首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the sea-surface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concentrations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the microlayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically signi.cant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were signi.cantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPp/chlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air .ux of DMS from the study area was estimated to be 5.70 μmol/(m2 ·d), which highlights the e.ects of human impacts on DMS emission.  相似文献   

2.
Seasonal and spatial distributions of dissolved and particulate dimethylsulfoxide(DMSOd,DMSOp)were measured in the East China Sea and the Yellow Sea during March–April 2011 and October–November 2011.The concentrations of DMSOd and DMSOp in the surface water were 20.6(5.13–73.8)and 8.90(3.75–29.6)nmol/L in spring,and 13.4(4.17–42.7)and 8.18(3.44–22.6)nmol/L in autumn,respectively.Both DMSOd and DMSOp concentrations revealed similar seasonal changes with higher values occurring in spring,mainly because of the higher phytoplankton biomass observed in spring.Moreover,the ratios of DMSOp/chlorophyll a also exhibited an apparent seasonal change with higher values in autumn(35.7 mmol/g)and lower values in spring(23.4 mmol/g),thereby corresponding with the seasonal variation in the proportion of DMSO producers in the phytoplankton community between spring and autumn.In addition,DMSOd and DMSOp concentrations in the surface seawater revealed obvious diurnal variations with the maxima appearing in the afternoon.  相似文献   

3.
The distributions of DMS and its precursor dimethylsulfoniopropionate, in both dissolved (DMSPd) and particulate fractions (DMSPp) were determined in the seasurface microlayer and corresponding subsurface water of the Jiaozhou Bay, China and its adjacent area in May and August 2006. The concentrations of all these components showed a clear seasonal variation, with higher concentrations occurring in summer. This can be mainly attributed to the higher phytoplankton biomass observed in summer. Simultaneously, the enrichment extents of DMSPd and DMSPp in the microlayer also exhibited seasonal changes, with higher values in spring and lower ones in summer. Higher water temperature and stronger radiant intensity in summer can enhance their solubility and photochemical reaction in the microlayer water, reducing their enrichment factors (the ratio of concentration in the microlayer to that in the corresponding subsurface water). A statistically significant relationship was found between the microlayer and subsurface water concentrations of DMS, DMSP and chlorophyll a, demonstrating that the biogenic materials in the microlayer come primarily from the underlying water. Moreover, our data show that the concentrations of DMSPp and DMS were significantly correlated with the levels of chlorophyll a, indicating that phytoplankton biomass might play an important role in controlling the distributions of biogenic sulfurs in the study area. The ratios of DMS/chlorophyll a and DMSPp/chlorophyll a varied little from spring to summer, suggesting that there was no obvious change in the proportion of DMSP producers in the phytoplankton community. The mean sea-to-air flux of DMS from the study area was estimated to be 5.70 μmol/(m2·d), which highlights the effects of human impacts on DMS emission.  相似文献   

4.
The production of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) by marine microalgae was investigated to elucidate more on the role of marine phytoplankton in ocean-atmosphere interactions in the global biogeochemical sulfur cycle.Axenic laboratory cultures of four marine microalgae–Isochrysis galbana 8701,Pavlova viridis,Platymonas sp.and Chlorella were tested for DMSP production and conversion into DMS.Among these four microalgae,Isochrysis galbana 8701 and Pavlova viridis are two species of Haptophyta,while Chlorella and Platymonas sp.belong to Chlorophyta.The results demonstrate that the four algae can produce various amounts of DMS(P),and their DMS(P) production was species specific.With similar cell size,more DMS was released by Haptophyta than that by Chlorophyta.DMS and dissolved DMSP (DMSPd) concentrations in algal cultures varied significantly during their life cycles.The highest release of DMS appeared in the senescent period for all the four algae.Variations in DMSP concentrations were in strong compliance with variations in algal cell densities during the growing period.A highly significant correlation was observed between the DMS and DMSPd concentrations in algal cultures,and there was a time lag for the variation trend of the DMS concentrations as compared with that of the DMSPd.The consistency of variation patterns of DMS and DMSPd implies that the DMSPd produced by phytoplankton cells has a marked effect on the production of DMS.In the present study,the authors’ results specify the significant contribution of the marine phytoplankton to DMS(P) production and the importance of biological control of DMS concentrations in oceanic water.  相似文献   

5.
The East Sea(Sea of Japan)is a marginal,semi-closed sea in the northwestern Pacific.The Ulleung Basin area,which is located near the subpolar front of the East Sea,is known to have high primary production and good fisheries in spring season.After episodic wind-driven events during the spring of 2017,horizontal and vertical profiles of physical chemical biological factors were investigated at 29 stations located in the Ulleung Basin area.In addition,growth responses of phytoplankton communities to nutrient additions were evaluated by bioassay experiments to understand the fluctuation of phytoplankton biomass.Because of strong northwestern wind,phytoplankton biomass was scattered and upwelling phenomenon might be suppressed in this season.The phytoplankton abundances in the coastal stations were significantly higher than offshore and island stations.In contrast,the nutrient and chlorophyll a(Chl a)concentrations and the phytoplankton biomass were quite low in all locations.Bacillariophyceae was dominated group(>75.1%for coastal,40.0%for offshore and 43.6%for island stations).In the algal bioassays,the phytoplankton production was stimulated by N availability.The in vivo Chl a values in the+N and+NP treatments were significantly higher than the values in the control and the+P treatments.Based on the field survey,the higher nutrients in coastal waters affected the growth of diatom assemblages,however,little prosperity of phytoplankton was observed in the offshore waters despite the injection of sufficient nutrients in bioassay experiments.The growth of phytoplankton depended on the initial cell density.All of results indicated that a dominant northwestern wind led to a limited nutrients condition at euphotic layers,and the low level of biomass supply from the coasts resulted in low primary production.Both supplying nutrients and introducing phytoplankton through the currents are critical to maintain the high productivity in the Ulleung Basin area of the East Sea.  相似文献   

6.
The southern Changjiang River Estuary has attracted considerable attention from marine scientists because it is a highly biologically active area and is biogeochemically significant.Moreover,land-ocean interactions strongly impact the estuary,and harmful algal blooms(HABs) frequently occur in the area.In October 2010 and May 2011,water samples of chromophoric dissolved organic matter(CDOM) were collected from the southern Changjiang River Estuary.Parallel factor analysis(PARAFAC) was used to assess the samples' CDOM composition using excitation-emission matrix(EEM) spectroscopy.Four components were identified:three were humic-like(C1,C2 and C3) and one was protein-like(C4).Analysis based on spatial and seasonal distributions,as well as relationships with salinity,Chl a and apparent oxygen utilization(AOU),revealed that terrestrial inputs had the most significant effect on the three humic-like Components C1,C2 and C3 in autumn.In spring,microbial processes and phytoplankton blooms were also important factors that impacted the three components.The protein-like Component C4 had autochthonous and allochthonous origins and likely represented a biologically labile component.CDOM in the southern Changjiang River Estuary was mostly affected by terrestrial inputs.Microbial processes and phytoplankton blooms were also important sources of CDOM,especially in spring.The fluorescence intensities of the four components were significantly higher in spring than in autumn.On average,C1,C2,C3,C4 and the total fluorescence intensity(TFI) in the surface,middle and bottom layers increased by123%–242%,105%–195%,167%–665%,483%–567% and 184%–245% in spring than in autumn,respectively.This finding corresponded with a Chl a concentration that was 16–20 times higher in spring than in autumn and an AOU that was two to four times lower in spring than in autumn.The humification index(HIX) was lower in spring that in autumn,and the fluorescence index(FI) was higher in spring than in autumn.This result indicated that the CDOM was labile and the biological activity was intense in spring.  相似文献   

7.
The coastal ecosystems are highly sensitive to climate change and are usually influenced by variations in phytoplankton communities and water physiochemical factors. In the present study, the phytoplankton community, chlorophyll a(Chl a) and their relationships with environmental variables and dimethylsulfide(DMS) and dimethylsulfoniopropionate(DMSP) were investigated in spring 2017(March 24 to April 16) in the East China Sea(26.0°–33.0°N, 120.0°–128.0°E) and southern Yellow Sea(31.0°–36.0°N, 12...  相似文献   

8.
A chemoreduction-purge-and-trap gas chromatographic method has been developed for the determination of trace dimethylsulfoxide (DMSO) in seawater. In the analysis procedure, DMSO was first reduced to dimethylsufide (DMS) by sodium borohydride and then the produced DMS was analyzed using the purge-and-trap technique coupled with gas chromatographic separation and flame photometric detection. Under the optimum conditions, 97% DMSO was reduced in the standard solution samples with a standard deviation of 5% (n=5). The detection limit of DMSO was 2.7 pmol of sulfur, corresponding to a concentration of 0.75 nmol/L for a 40 ml sample. This method was applied to determine the dissolved DMSO (DMSOd) and particulate DMSO (DMSOp) concentrations in the surface seawater of the Jiaozhou Bay, and the results showed that the DMSOd and DMSOp concentrations varied from 16.8 to 921.1 nmol/L (mean:165.2 nmol/L) and from 8.0 to 162.4 nmol/L (mean:57.7 nmol/L), respectively. The high concentrations of DMSOp were generally found in productive regions. Consequently, a significant correlation was found between the concentrations of DMSOp and chlorophyll a, suggesting that phytoplankton biomass might play an important role in controlling the distribution of DMSOp in the bay. Moreover, in the study area, the concentrations of DMSOd were significantly correlated with the levels of DMS, implying that the production of DMSOd is mainly via photochemical and biological oxidation of DMS.  相似文献   

9.
春、秋季南黄海浮游纤毛虫丰度及生物量的分布差异   总被引:1,自引:0,他引:1  
Seasonal variation of marine plankton spatial distribution is important in understanding the biological processes in the ocean.In this study,we studied spatial distribution of planktonic ciliate abundance and biomass in the central deep area(station depth greater than 60 m) and the coastal shallow area(station depth less than 60 m) of the southern Yellow Sea(32°–36.5°N,121°–125°E) in spring(April) and autumn(October–November) of 2006.Our results showed that both ciliate abundance and biomass in the surface waters were higher in spring((1 490±2 336)ind./L;(4.11±7.81) μg/L) than in autumn((972±823) ind./L;(1.11±1.18) μg/L,calculated by carbon).Ciliate abundance and biomass in the surface waters of the coastal shallow area were similar in spring and autumn.However,in the central deep area,those values were much higher in spring((1 878±2 893) ind./L;(5.99±10.10)μg/L) than in autumn((738±373) ind./L;(0.74±0.76) μg/L).High values of ciliate abundance and biomass occurred in the central deep area in spring and in the coastal shallow area in autumn.Mixotrophic ciliate Laboea strobila was abundant in the central deep area in spring,when a phytoplankton bloom occurred.However,in autumn,L.strobila was abundant in the coastal shallow area.Boreal tintinnid Ptychocyli obtusa was found in spring.Both L.strobila and P.obtusa were concentrated in the surface waters when their abundance was more than 1 000 ind./L.Peaks of these species were in the subsurface waters when their abundance was less than 400 ind./L.This study showed that both high abundance and biomass of ciliates occurred in different areas in southern Yellow Sea seasonally.  相似文献   

10.
东亚边缘海区浮游植物春华的纬向与年际变化   总被引:1,自引:1,他引:0  
Combined studies of latitudinal and interannual variations of annual phytoplankton bloom peak in East Asian marginal seas(17°–58°N, including the northern South China Sea(SCS), Kuroshio waters, the Sea of Japan and the Okhotsk Sea) are rarely. Based on satellite-retrieved ten-year(2003–2012) median timing of the annual Chlorophyll a concentration(Chl a) climax, here we report that this annual spring bloom peak generally delays from the SCS in January to the Okhotsk Sea in June at a rate of(21.20±2.86) km/d(decadal median±SD). Spring bloom is dominant feature of the phytoplankton annual cycle over these regions, except for the SCS which features winter bloom. The fluctuation of the annual peak timing is mainly within ±48 d departured from the decadal median peak date, therefore this period(the decadal median peak date ±48 d) is defined as annual spring bloom period. As sea surface temperature rises, earlier spring bloom peak timing but decreasing averaged Chl a biomass in the spring bloom period due to insufficient light is evident in the Okhotsk Sea from 2003 to 2012. For the rest of three study domains, there are no significant interannual variance trend of the peak timing and the averaged Chl a biomass. Furthermore this change of spring phytoplankton bloom timing and magnitude in the Okhotsk Sea challenges previous prediction that ocean warming would enhance algal productivity at high latitudes.  相似文献   

11.
于2012年7—9月现场测定了北极挪威海和格陵兰海区域海水二甲基硫(DMS)及其前体物质二甲巯基丙酸内盐(DMSP,分溶解态DMSPd和颗粒态DMSPp)的含量,研究了其空间分布格局及其影响因素,探讨了表层海水DMS的生物周转和去除途径。结果表明,表层海水DMS、DMSPd和DMSPp的平均浓度分别为5.36nmol/L、15.63nmol/L和96.73nmol/L,受挪威海流和北极深层水影响,表层海水二甲基硫化物浓度呈现出由低纬度向高纬度海域递减的趋势。DMSPd和DMSPp浓度与Chl a浓度均有显著的相关性,说明浮游植物生物量是影响挪威海和格陵兰海二甲基硫化物生产的重要因素。表层海水DMS生物生产和消费速率平均值分别为18.19nmol/(L·d)、15.67nmol/(L·d)。DMS微生物周转时间变化范围为0.03~1.80d,平均值为0.49d,DMS海-气周转时间是微生物消费时间的90倍,说明夏季挪威海和格陵兰海表层海水中DMS微生物消费过程是比海-气扩散更具优势的去除机制。  相似文献   

12.
Spatial variations in dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) were surveyed in the surface microlayer and in the subsurface waters of the low productivity South China Sea in May 2005. Overall, average subsurface water concentrations of DMS and DMSP of dissolved (DMSPd) and particulate (DMSPp) fractions were 1.74 (1.00-2.50), 3.92 (2.21-6.54) and 6.06 (3.40-8.68) nM, respectively. No enrichment in DMS and DMSPp was observed in the microlayer. In contrast, the microlayer showed a DMSPd enrichment, with an average enrichment factor (EF, defined as the ratio of the microlayer concentration to subsurface water concentration) of 1.40. In the study area, none of the sulfur components were correlated with chlorophyll a. An important finding in this study was that DMS, DMSP and chlorophyll a concentrations in the surface microlayer were respectively correlated with those in the subsurface water, suggesting a close linkage between these two water bodies. The ratios of DMS:Chl-a and DMSPp:Chl-a showed a gradually increasing trend from North to South. This might be due to changes in the proportion of DMSP producers in the phytoplankton community with the increased surface seawater temperature. A clear diurnal variation in the DMS and DMSP concentrations was observed at an anchor station with the highest concentrations appearing during the day and the lowest concentrations during the night. The higher DMS and DMSP concentrations during daytime might be attributed to the light-induced increase in both algal synthesis and exudation of DMSP and biological production of DMS. The mean flux of DMS from the investigated area to the atmosphere was estimated to be 2.06 micromo lm(-2)d(-1). This low DMS emission flux, together with the low DMS surface concentrations was attributed to the low productivity in this sea.  相似文献   

13.
The impact of in situ iron fertilisation on the production of particulate dimethylsulphoniopropionate (DMSPp) and its breakdown product dimethyl sulphide (DMS) was monitored during the SOLAS air-sea gas exchange experiment (SAGE). The experiment was conducted in the high nitrate, low chlorophyll (HNLC) waters of the sub-Antarctic Southern Ocean (46.7°S 172.5°E) to the south-east of New Zealand, during March-April, 2004. In addition to monitoring net changes in the standing stocks of DMSPp and DMS, a series of dilution experiments were used to determine the DMSPp production and consumption rates in relation to increased iron availability. In contrast to previous experiments in the Southern Ocean, DMS concentrations decreased over the course of the 15-d iron-fertilisation experiment, from an integrated volume-specific concentration in the mixed layer on day 0 of 0.78 nM (measured values 0.65-0.91 nM) to 0.46 nM (measured values 0.42-0.47 nM) by day 15, in parallel with the surrounding waters. DMSPp, chlorophyll a and the abundance of photosynthetic picoeukaryotes exhibited indiscernible or only moderate increases in response to the raised iron availability, despite an obvious physiological response by the phytoplankton. High specific growth rates of DMSPp, equivalent to 0.8-1.2 doublings d−1, occurred at the simulated 60% light level of the dilution experiments. Despite the high production rates, DMSPp accumulation was suppressed in part by microzooplankton grazers who consumed between 61% d−1 and 126% d−1 of the DMSPp production. Temporal trends in the rates of production and consumption illustrated a close coupling between the DMSP-producing phytoplankton and their microzooplankton grazers. Similar grazing and production rates were observed for the eukaryotic picophytoplankton that dominated the phytoplankton biomass, partial evidence that picoeukaryotes contributed a substantial proportion of the DMSP synthesis. These rates for DMSPp and picoeukaryotes were considerably higher than for chlorophyll a, indicating higher cycling rates of the DMSP-producing taxa than for the bulk phytoplankton community. When compared to the total phytoplankton community, there was no evidence of selection against the DMSP-containing phytoplankton by the microzooplankton grazers; the opposite appeared to be the case. SAGE demonstrated that increased iron availability in the HNLC waters of the Southern Ocean does not invariably lead to enhanced DMS sea-air flux. The potential suppression of DMSPp accumulation by grazers needs to be taken into account in future attempts to elevate DMS emission through in situ iron fertilisation and in understanding the hypothesised link between levels of Aeolian iron deposition in the Southern Ocean, DMS emission and global albedo.  相似文献   

14.
黄、渤海二甲基硫化物的浓度分布与迁移转化速率研究   总被引:2,自引:1,他引:1  
于2015年8-9月对黄、渤海海域进行现场调查,研究了海水中二甲基硫(DMS)、β-二甲巯基丙酸内盐(DMSP)、二甲亚砜(DMSO)的浓度分布、相互关系及影响因素,测定了DMS的生物生产与消耗、光化学氧化和海-气扩散速率,对DMS的迁移转化速率进行综合评价。结果表明:表层海水中DMS、溶解态DMSP(DMSPd)、颗粒态DMSP(DMSPp)、溶解态DMSO(DMSOd)和颗粒态DMSO(DMSOp)浓度的平均值分别为(6.12±3.01)nmol/L、(6.03±3.45)nmol/L、(19.47±9.15)nmol/L、(16.85±8.34)nmol/L和(14.37±7.47)nmol/L,整体呈现近岸高远海低,表层高底层低的趋势。DMS、DMSPd和DMSOp浓度与叶绿素(Chl a)浓度存在显著的相关性。表层海水中DMS光氧化速率顺序为:kUVA > kUVB > k可见,其中UVA波段占光氧化的70.8%。夏季黄、渤海微生物消耗、光氧化及海-气扩散对DMS去除的贡献率分别为32.4%、34.5%和33.1%,表明3种去除途径作用相当。黄、渤海DMS海-气通量变化范围为0.79~48.45 μmol/(m2·d),平均值为(11.87±11.35)μmol/(m2·d)。  相似文献   

15.
Sixteen surface microlayer samples and corresponding subsurface water samples were collected in the western North Atlantic during April–May 2003 to study the distribution and cycling of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) and the factors influencing them. In the surface microlayer, high concentrations of DMS appeared mostly in the samples containing high levels of chlorophyll a, and a significant correlation was found between DMS and chlorophyll a concentrations. In addition, microlayer DMS concentrations were correlated with microlayer DMSPd (dissolved) concentrations. DMSPd was found to be enriched in the microlayer with an average enrichment factor (EF) of 5.19. However, no microlayer enrichment of DMS was found for most samples collected. Interestingly, the DMS production rates in the microlayer were much higher than those in the subsurface water. Enhanced DMS production in the microlayer was likely due to the higher concentrations of DMSPd in the microlayer. A consistent pattern was observed in this study in which the concentrations of DMS, DMSPd, DMSPp (particulate) and chlorophyll a in the microlayer were closely related to their corresponding subsurface water concentrations, suggesting that these constituents in the microlayer were directly dependent on the transport from the bulk liquid below. Enhanced DMS production in the microlayer further reinforces the conclusion that the surface microlayer has greater biological activity relative to the underlying water.  相似文献   

16.
In the spring of 1995, short-term variations in the concentration of particulate and dissolved dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) were monitored in the western Wadden Sea, a shallow coastal region in open connection with the North Sea. Significant correlations were found between abundance of Phaeocystis globosa and particulate DMSP; concentrations increased rapidly from 100 to 1650 nM in the middle of April. Highest DMS concentrations were found during the initial phase of the exponential growth of the bloom. DMS production and loss rates of DMSP and DMS were estimated experimentally during various phases of the bloom. DMS production and consumption were roughly in balance, with production only slightly exceeding consumption at the start of the bloom. Rates of production and consumption were highest during the exponential growth phase of Phaeocystis and declined in the course of the bloom (from 300–375 to less than 5 nmol dm−3 d−1). Demethylation of DMSP increased during the bloom (from 11 to 1300 nmol dm−3 d−1); it accounted for up to 100% of the DMSP loss at the end of the bloom. The shift from DMSP cleavage to demethylation in the course of a Phaeocystis bloom implies that DMS concentrations are not necessarily highest at the peak or towards the end of blooms.  相似文献   

17.
以胶州湾及青岛近海为研究区域,利用吹扫-捕集气相色谱法研究了二甲基硫(DMS)和二甲巯基丙酸(DMSP,分为溶解态DMSPd和颗粒态DMSPp)在微表层与次表层中的浓度以及它们在微表层中的富集行为。结果表明,DMS、DMSPd和DMSPp在微表层中的浓度高于次表层,它们在微表层中的富集因子分别为1.17、1.84和1.51。研究发现,DMS及DMSPp浓度与叶绿素a(Chl-a)浓度有很好的相关性,但它们的周日变化与Chl-a并不完全同步。DMS/Chl-a和DMSPp/Chl-a的比值在次表层和微表层分别为4.35、13.47mmol/g和3.99、15.88mmol/g。胶州湾及青岛近海生态环境受人为活动干扰严重,使本海域DMS含量较高,从而贡献出较大的DMS海-气通量。  相似文献   

18.
In April 1997 and 1998 the significance of sedimentation as a sink for epipelagic dimethylsulphoniopropionate (DMSP) production and as a source for marine sediments was reassessed using a newly designed sediment trap. The behaviour of the traps in immersion was monitored continuously and the collection efficiency was evaluated with 234Th measurements. Net DMS(P) fluxes were corrected for some physical and biological losses during the whole sedimentation process providing reliable estimates of gross DMSP fluxes. It is shown that daily losses by sedimentation account for between 0.1% and 16% of seawater particulate DMSP (DMSPp) standing stocks, and between 3% and 75% of daily DMSPp production. In the Malangen fjord we observed temporal increases of DMSP production and standing stocks which resulted also in increases of DMSP vertical fluxes and DMS(P) concentrations at the sediment surface. This result illustrates how tight the coupling can be between pelagos and benthos, and confirms that DMS(P) concentration in the sediment was a reliable diagnostic indicator of vertical export from overlying waters in Malangen fjord. In Ullsfjord, however, DMS(P) concentrations in the sediment were poorly indicators of Phaeocystis pouchetii export during the early stage of growth of a bloom. The high load of DMS(P) in Balsfjord's sediments could neither be attributed to local vertical sedimentation nor to short-term lateral advection of fresh DMSP-containing phytoplanktonic material, and provides indication that this tracer sometimes also can be misleading. The highest loads of DMS(P) in sediments and the fastest rates of sedimentation occurred in the Southern Bight of the North Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号