging from 11.6 to 53.5 microg THg kg(-1) wet wt. and 4.5-21.0 microg MeHg kg(-1) wet wt., varied according to sampling point and water quality. Planktivorous fish and mussel presented similar MeHg concentrations, meanwhile THg in planktivorous fish were lower than in mussel. Carnivorous fish showed higher THg and MeHg concentrations (199.5 +/- 119.3, 194.7 +/- 112.7 microg kg(-1) wet wt. respectively) than organisms from other feeding habits and lower trophic levels. There was a significant difference in the %MeHg among trophic levels: mussel presented lower MeHg percentage (33%) than planktivorous fish (54%) and carnivorous fish (98%).  相似文献   

16.
贵阳市"两湖一库"不同季节硫酸盐还原菌分布变化   总被引:3,自引:0,他引:3  
基于MPN法对贵阳市"两湖一库"——阿哈水库、红枫湖、百花湖不同季节沉积物中硫酸盐还原菌(SRB)分布规律及其影响因素进行了研究.结果表明,"两湖一库"SRB含量及分布季节差异显著,冬季SRB含量明显低于夏、秋季节.冬季,SRB含量峰值主要集中在沉积物中部,而在夏、秋季节,SRB含量峰值主要集中在沉积物上部.在受到酸性矿山废水污染的阿哈水库,硫酸根含量远高于红枫湖和百花湖,但沉积物中的SRB含量整体上和其它2个未受硫酸盐影响的湖泊差异不大,仅在夏、秋季节表层沉积物中明显升高,表明"两湖一库"丰富的有机质及适宜的pH为硫酸盐还原菌提供了良好的生长环境,硫酸根含量没有成为SRB含量的主要限制因素.  相似文献   

17.
In arctic and sub‐arctic environments, mercury (Hg), more specifically toxic methylmercury (MeHg), is of growing concern to local communities because of its accumulation in fish. In these regions, there is particular interest in the potential mobilization of atmospherically deposited Hg sequestered in permafrost that is thawing at unprecedented rates. Permafrost thaw and the resulting ground surface subsidence transforms forested peat plateaus into treeless and permafrost‐free thermokarst wetlands where inorganic Hg released from the thawed permafrost and draining from the surrounding peat plateaus may be transformed to MeHg. This study begins to characterize the spatial distribution of MeHg in a peat plateau–thermokarst wetland complex, a feature that prevails throughout the wetland‐dominated southern margin of thawing discontinuous permafrost in Canada's Northwest Territories. We measured pore water total Hg, MeHg, dissolved organic matter characteristics and general water chemistry parameters to evaluate the role of permafrost thaw on the pattern of water chemistry. A gradient in vegetation composition, water chemistry and dissolved organic matter characteristics followed a toposequence from the ombrotrophic bogs near the crest of the complex to poor fens at its downslope margins. We found that pore waters in poor fens contained elevated levels of MeHg, and the water draining from these features had dissolved MeHg concentrations 4.5 to 14.5 times higher than the water draining from the bogs. It was determined through analysis of historical aerial images that the poor fens in the toposequence had formed relatively recently (early 1970s) as a result of permafrost thaw. Differences between the fens and bogs are likely to be a result of their differences in groundwater function, and this suggests that permafrost thaw in this landscape can result in hotspots for Hg methylation that are hydrologically connected to downstream ecosystems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
氮是引起湖泊水体富营养化的关键营养元素之一。本次工作从贵州两个重要水库(红枫湖和百花湖)采集了未受扰动的沉积物样品性,分析了分层沉积物样品中的总氮,无机交换性氮和固定铵的含量及垂直剖面分布,研究表明,红枫湖和百花湖沉积物中具有较高的全氮含量,平均含量约为沉积物干重的0.36%~0.40%,其垂直分布在埋藏过程中受到成岩作用改造,沉积物交换性氮在沉积物中的赋存受到全氮含量和埋藏环境的双重控制,红枫湖和百花湖沉积物具有较强的吸持固定铵的能力,沉积物固定铵的绝对含量的平均值分别为434.05mg/kg和416.94mg/kg,分别占全氮的13.53%和12.53%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号