首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Laboratory cultures of three phytoplankton species (Phaeodactylum tricornutum, Phaeocystis sp., Thalassiosira weissflogii) were tested for methyl halide (monohalomethane) production by sparging and cryotrapping coupled with GC-ECD detection. Both axenic and xenic cultures were tested under various nutrient regimens. Production of methyl bromide (CH3Br) and methyl chloride (CH3Cl) was observed in all cultures. Methyl iodide (CH3I) production was also observed but could not be quantified due to Chromatographic interference. No consistent differences in production rates were observed between axenic and xenic cultures or between nutrient regimens. Methyl halide production was not directly dependent on photosynthesis. Within each species, total methyl halide production was most closely correlated with biomass, measured as utilized nitrate (ΔDIN) or Chl a. Among the three species, Phaeocystis sp. had the highest production rates and T. weissflogii the lowest. In all cases, the biomass-normalized production rates were only a fraction of the levels needed for the ocean to constitute a significant global source of either CH3Cl or CH3Br. However, it must be noted that these data comprise results from a limited number of species and a limited range of conditions.  相似文献   

2.
Two separate studies in different oceanic regions provide evidence for the production of methyl bromide (CH3Br) by the prymnesiophyte Phaeocystis. A sampling program to study the seasonal cycle of CH3Br in a coastal area demonstrated that the seawater was supersaturated with respect to CH3Br for over 3 months of the year. The greatest saturation was observed during a bloom of Phaeocystis. Also, in situ field measurements demonstrated that CH3Br was supersaturated over a large region of the northeast Atlantic. A positive correlation was observed between CH3Br and dimethylsulphoniopropionate (DMSP), indicating that there was a source common to both compounds. An accessory pigment, hexanoyloxyfucoxanthin, which indicates the presence of prymnesiophytes, also correlated positively with CH3Br.  相似文献   

3.
Nutrient-enrichment bottle experiments in the northwestern Indian Ocean surface waters were conducted to investigate phytoplankton growth following enrichments with either NH4+, NO3, Fe or Fe + NO3. Stimulation of phytoplankton growth could be achieved by the addition of either NH4+ or NO3 under the ambient Fe concentrations, but the most significant increases in Chl a, POC, and cell densities were observed in the Fe + NO3-amended culture. Iron addition caused more rapid responses of phytoplankton growth in the Fe + NO3 treatment than those in the NO3 and NH4 treatment. However, the Fe-enrichment treatment revealed minimal growth of phytoplankton because of severe major nutrient deficiency and was similar to the control treatment. Increases in the cell density of diatoms and spherical phytoplankton cells (< 10 μm) were significant in the NH4+-enriched samples, whereas NO3 enrichment alone had little effect on the diatoms. Simultaneous addition of Fe and NO3 stimulated maximal growth of phytoplankton, in particular in diatoms, coccolithophorids and Phaeocystis type colonies. However, the dominance of coccolithophorids and Phaeocystis type colonies in the Fe + NO3 treatment may be interpreted as resulting from Si-limitation. The high N/P ratio for phytoplankton nutrient uptake in the N-amended culture indicates the possibility of some P-limited growth. From these results, we conclude that in the northwestern Indian Ocean, Fe and major nutrients are co-limiting phytoplankton production during the northeast monsoon. Iron appeared to affect the ability of phytoplankton to respond quickly to transient nutrient inputs.  相似文献   

4.
Iron could play a key role in controlling phytoplankton biomass and productivity in high-nutrient, low-chlorophyll regions. As a part of the iron fertilization experiment carried out in the western subarctic Pacific from July to August 2004 (Subarctic Pacific iron Experiment for Ecosystem Dynamics Study II—SEEDS II), we analysed the concentrations of trace gases in the seawater for 12 d following iron fertilization. The mean concentrations of chlorophyll a in the mixed layer (5–30 m depth) increased from 0.94 to 2.81 μg L–1 for 8 d in the iron patch. The mean concentrations of methyl bromide (CH3Br; 5–30 m depth) increased from 6.4 to 13.4 pmol L–1 for 11 d; the in-patch concentration increased relative to the out-patch concentration. A linear correlation was observed between the concentrations of 19′-hexanoyloxyfucoxanthin, which is a biomarker of several prymnesiophytes, and CH3Br in the seawater. After fertilization, the air–sea flux of CH3Br inside the patch changed from influx to efflux from the ocean. There was no clear evidence for the increase in saturation anomaly of methyl chloride (CH3Cl) due to iron fertilization. Furthermore, CH3Cl fluxes did not show a tendency to increase after fertilization of the patch. In contrast to CH3Br, no change was observed in the concentrations of bromoform (in-patch day 11 and out-patch day 11: 1.7 and 1.7 pmol L–1), dibromomethane (2.1 and 2.2 pmol L–1), and dibromochloromethane (1.0 and 1.2 pmol L–1, respectively). The concentration of isoprene, which is known to have a relationship with chlorophyll a, did not change in this study. The responses of trace gases during SEEDS II differed from the previous findings (in situ iron enrichment experiment—EisenEx, Southern Ocean iron experiment—SOFeX, and Subarctic Ecosystem Response to Iron Enrichment Study—SERIES). Thus, in order to estimate the concomitant effect of iron fertilization on the climate, it is important to assess the induction of biological activity and the distributions/air–sea fluxes of trace gases by iron addition.  相似文献   

5.
We report results from two surveys of pCO2, biological O2 saturation (??O2/Ar) and dimethylsulfide (DMS) in surface waters of the Ross Sea polynya. Measurements were made during early spring (November 2006-December 2006) and mid-summer (December 2005-January 2006) using ship-board membrane inlet mass spectrometry (MIMS) for high spatial resolution (i.e. sub-km) analysis. During the early spring survey, the polynya was in the initial stages of development and exhibited a rapid increase in open water area and phytoplankton biomass over the course of our ∼3 week occupation. We observed a rapid transition from a net heterotrophic ice-covered system (supersaturated pCO2 and undersaturated O2) to a high productivity regime associated with a Phaeocystis-dominated phytoplankton bloom. The timing of the early spring phytoplankton bloom was closely tied to increasing sea surface temperature across the polynya, as well as reduced wind speeds and ice cover, leading to enhanced vertical stratification. There was a strong correlation between pCO2, ??O2/Ar, DMS and chlorophyll a (Chl a) during the spring phytoplankton bloom, indicating a strong biological imprint on gas distributions. Box model calculations suggest that pCO2 drawdown was largely attributable to net community production, while gas exchange and shoaling mixed layers also exerted a strong control on the re-equilibration of mixed layer ??2 with the overlying atmosphere. DMS concentrations were closely coupled to Phaeocystis biomass across the early spring polynya, with maximum concentrations exceeding 100 nM.During the summer cruise, we sampled a large net autotrophic polynya, shortly after the seasonal peak in phytoplankton productivity. Both diatoms and Phaeocystis were abundant in the phytoplankton assemblages during this time. Minimum pCO2 was less than 100 ppm, while ??O2/Ar exceeded 30% in some regions. Mean DMS concentrations were ∼2-fold lower than during the spring, although the range of concentrations was similar between the two surveys. There was a significant correlation between pCO2, ??O2/Ar and Chl a across the summer polynya, but the strength of these correlations and the slope of O2 vs. CO2 relationship were significantly lower than during the early spring. Summertime DMS concentrations were not significantly correlated to phytoplankton biomass (Chl a), pCO2 or ??O2/Ar. In contrast to the early spring time, there were no clear temporal trends in summertime gas concentrations. Rather, small-scale spatial variability, likely resulting from mixing and localized sea-ice melt, was clearly evident in surface gas distributions across the polynya. Analysis of length-scale dependent variability demonstrated that much of the spatial variance in surface water gases occurred at scales of <20 km, suggesting that high resolution analysis is needed to fully capture biogeochemical heterogeneity in this system.  相似文献   

6.
Vertical distributions of phytoplankton biomass, compositions and size structure were investigated during the spring-intermonsoon (April 22 to 30) of 2010 along transact 10°N of the Bay of Bengal, northern Indian Ocean. Surface phytoplankton biomass (Chl a) was (0.065§0.009) μg/L, being greater than 80% of which was contributed by pico-phytoplankton (<3 μm). The Chl a concen- tration vertically increased to the maximal values at deep chlorophyll maximum (DCM) layer that shoaled eastwards from 75 to 40 m. The Chl a biomass at DCM layer generally varied between 0.2 and 0.4 μg/L, reaching the maximum of 0.56 μg/L with micro-phytoplankton cells (>20 μm) accounting for 58% and nano- (3-20 μm) or pico-cells for 15% and 27%, respectively. In particular, the cells concentration coupling well with phosphate level was observed at middle layer (75-100 m) of 87° to 89°E, dominated by micro-cells diatoms (e.g., Chaetoceros atlanticus v. neapolitana, Chaetoceros femur and Pseudonitzschia sp.) and cyanobacteria (i.e., Trichodesmium hildebrandtii), with the cells concentration reached as high as 4.0×104 and 4.3×104 cells/L. At the rest of the trans- act however, dino°agellates (e.g., Amphisdinium carterae and Prorocentrum sp.) were the dominant species, with the cells concentration varying from 0.3×103 to 6.8×103 cells/L. Our results also in- dicate that the regulation of large cells (micro-, nano-) on phytoplankton biomass merely occurred at DCM layer of the Bay.  相似文献   

7.
Ocean acidification damages calcareous organisms, such as calcifying algae, foraminifera, corals, and shells. In this study, we made a device equipped with a Clark-type oxygen electrode and a pH-stat to examine how the most abundant calcifying phytoplankton, the coccolithophorid Emiliania huxleyi, responded to acidification and alkalization of the seawater medium. When E. huxleyi was incubated at pH 8.2, close to oceanic pH, the medium was alkalized during photosynthesis, and the alkalization rate [determined as μmol HCl added (mg Chl)−1 h−1] was identical to the activity of photosynthesis [determined as μmol O2 evolved (mg Chl)−1 h−1]. When pH was maintained at 7.2 by the pH-stat, alkalization activity was stimulated and exceeded photosynthetic activity, resulting in an increase in the ratio of alkalization to photosynthesis (Alk/PS). On the other hand, no alkalization and photosynthesis were observed at pH 9.2. In contrast, acidification of seawater was observed in the dark because of the release of respiratory CO2 from cells at pH 8.2–9.2, but not at pH 7.2. When orthophosphate was rapidly depleted within a day in the batch culture, intracellular calcification gradually increased, and both photosynthesis and alkalization decreased gradually. During the period the Alk/PS ratio also decreased gradually. These results indicate that E. huxleyi possesses an ability to compensate for the acidification of seawater when photosynthesis is more actively driven than respiration. These results suggest that the E. huxleyi cells may not be severely damaged by oceanic acidification during photosynthesis because of their homeostatic function to avoid negative effects on cellular activity. Finally, we concluded that E. huxleyi cells possess a buffering ability to reduce acidification effects when photosynthesis is actively driven.  相似文献   

8.
During the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study ΙΙ (SEEDS-II), we monitored variations in the concentrations of non-methane hydrocarbons (NMHCs), CH3Cl, N2O, and CH4 within a phytoplankton bloom. Stable isotopic compositions were also determined to evaluate the sources of the variations. Although there was little variation in either the concentrations or the stable isotopic compositions of alkenes, CH3Cl, N2O, and CH4 during the 23-day observation period, alkane concentrations increased substantially as the phytoplankton bloomed. The column-integrated quantities of alkanes increased to 3 times pre-bloom levels for C2H6, 5 times for C3H8, and 20 times for n-C4H10. The δ13C values of both C2H6 and C3H8 remained almost constant while concentrations increased, whereas that of n-C4H10 increased by about 12‰. To evaluate the sources of the alkanes produced during the bloom, we compared their δ13C values with those of alkanes produced in axenic phytoplankton cultures in our laboratory. We concluded that during the SEEDS-ΙΙ experiment the major portions of C2H6 and C3H8 were produced during the autolysis of diatoms cells, whereas n-C4H10 was produced during autolysis of other phytoplankton cells such as cryptophytes and dinoflagellates.  相似文献   

9.
We adapted the dilution technique to study microzooplankton grazing of algal dimethylsulfoniopropionate (DMSP) vs. Chl a, and to estimate the impact of microzooplankton grazing on dimethyl sulfide (DMS) production in the Labrador Sea. Phytoplankton numbers were dominated by autotrophic nanoflagellates in the Labrador basin, but diatoms and colonial Phaeocystis pouchetii contributed significantly to phytomass at several high chlorophyll stations and on the Newfoundland and Greenland shelfs. Throughout the region, growth of algal Chl a and DMSP was generally high (0.2–1 d1), but grazing rates were lower and more variable, characteristic of the early spring bloom period. Production and consumption of Chl a vs. DMSP followed no clear pattern, and sometimes diverged greatly, likely because of their differing distributions among algal prey taxa and size class. In several experiments where Phaeocystis was abundant, we observed DMS production proportional to grazing rate, and we found clear evidence of DMS production by this haptophyte following physical stress such as sparging or filtration. It is possible that grazing-activated DMSP cleavage by Phaeocystis contributes to grazer deterrence: protozoa and copepods apparently avoided healthy colonies (as judged by relative growth and grazing rates of Chl a and DMSP), and grazing of Phaeocystis was significant only at one station where cells were in poor condition. Although we hoped to examine selective grazing on or against DMSP-containing algal prey, the dilution technique cannot differentiate selective ingestion and varying digestion rates of Chl a and DMSP. We also found that the dilution method alone was poorly suited for assessing the impact of grazing on dissolved sulfur pools, because of rapid microbial consumption and the artifactual release of DMSP and DMS during filtration. Measuring and understanding the many processes affecting organosulfur cycling by the microbial food web in natural populations remain a technical challenge that will likely require a combination of techniques to address.  相似文献   

10.
Robert M. Moore   《Marine Chemistry》2006,101(3-4):213-219
Experiments were conducted in the field to determine the non-chemical loss rate of methyl iodide in seawater and to examine production rates of methyl halides. The loss rate of added C13 labelled methyl iodide, present at concentrations similar to those found in seawater, corrected for chemical loss due to reaction with Cl varied from < 1 to 18% day− 1, with a mean value of 7%. This rate of loss is much lower than that which was proposed by Bell et al. [Bell, N., Hsu, L., Jacob, D. J., Schultz, M. G., Blake, D. R., Butler, J. H., King, D. B., Lobert, J. M., Maier-Reimer, E., 2002. Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models, Journal of Geophysical Research-Atmospheres 107(D17), 4340-4351.] to account for the large discrepancies between observed and predicted mid-latitude concentrations of CH3I based on their global photochemical source model. The suitability of several types of container for seawater incubations was studied and only quartz tubes appeared to be free of experimental artifact. Collapsible polyvinyl fluoride containers showed major production of methyl halides on irradiation with simulated sunlight. Polyethylene containers caused spurious production of methyl iodide at lower rates.  相似文献   

11.
The trophic efficiency of the planktonic food web in the Phaeocystis-dominated ecosystem of the Belgian coastal waters was inferred from the analysis of the carbon flow network of the planktonic system subdivided into its different trophodynamic groups. A carbon budget was constructed on the basis of process-level field experiments conducted during the spring bloom period of 1998. Biomass and major metabolic activities of auto- and heterotrophic planktonic communities (primary production, bacterial production, nanoproto-, micro- and mesozooplankton feeding activities) were determined in nine field assemblages collected during spring at reference station 330. In 1998, the phytoplankton spring flowering was characterised by a moderate diatom bloom followed by a massive Phaeocystis colony bloom. Phaeocystis colonies, contributing 70% to the net primary production, escaped the linear food chain while the early spring diatom production supplied 74% of the mesozooplankton carbon uptake. The rest of mesozooplankton food requirement was, at the time of the Phaeocystis colony bloom, partially fulfilled by microzooplankton. Only one-third of the microzooplankton production, however, was controlled by mesozooplankton grazing pressure. Ungrazed Phaeocystis colonies were stimulating the establishment of a very active microbial network. On the one hand, the release of free-living cells from ungrazed colonies has been shown to stimulate the growth of microzooplankton, which was controlling 97% of the nanophytoplankton production. On the other hand, the disruption of ungrazed Phaeocystis colonies supplied the water column with large amounts of dissolved organic matter available for planktonic bacteria. The budget calculation suggests that ungrazed colonies contributed up to 60% to the bacterial carbon demand, while alternative sources (exudation, zooplankton egestion and lysis of other organisms) provided some 30% of bacterial carbon requirements. This suggests that the spring carbon demand of planktonic bacteria was satisfied largely by autogenic production. The trophic efficiency was defined as the ratio between mesozooplankton grazing on a given source and food production. In spite of its major contribution to mesozooplankton feeding, the trophic efficiency of the linear food chain, restricted to the grazing on diatoms, represented only 5.6% of the available net primary production. The trophic efficiency of the microbial food chain, the ratio between mesozooplankton grazing on microzooplankton and the resource inflow (the bacterial carbon demand plus the nanophytoplankton production) amounted to only 1.6%. These low trophic efficiencies together with the potential contribution of ungrazed Phaeocystis-derived production to the bacterial carbon demand suggest that during spring 1998 most of the Phaeocystis-derived production in the Belgian coastal area was remineralised in the water column.  相似文献   

12.
During late winter and spring of 2002 and 2003, 24, 2–3 day cruises were conducted to Dabob Bay, Washington State, USA, to examine the grazing, egg production, and hatching success rates of adult female Calanus pacificus and Pseudocalanus newmani. The results of the copepod grazing experiments for C. pacificus are discussed here. Each week, copepod grazing incubation experiments from two different depth layers were conducted. Grazing was measured by both changes in chlorophyll concentration and cell counts. In 2002, there was one moderate bloom consisting mainly of Thalassiosira spp. in early February, and a larger bloom in April comprised of two Chaetoceros species and Phaeocystis sp. Similarly, in 2003, there were two blooms, an early one dominated by Thalassiosira spp., and a later one consisting of Chaetoceros spp. and Thalassiosira spp. Clearance rates on individual prey species, as calculated by cell counts, showed that C. pacificus are highly selective in their feeding, and may have much higher clearance rates on individual taxa than rates calculated from bulk chlorophyll disappearance. During weeks of high phytoplankton concentration, the copepods generally ate phytoplankton. However, they often rejected the most abundant phytoplankton species, particularly certain Thalassiosira spp., even though the rejected prey were often of the same genus and similar size to the preferred prey. It is speculated that this avoidance may be related to the possible deleterious effects that certain of these diatom species have on the reproductive success of these copepods. During weeks of medium to low phytoplankton concentration, the copepods selectively ate certain species of phytoplankton, and often had high electivity for microzooplankton. The selection mechanism must consist of active particle rejection most likely based on detection of surface chemical properties, since the diatoms that were selected were of the same genus, nearly the same size, and at lower numerical abundance than those cells that were avoided. The grazing choices made by these copepods may have important consequences for the overall ecosystem function within coastal and estuarine systems through changes in the transfer efficiency of energy to higher trophic levels.  相似文献   

13.
The Arabian Sea is subject to intense seasonality resulting from biannual monsoons, which lead to associated large particulate fluxes and an abundance of organic carbon, a potential food source at the seafloor for benthic detritivores. We used the stable isotopes of carbon and nitrogen alongside lipid analyses to examine potential food sources (particulate and sedimentary organic matter, POM and SOM respectively) in order to determine trophic linkages for the twelve most abundant megafaunal species (Pontocaris sp., Solenocera sp., Munidopsis aff. scobina, Actinoscyphia sp., Actinauge sp., Echinoptilum sp., Pennatula aff. grandis, Astropecten sp. Amphiura sp. Ophiura euryplax, Phormosoma placenta and Hyalinoecia sp.) at the Pakistan Margin between 140 and 1400 m water depth. This transect spans a steep gradient in oxygen concentrations and POM flux. Ranges of δ13C and δ15N values were narrow in POM and SOM (4‰ and 2‰ for δ13C and δ15N, respectively) with little evidence of temporal variability. Labile lipid compounds in SOM originating from phytoplankton did exhibit seasonal change in their concentrations at the shallowest sites, 140 and 300 m. Benthic megafauna had broad ranges in δ13C and δ15N (>10‰ and >8‰ for δ13C and δ15N, respectively) suggesting they occupy several trophic levels and utilize a variety of food sources. There is evidence for feeding niche separation between and within trophic groups. Lipid biomarkers in animal tissues indicate a mixture of food sources originating from both phytoplankton (C20:5(n-3) and C22:6(n-3)) and invertebrate prey (C20:1 and C22:1). Biomarkers originating from phytodetritus are conserved through trophic transfer to the predator/scavengers. Six species (Pontocaris sp., Solenocera sp., Actinoscyphia sp., Echinoptilum sp., Amphiura sp. and Hyalinoecia sp.) showed a significant biochemical response to the seasonal supply of food and probably adapt their trophic strategy to low food availability. Biotransformation of assimilated lipids by megafauna is evident from polyunsaturated fatty acid distributions, for example, Echinoptilum sp. converts C20:5(n-3) to C24:6(n-3).  相似文献   

14.
We report on the ability for luxury Fe uptake and the potential for growth utilizing intracellular Fe pools for 4 coastal centric diatom isolates and in situ phytoplankton assemblages, mainly composed of diatoms. Iron uptake of the diatom isolates and natural phytoplankton assemblages in the Oyashio region during spring blooms were prevented by adding hydroxamate siderophore desferrioxamine B (DFB). After the addition of DFB, intracellular Fe in the diatom isolates supported 2.4–4.2 cell divisions with 1.2–2.6 Chl a doublings. The intracellular Fe was primarily used for cell generation rather than Chl a production, leading to a reduction in the Chl a cell quota in the Fe-starved cells with time. The metabolic properties of the Fe-starved cells with their cell morphologies were different among species or genera. An on-deck incubation experiment also exhibited 1.9 cell divisions and 0.81 Chl a doublings of phytoplankton after the addition of DFB, also indicating the preference of cell generation over Chl a production. A decrease in the level of cellular Chl a, a main light-harvesting pigment in Fe-starved diatoms, may become a superior survival strategy to protect the cells from high irradiance that can cause photo-oxidative damages through photosynthesis. Such relatively low-Fe with high-light conditions could often occur in surface waters of the Oyashio region from spring to summer.  相似文献   

15.
夏季外海水入侵对大亚湾浮游植物群落结构的影响   总被引:1,自引:0,他引:1  
杨熙  谭烨辉 《海洋科学》2019,43(7):96-105
夏季大亚湾存在由粤东沿岸上升流所引起的外海水入侵现象,且入侵强度存在年际差异,作者利用大亚湾2004~2017年历年夏季航次调查数据,将弱入侵年份与强入侵年份进行对比分析,以探讨外海水入侵对大亚湾浮游植物群落结构的影响。结果显示,当外海水入侵由弱变强时,湾内水体理化特征发现显著变化,水体由高温低盐转变为低温高盐,N、P等营养盐含量出现下降。海水理化性质的改变导致了浮游植物群落结构的变化,硅藻、甲藻种类数以及浮游植物Shannon-wiener指数均出现升高;浮游植物总丰度和硅藻丰度下降,甲藻丰度变化不明显;常见浮游植物种类伪菱形藻属(Pseudo-nitzschiasp.)、角毛藻属(Chaetocerossp.)和叉角藻(Ceratiumfurca)丰度出现下降,而中肋骨条藻(Skeletonemacostatum)和菱形海线藻(Thalassionemanitzschioides)丰度出现升高;优势种由单一硅藻种类向硅藻和甲藻共为优势转变。此外,外海水入侵还会通过改变海水理化因子的空间分布以及湾内上层水体流向来影响浮游植物群落结构的空间分布。  相似文献   

16.
Bromoform released from phytoplankton and kelp in the ocean is the largest known carrier of bromine to the atmosphere. The photoproducts of atmospheric bromoform catalyse ozone depletion. Laboratory investigations were conducted into the link between nutrient limitation and bromoform production using axenic cultures of two warm-water diatoms (Chaetoceros neogracile and Phaeodactylum tricornutum). During exponential growth the bromoform production was 2 000–3 000 nmol bromoform (g Chl a)?1 h?1, i.e. 10–100 times higher than earlier values for temperate and cold-water diatoms. Bromoform production decreased down to zero under CO2 and nitrate limitation for both species. These results suggest that the bromoform production could be directly related to bromoperoxidase activity (and irradiance) only during exponential growth, whereas compounds other than bromoform might be formed under nutrient limitation.  相似文献   

17.
微藻培养过程中氮缺失有利于油脂和生物量的积累,然而不同氮源条件下微藻生长与生物量的研究有限,限制了生物油脂的相关研究。本文研究通过研究南极冰藻Chlamydomonas sp.ICE-L在不同氮源条件下的细胞生长与油脂积累,进一步探究其作为富集油脂微藻的潜力。研究发现:在含有NH4CL的培养基中,Chlamydomonas sp.ICE-L生长速率最大;在含有NH4NO3的条件下,获得了最大干重量0.28 g/L。最高油脂含量0.21 g/g是在缺氮条件下获得,同时得到干重0.24 g/L。在多不饱和脂肪酸的产出方面,NH4NO3和NH4Cl为氮源培养基时要好于缺氮和KNO3培养基,在NH4NO3和NH4Cl为氮源的培养条件下ICE-L胞内C18:3和C20:5的含量高。比较而言,缺氮和KNO3培养基时C16:0、C18:1和C18:2的含量要高。  相似文献   

18.
The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.  相似文献   

19.
We determined the distributions and fluxes of methyl chloride and methyl bromide in the East China Sea (ECS) and the Southern Yellow Sea (SYS) in November 2007. Methyl chloride and methyl bromide concentrations in the surface waters ranged from 47.1 to 163 pmol L?1 and from 0.70 to 9.82 pmol L? 1, with average values of 87.6 and 2.97 pmol L? 1, respectively. The distributions of the two methyl halides were clearly influenced by the Yangtze (Changjiang) River effluent and Kuroshio water, with high concentrations appearing in the coastal zone and low values occurring in the open waters. A positive linear correlation was observed between methyl chloride and methyl bromide concentration anomalies in the surface waters, suggesting that they may share some origins in this coastal area. However, no correlation was found between the two methyl halide concentration anomalies and chlorophyll a in the surface waters. The vertical profiles of the two methyl halides were characterized by the maxima in the upper mixed layer. Both gases were generally supersaturated in the surface seawater, with mean sea-to-air fluxes of methyl chloride and methyl bromide of 391 and 20.0 nmol m?2 d? 1, respectively.  相似文献   

20.
The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea. In the present study, the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea. Phytoplankton species composition and abundance data were accomplished by Uterm?hl method. Diatoms represented the greatest cellular abundance during the study period. In spring, the phytoplankton cell abundance ranged from 1.59×10~3 to 269.78×10~3 cell/L with an average of 41.80×10~3 cell/L, and Skeletonema sp. and Paralia sulcata was the most dominant species. In summer, the average phytoplankton cell abundance was 72.59×10~3 cell/L with the range of 1.78×10~3 to 574.96×10~3 cell/L, and the main dominant species was Pseudo-nitzschia pungens, Skeletonema sp., Dactyliosolen fragilissima and Chaetoceros curvisetus. The results of a redundancy analysis(RDA) showed that turbidity,temperature, salinity, pH, dissolved oxygen(DO), the ratio of dissolved inorganic nitrogen to silicate and SiO_4-Si(DIN/SiO_4-Si) were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号