首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sixteen surface microlayer samples and corresponding subsurface water samples were collected in the western North Atlantic during April–May 2003 to study the distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) and the factors influencing them. In the surface microlayer, high concentrations of DMS appeared mostly in the samples containing high levels of chlorophyll a, and a significant correlation was found between DMS and chlorophyll a concentrations. In addition, microlayer DMS concentrations were correlated with microlayer DMSPd (dissolved) concentrations. DMSPd was found to be enriched in the microlayer with an average enrichment factor (EF) of 5.19. However, no microlayer enrichment of DMS was found for most samples collected. Interestingly, the DMS production rates in the microlayer were much higher than those in the subsurface water. Enhanced DMS production in the microlayer was likely due to the higher concentrations of DMSPd in the microlayer. A consistent pattern was observed in this study in which the concentrations of DMS, DMSPd, DMSPp (particulate) and chlorophyll a in the microlayer were closely related to their corresponding subsurface water concentrations, suggesting that these constituents in the microlayer were directly dependent on the transport from the bulk liquid below. Enhanced DMS production in the microlayer further reinforces the conclusion that the surface microlayer has greater biological activity relative to the underlying water.  相似文献   

2.
海洋微藻除菌及除菌与自然带菌微藻生长特点比较   总被引:10,自引:1,他引:9  
林伟  陈騳  刘秀云 《海洋与湖沼》2000,31(6):647-652
于1995年4—12月在中国科学院海洋研究所进行微藻除菌及比较除菌与自然带菌微藻生长特点的研究。经平板培养排除霉菌后,利用组合抗生素(青霉素+卡那霉素+链霉素+庆大霉素)获得除菌球等鞭金藻、三角褐指藻及小球藻,对抗生素处理前后的微藻生长特点进行比较研究。结果表明,与未除菌时相比,除菌后的球等鞭金藻及小球藻不易老化(可保持良好悬浮30d以上);回加细菌于除菌藻,藻细胞下沉附底,说明细菌可促使微藻细胞老化。无维生素时,除菌后的球等鞭金藻生长更差,暗示未除菌的球等鞭金藻培养液内可能存在产(类)维生素细菌。除菌后三角褐指藻细胞形态发生一定变化,回加细菌后藻细胞形态有部分恢复。与未除菌时相比,除菌后三角褐指藻更能耐受高温(如30℃)。另外,某些抗生素能够刺激球等鞭金藻的生长。  相似文献   

3.
The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the seasurface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concentrations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the microlayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically significant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were significantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPp/chlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air flux of DMS from the study area was estimated to be 5.70 μmol/(m2·d), which highlights the effects of human impacts on DMS emission.  相似文献   

4.
于2012年7—9月现场测定了北极挪威海和格陵兰海区域海水二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP,分溶解态DMSPd和颗粒态DMSPp)的含量,研究了其空间分布格局及其影响因素,探讨了表层海水DMS的生物周转和去除途径。结果表明,表层海水DMS、DMSPd和DMSPp的平均浓度分别为5.36nmol/L、15.63nmol/L和96.73nmol/L,受挪威海流和北极深层水影响,表层海水二甲基硫化物浓度呈现出由低纬度向高纬度海域递减的趋势。DMSPd和DMSPp浓度与Chl a浓度均有显著的相关性,说明浮游植物生物量是影响挪威海和格陵兰海二甲基硫化物生产的重要因素。表层海水DMS生物生产和消费速率平均值分别为18.19nmol/(L·d)、15.67nmol/(L·d)。DMS微生物周转时间变化范围为0.03~1.80d,平均值为0.49d,DMS海-气周转时间是微生物消费时间的90倍,说明夏季挪威海和格陵兰海表层海水中DMS微生物消费过程是比海-气扩散更具优势的去除机制。  相似文献   

5.
本实验分别针对3株低温藻株:微拟球藻Nannochloropsis sp.ZL-12、四爿藻Tetraselmis chui ZL-33和小球藻Chlorellasp.ZL-45,3株中温藻株:球等鞭金藻Isochrysis galbana CCMM5001、等鞭金藻Isochrysis sp.CCMM5002和微拟球藻Nannochloropsis sp.CCMM7001,3株高温藻株:微拟球藻Nannochloropsis sp.JN1、绿色巴夫藻Pavlova viridis JN2和海洋小球藻Chlorellasp.JN3,研究了在通入0.03%(空气)、5%、10%3个CO2浓度梯度条件下的生长特性,同时考察了其总酯及中性脂的累积情况。结果显示,富碳培养有利于不同温度条件下9株藻株的生长,除微拟球藻Nannochloropsis sp.CCMM7001最适生长的CO2浓度为5%外,其余8株藻株最适生长的CO2浓度均为10%。在低温和高温条件下,6株海洋富油微藻在通入10%CO2时具有最大生物量产率,在中温条件下球等鞭金藻和等鞭金藻在通入10%CO2时获得最大生物量产率,而微拟球藻在通入5%时获得最大生物量产率,随着CO2浓度的增加,9株藻株的总脂含量和中性脂含量有明显提高。低温和中温藻株的总脂含量高于高温藻株的总脂含量,从中性脂的累积规律来看,9株藻株均在平台期的累积达到最大值,GC-MS分析结果表明,9株微藻适合制备生物柴油的C14~C18系脂肪酸相对含量在不同CO2条件下基本保持不变,维持在90%左右。实验结果显示,所研究的藻株作为富油高固碳优良藻株,具备用于海洋生物质能耦合CO2减排开发的潜力。  相似文献   

6.
Temporal distributions of dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were studied in the southern Yellow Sea(SYS) during April and September 2010. The mean concentrations(range) of DMS, dissolved and particulate DMSP(DMSPd and DMSPp) in the surface waters in spring are 1.69(0.48–4.92), 3.18(0.68–6.75)and 15.81(2.82–52.33) nmol/L, respectively, and those in autumn are 2.80(1.33–5.10), 5.45(2.19–11.30) and 30.63(6.24–137.87) nmol/L. On the whole, the distributions of DMS and DMSP in spring are completely different from those in autumn. In the central part of the SYS, the concentrations of DMS and DMSP in spring are obviously higher than those in autumn, but the opposite situation is found on the south of 34°N, which can be attributed to the differences in nutrients and phytoplankton biomass and composition between spring and autumn. Besides,the seasonal variations of water column stability and the Changjiang diluted water also have significant impact on the distributions of DMS and DMSP in spring and autumn on the south of 34°N. DMS and DMSPp concentrations coincide well with chlorophyll a(Chl a) levels in the spring cruise, suggesting that phytoplankton biomass may play an important role in controlling the distributions of DMS and DMSPp in the study area. Annual DMS emission rates range from 0.015 to 0.033 Tg/a(calculated by S), respectively, using the equations of Liss and Merlivat(1986) and Wanninkhof(1992). This result implies a significant relative contribution of the SYS to the global oceanic DMS fluxes.  相似文献   

7.
Spatial variations in dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) were surveyed in the surface microlayer and in the subsurface waters of the low productivity South China Sea in May 2005. Overall, average subsurface water concentrations of DMS and DMSP of dissolved (DMSPd) and particulate (DMSPp) fractions were 1.74 (1.00-2.50), 3.92 (2.21-6.54) and 6.06 (3.40-8.68) nM, respectively. No enrichment in DMS and DMSPp was observed in the microlayer. In contrast, the microlayer showed a DMSPd enrichment, with an average enrichment factor (EF, defined as the ratio of the microlayer concentration to subsurface water concentration) of 1.40. In the study area, none of the sulfur components were correlated with chlorophyll a. An important finding in this study was that DMS, DMSP and chlorophyll a concentrations in the surface microlayer were respectively correlated with those in the subsurface water, suggesting a close linkage between these two water bodies. The ratios of DMS:Chl-a and DMSPp:Chl-a showed a gradually increasing trend from North to South. This might be due to changes in the proportion of DMSP producers in the phytoplankton community with the increased surface seawater temperature. A clear diurnal variation in the DMS and DMSP concentrations was observed at an anchor station with the highest concentrations appearing during the day and the lowest concentrations during the night. The higher DMS and DMSP concentrations during daytime might be attributed to the light-induced increase in both algal synthesis and exudation of DMSP and biological production of DMS. The mean flux of DMS from the investigated area to the atmosphere was estimated to be 2.06 micromo lm(-2)d(-1). This low DMS emission flux, together with the low DMS surface concentrations was attributed to the low productivity in this sea.  相似文献   

8.
The major source of reduced sulfur in the remote marine atmosphere is the biogenic compound dimethylsulfide (DMS), which is ubiquitous in the world's oceans and released through food web interactions. Relevant fluxes and concentrations of DMS, its phytoplankton-produced precursor, dimethylsulfoniopropionate (DMSP) and related parameters were measured during an intensive Lagrangian field study in two mesoscale eddies in the Sargasso Sea during July–August 2004, a period characterized by high mixed-layer DMS and low chlorophyll—the so-called ‘DMS summer paradox’. We used a 1-D vertically variable DMS production model forced with output from a 1-D vertical mixing model to evaluate the extent to which the simulated vertical structure in DMS and DMSP was consistent with changes expected from field-determined rate measurements of individual processes, such as photolysis, microbial DMS and dissolved DMSP turnover, and air–sea gas exchange. Model numerical experiments and related parametric sensitivity analyses suggested that the vertical structure of the DMS profile in the upper 60 m was determined mainly by the interplay of the two depth-variable processes—vertical mixing and photolysis—and less by biological consumption of DMS. A key finding from the model calibration was the need to increase the DMS(P) algal exudation rate constant, which includes the effects of cell rupture due to grazing and cell lysis, to significantly higher values than previously used in other regions. This was consistent with the small algal cell size and therefore high surface area-to-volume ratio of the dominant DMSP-producing group—the picoeukaryotes.  相似文献   

9.
UV-B辐射增强对壶状臂尾轮虫摄食的影响   总被引:4,自引:0,他引:4  
研究了UV-B辐射条件下壶状臂尾轮虫(Brachionusurceus)对6株海洋微藻:小球藻(Chlorellasp.)、绿色巴夫藻(Pavlovauiridis)、扁藻(Tetraselmischuii)、球等鞭金藻8701(IsochrysisgalbanaPark8701)、牟氏角毛藻(Chaetocerosmuelleri)和小新月菱形藻(Nitzschiaclostertum)的室内摄食实验。结果表明,UV-B辐射增强对壶状臂尾轮虫的摄食有显著的抑制作用。与对照组相比,壶状臂尾轮虫对给定饵料单胞藻的滤水率和摄食率都随UV-B辐射剂量的增大而显著减小(P<0.05)。而且壶状臂尾轮虫对每一种饵料单胞藻的滤水率和摄食率是不相同的,这说明壶状臂尾轮虫对饵料单胞藻是有选择性的。  相似文献   

10.
本研究首次探究了西太平洋雅浦海沟北段从表层到超深渊海水中甲烷(CH4)及二甲基硫(DMS)的前体物质二甲基巯基丙酸内盐(DMSP)的浓度变化情况。结果表明:雅浦海沟海水甲烷浓度变化范围为1.49~3.87 nmol/L。其上层海水甲烷平均浓度最高,有明显的次表层极大现象。雅浦海沟氧最小层海水的甲烷平均浓度最低;在500~1 000 m中层水中甲烷浓度有一定程度的增大,1 000 m以下至底层甲烷浓度继续升高。研究海区溶解态DMSP(DMSPd)和总DMSP(DMSPt)平均浓度的垂直变化随深度呈先增大后减小趋势,颗粒态DMSP(DMSPp)的平均浓度随深度呈波动式变化,在中层达到最大。雅浦海沟CH4和DMSP浓度垂直变化受浮游生物、微生物、光照、温度、压力、大洋环流等的复杂影响。在真光层海水中,CH4浓度与DMSPd、DMSPp和DMSPt浓度表现为负相关关系,在200 m至底层海水中,CH4浓度与DMSPd、DMSPp和DMSPt浓度表现为正相关关系,显示光照条件是造成雅浦海沟不同深度海水CH4和DMSP浓度相关性差异的关键因素。  相似文献   

11.
以胶州湾及青岛近海为研究区域,利用吹扫-捕集气相色谱法研究了二甲基硫(DMS)和二甲巯基丙酸(DMSP,分为溶解态DMSPd和颗粒态DMSPp)在微表层与次表层中的浓度以及它们在微表层中的富集行为。结果表明,DMS、DMSPd和DMSPp在微表层中的浓度高于次表层,它们在微表层中的富集因子分别为1.17、1.84和1.51。研究发现,DMS及DMSPp浓度与叶绿素a(Chl-a)浓度有很好的相关性,但它们的周日变化与Chl-a并不完全同步。DMS/Chl-a和DMSPp/Chl-a的比值在次表层和微表层分别为4.35、13.47mmol/g和3.99、15.88mmol/g。胶州湾及青岛近海生态环境受人为活动干扰严重,使本海域DMS含量较高,从而贡献出较大的DMS海-气通量。  相似文献   

12.
We adapted the dilution technique to study microzooplankton grazing of algal dimethylsulfoniopropionate (DMSP) vs. Chl a, and to estimate the impact of microzooplankton grazing on dimethyl sulfide (DMS) production in the Labrador Sea. Phytoplankton numbers were dominated by autotrophic nanoflagellates in the Labrador basin, but diatoms and colonial Phaeocystis pouchetii contributed significantly to phytomass at several high chlorophyll stations and on the Newfoundland and Greenland shelfs. Throughout the region, growth of algal Chl a and DMSP was generally high (0.2–1 d1), but grazing rates were lower and more variable, characteristic of the early spring bloom period. Production and consumption of Chl a vs. DMSP followed no clear pattern, and sometimes diverged greatly, likely because of their differing distributions among algal prey taxa and size class. In several experiments where Phaeocystis was abundant, we observed DMS production proportional to grazing rate, and we found clear evidence of DMS production by this haptophyte following physical stress such as sparging or filtration. It is possible that grazing-activated DMSP cleavage by Phaeocystis contributes to grazer deterrence: protozoa and copepods apparently avoided healthy colonies (as judged by relative growth and grazing rates of Chl a and DMSP), and grazing of Phaeocystis was significant only at one station where cells were in poor condition. Although we hoped to examine selective grazing on or against DMSP-containing algal prey, the dilution technique cannot differentiate selective ingestion and varying digestion rates of Chl a and DMSP. We also found that the dilution method alone was poorly suited for assessing the impact of grazing on dissolved sulfur pools, because of rapid microbial consumption and the artifactual release of DMSP and DMS during filtration. Measuring and understanding the many processes affecting organosulfur cycling by the microbial food web in natural populations remain a technical challenge that will likely require a combination of techniques to address.  相似文献   

13.
为探讨UV-B辐射对海洋生态系统的影响,研究了短期(2d)UV-B辐射对金藻8701、小新月菱形藻和亚心形扁藻3种藻单养的敏感性比较以及长期(21d)UV-B辐射对3种藻混养的种间竞争性平衡的影响。实验表明,(1)UV-B条件下。单养和混养情况下,最敏感的藻是金藻8701,小新月菱形藻次之,亚心形扁藻最不敏感;(2)增强的UV-B为对UV-B具有高耐受力的亚心形扁藻提供了竞争优势,使种间竞争平衡向着有利于亚心形扁藻的方向发展,到第21天,UV-B辐射(2.88J/m^2,5.76J/m^2)的处理组中,亚心形扁藻成为优势种。  相似文献   

14.
刘淑雅  陈楠生 《海洋科学》2021,45(4):170-188
胶州湾是我国的一个典型近海海湾,也是近海生态系统的缩影。历史上胶州湾海域赤潮频发,因此也是研究赤潮暴发机制(包括赤潮物种组成、时空动态变化及对环境因子响应)的理想实验场所。迄今,几代科学家对胶州湾浮游植物和赤潮物种开展了长期而系统的调查研究,获得了大量的研究成果。为了系统跟踪胶州湾海域浮游植物群落组成,尤其是赤潮物种的组成变化,本文对近84年间(1936—2019年)胶州湾海域涉及浮游植物调研的54个调查数据结果进行了系统的统计和比较分析。文献共报道了549种浮游植物,包括硅藻326种、甲藻164种、绿藻21种、金藻9种、隐藻9种、淡色藻6种、定鞭藻5种、蓝藻3种、黄藻3种、下睫虫2种、裸藻1种和针胞藻1种。其中只有不到一半(40.29%)的浮游植物的全长18S rDNA序列得到解析,表明分子标记数据库需要继续完善,促进宏条形码分析的有效应用。胶州湾海域的优势浮游植物随时间的推移发生了较大变化,但是报道的甲藻与硅藻物种数的比例没有显著的变化。统计表明,研究者在胶州湾共鉴定到153种赤潮物种,包括硅藻79种、甲藻67种、定鞭藻2种、金藻2种、淡色藻1种、黄藻1种和针胞藻1种。胶州湾海域的典型优势浮游植物均为赤潮物种,包括中肋骨条藻、短角弯角藻、旋链角毛藻、加氏星杆藻、日本星杆藻、星脐圆筛藻和尖刺拟菱形藻,其中短角弯角藻和中肋骨条藻是胶州湾海域的"常驻"赤潮物种。本文通过系统综述胶州湾浮游植物和赤潮物种的生物多样性,为利用宏条形码和宏基因组等方法跟踪研究胶州湾和其他海域的浮游植物和赤潮物种的演化奠定了基础。  相似文献   

15.
The impact of in situ iron fertilisation on the production of particulate dimethylsulphoniopropionate (DMSPp) and its breakdown product dimethyl sulphide (DMS) was monitored during the SOLAS air-sea gas exchange experiment (SAGE). The experiment was conducted in the high nitrate, low chlorophyll (HNLC) waters of the sub-Antarctic Southern Ocean (46.7°S 172.5°E) to the south-east of New Zealand, during March-April, 2004. In addition to monitoring net changes in the standing stocks of DMSPp and DMS, a series of dilution experiments were used to determine the DMSPp production and consumption rates in relation to increased iron availability. In contrast to previous experiments in the Southern Ocean, DMS concentrations decreased over the course of the 15-d iron-fertilisation experiment, from an integrated volume-specific concentration in the mixed layer on day 0 of 0.78 nM (measured values 0.65-0.91 nM) to 0.46 nM (measured values 0.42-0.47 nM) by day 15, in parallel with the surrounding waters. DMSPp, chlorophyll a and the abundance of photosynthetic picoeukaryotes exhibited indiscernible or only moderate increases in response to the raised iron availability, despite an obvious physiological response by the phytoplankton. High specific growth rates of DMSPp, equivalent to 0.8-1.2 doublings d−1, occurred at the simulated 60% light level of the dilution experiments. Despite the high production rates, DMSPp accumulation was suppressed in part by microzooplankton grazers who consumed between 61% d−1 and 126% d−1 of the DMSPp production. Temporal trends in the rates of production and consumption illustrated a close coupling between the DMSP-producing phytoplankton and their microzooplankton grazers. Similar grazing and production rates were observed for the eukaryotic picophytoplankton that dominated the phytoplankton biomass, partial evidence that picoeukaryotes contributed a substantial proportion of the DMSP synthesis. These rates for DMSPp and picoeukaryotes were considerably higher than for chlorophyll a, indicating higher cycling rates of the DMSP-producing taxa than for the bulk phytoplankton community. When compared to the total phytoplankton community, there was no evidence of selection against the DMSP-containing phytoplankton by the microzooplankton grazers; the opposite appeared to be the case. SAGE demonstrated that increased iron availability in the HNLC waters of the Southern Ocean does not invariably lead to enhanced DMS sea-air flux. The potential suppression of DMSPp accumulation by grazers needs to be taken into account in future attempts to elevate DMS emission through in situ iron fertilisation and in understanding the hypothesised link between levels of Aeolian iron deposition in the Southern Ocean, DMS emission and global albedo.  相似文献   

16.
Twenty-eight sea surface microlayer samples, along with subsurface bulk water samples were collected in Funka Bay, Japan during October 2000–March 2001 and analyzed for dimethylsulfoniopropionate, dissolved (DMSPd) and particulate (DMSPp), and chlorophyll a. The aim of the study was to examine the extent of enrichment of DMSP in the microlayer and its relationship to chlorophyll a, as well as the production rate of dimethylsulfide (DMS) from DMSP and the factors that influence this. The enrichment factor (EF) of DMSPd in the surface microlayer ranged from 0.81 to 4.6 with a mean of 1.85. In contrast, EF of DMSPp in the microlayer varied widely from 0.85–10.5 with an average of 3.21. Chlorophyll a also appeared to be enriched in the microlayer relative to the subsurface water. This may be seen as an important cause of the observed enrichment of DMSP in the microlayer. The concentrations of DMSPp in the surface microlayer showed a strong temporal variation, basically following the change in chlorophyll a levels. Moreover, the microlayer concentrations of DMSPp were, on average, 3-fold higher than the microlayer concentrations of DMSPd and there was a significant correlation between them. Additionally, there was a great variability in the ratios of DMSPp to chlorophyll a over the study period, reflecting seasonal variation in the proportion of DMSP producers in the total phytoplankton assemblage. It is interesting that the production rate of DMS was enhanced in the microlayer and this rate was closely correlated with the microlayer DMSPd concentration. Microlayer enrichment of chlorophyll a and higher DMS production rate in the microlayer provide favorable evidence supporting the view that the sea surface microlayer has a greater biological activity than the underlying water.  相似文献   

17.
黄、渤海二甲基硫化物的浓度分布与迁移转化速率研究   总被引:2,自引:1,他引:1  
于2015年8-9月对黄、渤海海域进行现场调查,研究了海水中二甲基硫(DMS)、β-二甲巯基丙酸内盐(DMSP)、二甲亚砜(DMSO)的浓度分布、相互关系及影响因素,测定了DMS的生物生产与消耗、光化学氧化和海-气扩散速率,对DMS的迁移转化速率进行综合评价。结果表明:表层海水中DMS、溶解态DMSP(DMSPd)、颗粒态DMSP(DMSPp)、溶解态DMSO(DMSOd)和颗粒态DMSO(DMSOp)浓度的平均值分别为(6.12±3.01)nmol/L、(6.03±3.45)nmol/L、(19.47±9.15)nmol/L、(16.85±8.34)nmol/L和(14.37±7.47)nmol/L,整体呈现近岸高远海低,表层高底层低的趋势。DMS、DMSPd和DMSOp浓度与叶绿素(Chl a)浓度存在显著的相关性。表层海水中DMS光氧化速率顺序为:kUVA > kUVB > k可见,其中UVA波段占光氧化的70.8%。夏季黄、渤海微生物消耗、光氧化及海-气扩散对DMS去除的贡献率分别为32.4%、34.5%和33.1%,表明3种去除途径作用相当。黄、渤海DMS海-气通量变化范围为0.79~48.45 μmol/(m2·d),平均值为(11.87±11.35)μmol/(m2·d)。  相似文献   

18.
We report here dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) levels as a function of plankton communities and abiotic factors over a 12-month cycle in the Mediterranean oligotrophic coastal and shallow ecosystem of Niel Bay (N.W. Mediterranean Sea, France). Total particulate DMSP (DMSPp) and DMS concentrations were highly seasonal, peaking during a spring (April) bloom at 8.9 nM and 73.9 nM, respectively. Significant positive correlations were found between total DMSPp concentration and the abundance or biomass of the dinoflagellate Prorocentrum compressum (Spearman's rank correlation test: r = 0.704; p = 0.011). Similarly, DMS concentrations peaked during the development of blooms of P. compressum and Gymnodinium sp. There seemed to be a positive relationship between the chlorophyll a to pheopigment ratio and DMS concentrations, suggesting that DMS was released during phytoplankton growth. High DMS levels recorded in the shallow Niel Bay may also result from the activity of benthic macroalgae, and/or macrophytes such as Posidonia spp., or the resuspension of sulfur species accumulating in sediments. The fractionation of particulate DMSP into three size classes (>90 μm, 5–90 μm and 0.2–5 μm) revealed that 5–90 μm DMSP-containing particles made the greatest contribution to the total DMSPp pool (annual mean contribution = 62%), with a maximal contribution in April (96%). This size class consisted mainly of dinoflagellates (annual mean contribution = 68%), with P. compressum and Gymnodinium sp. the predominant species, together accounting for up to 44% of the phytoplankton present. The positive correlation between DMSP concentration in the 5–90 μm size class and the abundance of P. compressum (Spearman's rank correlation test: r = 0.648; p = 0.023) suggests that this phytoplankton species would be the major DMSP producer in Niel Bay. The DMSP collected in the >90 μm fraction was principally associated with zooplankton organisms, dominated by copepods (nauplii and copepodites). DMSP>90, not due to a specific zooplankton production, resulted from the phytoplankton cells ingested during grazing. The concomitant peaks of DMS concentration and zooplankton abundance suggest that zooplankton may play a role in releasing DMSP and/or DMS through sloppy feeding.  相似文献   

19.
In April 1997 and 1998 the significance of sedimentation as a sink for epipelagic dimethylsulphoniopropionate (DMSP) production and as a source for marine sediments was reassessed using a newly designed sediment trap. The behaviour of the traps in immersion was monitored continuously and the collection efficiency was evaluated with 234Th measurements. Net DMS(P) fluxes were corrected for some physical and biological losses during the whole sedimentation process providing reliable estimates of gross DMSP fluxes. It is shown that daily losses by sedimentation account for between 0.1% and 16% of seawater particulate DMSP (DMSPp) standing stocks, and between 3% and 75% of daily DMSPp production. In the Malangen fjord we observed temporal increases of DMSP production and standing stocks which resulted also in increases of DMSP vertical fluxes and DMS(P) concentrations at the sediment surface. This result illustrates how tight the coupling can be between pelagos and benthos, and confirms that DMS(P) concentration in the sediment was a reliable diagnostic indicator of vertical export from overlying waters in Malangen fjord. In Ullsfjord, however, DMS(P) concentrations in the sediment were poorly indicators of Phaeocystis pouchetii export during the early stage of growth of a bloom. The high load of DMS(P) in Balsfjord's sediments could neither be attributed to local vertical sedimentation nor to short-term lateral advection of fresh DMSP-containing phytoplanktonic material, and provides indication that this tracer sometimes also can be misleading. The highest loads of DMS(P) in sediments and the fastest rates of sedimentation occurred in the Southern Bight of the North Sea.  相似文献   

20.
Dimethylsulfide (DMS) is a volatile sulfur compound produced by the marine biota. The flux of DMS to the atmosphere may act on climate via aerosol formation. It is therefore important to improve our understanding of the processes that regulate sea surface DMS concentrations for eventual inclusion into climate models. In order to simulate the dynamics of DMS concentrations in the mixed layer, a model of DMS production was developed and calibrated against a 1 year time-series of DMS and DMSP (dissolved and particulate) data collected in the Sargasso Sea at Hydrostation ‘S’. The model reproduces the observed divergence between the seasonal cycles of particulate DMSP, the DMS precursor produced by algae, and DMS produced through the microbial loop from the cleavage of dissolved DMSP. DMSPp (particulate) reaches its maximum in the spring whereas DMSPd (dissolved) and DMS reach maximum concentrations in summer. Several parameters had to vary seasonally and with depth in order to reproduce the data, pointing out the importance of physiological and structural changes in the plankton food web. These parameters include the intracellular S(DMSp):N ratio, the C:Chl ratio and the sinking rates of phytoplankton and detritus. For the Sargasso Sea, variations in the solar zenithal angle, which co-vary with the seasonal variations in the depth of the mixed layer, proved to be a convenient signal to drive the seasonal variation in the structure and dynamics of the plankton. Variations of the temperature and photosynthetically active radiation also help to reproduce the short-term variability of the annual S cycle. Results from a sensitivity analysis show that variations in DMSPp are dependent mostly on parameters controlling phytoplankton biomass, whereas DMS is dependent mostly on variables controlling phytoplankton productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号