首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
“Salt” giants are typically halite‐dominated, although they invariably contain other evaporite (e.g. anhydrite, bittern salts) and non‐evaporite (e.g. carbonate, clastic) rocks. Rheological differences between these rocks mean they impact or respond to rift‐related, upper crustal deformation in different ways. Our understanding of basin‐scale lithology variations in ancient salt giants, what controls this and how this impacts later rift‐related deformation, is poor, principally due to a lack of subsurface datasets of sufficiently regional extent. Here we use 2D seismic reflection and borehole data from offshore Norway to map compositional variations within the Zechstein Supergroup (ZSG) (Lopingian), relating this to the structural styles developed during Middle Jurassic‐to‐Early Cretaceous rifting. Based on the proportion of halite, we identify and map four intrasalt depositional zones (sensu Clark et al., Journal of the Geological Society, 1998, 155, 663) offshore Norway. We show that, at the basin margins, the ZSG is carbonate‐dominated, whereas towards the basin centre, it becomes increasingly halite‐dominated, a trend observed in the UK sector of the North Sea Basin and in other ancient salt giants. However, we also document abrupt, large magnitude compositional and thickness variations adjacent to large, intra‐basin normal faults; for example, thin, carbonate‐dominated successions occur on fault‐bounded footwall highs, whereas thick, halite‐dominated successions occur only a few kilometres away in adjacent depocentres. It is presently unclear if this variability reflects variations in syn‐depositional relief related to flooding of an underfilled presalt (Early Permian) rift or syn‐depositional (Lopingian) rift‐related faulting. Irrespective of the underlying controls, variations in salt composition and thickness influenced the Middle Jurassic‐to‐Early Cretaceous rift structural style, with diapirism characterising hangingwall basins where autochthonous salt was thick and halite‐rich and salt‐detached normal faulting occurring on the basin margins and on intra‐basin structural highs where the salt was too thin and/or halite‐poor to undergo diapirism. This variability is currently not captured by existing tectono‐stratigraphic models largely based on observations from salt‐free rifts and, we argue, mapping of suprasalt structural styles may provide insights into salt composition and thickness in areas where boreholes are lacking or seismic imaging is poor.  相似文献   

2.
This paper examines interactions among syn‐rift continental margin extension, evaporites, particularly rocksalt (halite), deposited in the overlying sedimentary basins, and clastic sediment loading. We present dynamically evolving 2D numerical models that combine syn‐rift lithospheric extension, with salt (viscous halite, 1018–1019 Pa s) and clastic (frictional‐plastic) sediment deposition to investigate how salt is distributed and subsequently mobilized during syn‐rift extension. Example results are shown, contrasting salt deposition in the early, mid and late syn‐rift phases of a single lithospheric extension model. The lithospheric model is chosen to give depth‐dependent extension and intermediate width margins with proximal grabens and a hyperextended distal region. The models exhibit diachronous migration of extension towards the rift axis and this is reflected in the faulting of overlying sediments. The models illustrate the roles of timing of salt deposition, relative to rifting and subsequent sedimentation, in defining the location and deformation of syn‐rift salt, with post‐salt sediment progradation in some models. Late deposition of salt leads to increased lateral extent of the original salt body and decreased variation in salt thickness. Seaward flow of salt increases with later deposition; early syn‐rift salt is deposited and trapped in the grabens, whereas mid and late syn‐rift salt tends to flow towards the distal margin or even over the oceanic crust. Prograding clastic post‐salt sediments drive more substantial seaward movement of mid and late syn‐rift salt. A numerical model of the Red Sea with evaporite deposition during the mid to late syn‐rift period, preceded and followed by aggrading and prograding clastic sediment, shows reasonable agreement with observations from the central Red Sea.  相似文献   

3.
The stratigraphic development of an Upper Jurassic syn‐rift succession exposed at outcrop in the Inner Moray Firth Basin has been investigated using high‐resolution biostratigraphy and sedimentology. A continuous 970 m thick section, exposed in the hangingwall of the Helmsdale Fault was logged in detail. The succession spans 8 Ma and contains eight lithofacies types, which indicate deposition in a deep marine setting. Boulder beds contain large, angular clasts, with bed thicknesses typically >2 m and poor sorting suggesting deposition by debris flows. An inverse clast stratigraphy is observed; the oldest boulder beds contain sandstone clasts of Upper Old Red Sandstone (ORS) with younger debris flows containing clasts of Middle ORS calcareous siltstone. A marked change from siliciclastic to carbonate dominated sedimentation occurred during the Early Tithonian, interpreted primarily as a result of change in lithologies in the footwall catchment from sandstone to calcareous siltstone, which reduced supply of siliciclastic sediment. Secondary factors are identified as increased aridity in the Early Tithonian, which reduced sand supply from the hinterland and a third‐order Early Tithonian eustatic sea‐level rise, which trapped coarser clastic sediment within the hinterland. Biostratigraphy allows calculation of variations in sedimentation rates with recognition of: (1) an early rift phase characterised by sandy turbidite deposition, when sedimentation rates averaged 0.08 m/ky, (2) a rift climax phase from the Early Kimmeridgian where sedimentation rates increased steadily to a maximum of 0.64 m/ky in the Early Tithonian, with strata dominated by boulder scale clast‐supported debris flows and (3) a late stage of rifting from the mid Tithonian, where sedimentation rates decreased to 0.07 m/ky. Overall sedimentation rates are comparable to those of other deep marine rift basins. Unroofing a resistant lithology on the footwall of a rift has important implications for siliciclastic sediment supply in rift basins.  相似文献   

4.
The Corinth rift (Greece) is one of the world's most active rifts. The early Plio‐Pleistocene rift is preserved in the northern Peloponnese peninsula, south of the active Corinth rift. Although chronostratigraphic resolution is limited, new structural, stratigraphic and sedimentological data for an area >400 km2 record early rift evolution in three phases separated by distinct episodes of extension rate acceleration and northward fault migration associated with major erosion. Minimum total N–S extension is estimated at 6.4–7.7 km. The earliest asymmetrical, broad rift accommodated slow extension (0.6–1 mm a?1) over >3 Myrs and closed to the west. North‐dipping faults with throws of 1000–2200 m defined narrow blocks (4–7 km) with little footwall relief. A N‐NE flowing antecedent river system infilled significant inherited relief (Lower group). In the earliest Pleistocene, significant fluvial incision coincided with a 15 km northward rift margin migration. Extension rates increased to 2–2.5 mm a?1. The antecedent rivers then built giant Gilbert‐type fan deltas (Middle group) north into a deepening lacustrine/marine basin. N‐dipping, basin margin faults accommodated throws <1500 m. Delta architecture records initiation, growth and death of this fault system over ca. 800 ka. In the Middle Pleistocene, the rift margin again migrated 5 km north. Extension rate increased to 3.4–4.8 mm a?1. This transition may correspond to an unconformity in offshore lithostratigraphy. Middle group deltas were uplifted and incised as new hangingwall deltas built into the Gulf (Upper group). A final increase to present‐day extension rates (11–16 mm a?1) probably occurred in the Holocene. Fault and fault block dimensions did not change significantly with time suggesting control by crustal rheological layering. Extension rate acceleration may be due to strain softening or to regional tectonic factors.  相似文献   

5.
ABSTRACT Inter‐ and intrabasinal correlation of Neoproterozoic carbonate successions and associated glaciogenic deposits from the Pan‐African Gariep Belt and the Kango inlier in the Saldania Belt (Namibia and South Africa) is proposed on the basis of new δ13CCarb and 87Sr/86SrI data. Highly positive δ13CCarb values (as much as + 8.65‰) and low 87Sr/86SrI ratios (0.7071–0.7077) were obtained on carbonate successions of the Hilda Subgroup between an older and a younger diamictite in the Port Nolloth Group (Gariep Belt). These results are in agreement with data elsewhere that suggest deposition between the global ~ 750 Ma Sturtian and ~ 580 Ma Marinoan glaciations. Considerably lower, positive δ13CCarb values (up to + 1.01‰) and higher 87Sr/86SrI ratios (0.7082–0.7085) mark the carbonates (Bloeddrif Member, Holgat Formation) on top of the Numees Formation diamictite and support a correlation of this diamictite with the Marinoan glaciation. In the southern extension of the Gariep Belt, correlation of the Widouw Formation limestone (Gifberg Group) with the Bloeddrif Member carbonates is proposed based on similar isotopic characteristics. In the Kango inlier of the Saldania Belt, two carbonate‐bearing members exist in the Matjies River Formation. The lower one of these two (Nooitgedacht Member) compares well with the Hilda Subgroup, whereas the upper one (Kombuis Member) shows strong similarities to the Bloeddrif Member carbonates. This implies that all younger stratigraphic units of the Kango inlier are not correlatives of the Port Nolloth Group, as previously assumed, but syn‐ to post‐orogenic with respect to the 540–580 Ma Pan‐African orogeny.  相似文献   

6.
《Basin Research》2018,30(3):522-543
We present a source‐to‐sink analysis to explain sediment supply variations and depositional patterns over the Holocene within an active rift setting. We integrate a range of modelling approaches and data types with field observations from the Sperchios rift basin, Central Greece that allow us to analyse and quantify (1) the size and characteristics of sediment source areas, (2) the dynamics of the sediment routing system from upstream fluvial processes to downstream deposition at the coastline, and (3) the depositional architecture and volumes of the Holocene basin fill. We demonstrate that the Sperchios rift comprises a ‘closed’ system over the Holocene and that erosional and depositional volumes are thus balanced. Furthermore, we evaluate key controls in the development of this source‐to‐sink system, including the role of pre‐existing topography, bedrock erodibility and lateral variations in the rate of tectonic uplift/subsidence. We show that tectonic subsidence alone can explain the observed grain size fining along the rift axis resulting in the downstream transition from a braided channel to an extensive meander belt (>15 km long) that feeds the fine‐grained Sperchios delta. Additionally, we quantify the ratios of sediment storage to bypass for the two main footwall‐sourced alluvial fan systems and relate the fan characteristics to the pattern and rates of fault slip. Finally, we show that ≥40% of the sediment that builds the Sperchios delta is supplied by ≤22% of the entire source area and that this can be primarily attributed to a longer‐term (~106 years) transient landscape response to fault segment linkage. Our multidisciplinary approach allows us to quantify the relative importance of multiple factors that control a complex source‐to‐sink system and thus improve our understanding of landscape evolution and stratigraphic development in active extensional tectonic settings.  相似文献   

7.
The Qiongdongnan Basin is one of the largest Cenozoic rifted basins on the northern passive margin of the South China Sea. It is well known that since the Late Miocene, approximately 10 Ma after the end of the syn‐rift phase, this basin has exhibited rapid thermal subsidence. However, detailed analysis reveals a two‐stage anomalous subsidence feature of the syn‐rift subsidence deficit and the well‐known rapid post‐rift subsidence after 10.5 Ma. Heat‐flow data show that heat flow in the central depression zone is 70–105 mW m?2, considerably higher than the heat flow (<70 mW m?2) on the northern shelf. In particular, there is a NE‐trending high heat‐flow zone of >85 mW m?2 in the eastern basin. We used a numerical model of coupled geothermal processes, lithosphere thinning and depositional processes to analyse the origin of the anomalous subsidence pattern. Numerical analysis of different cases shows that the stretching factor βs based on syn‐rift sequences is less than the observed crustal stretching factor βc, and if the lithosphere is thinned with βc during the syn‐rift phase (before 21 Ma), the present basement depth can be predicted fairly accurately. Further analysis does not support crustal thinning after 21 Ma, which indicates that the syn‐rift subsidence is in deficit compared with the predicted subsidence with the crustal stretching factor βc. The observed high heat flow in the central depression zone is caused by the heating of magmatic injection equivalently at approximately 3–5 Ma, which affected the eastern basin more than the western basin, and the Neogene magmatism might be fed by the deep thermal anomaly. Our results suggest that the causes of the syn‐rift subsidence deficit and rapid post‐rift subsidence might be related. The syn‐rift subsidence deficit might be caused by the dynamic support of the influx of warmer asthenosphere material and a small‐scale thermal upwelling beneath the study area, which might have been persisting for about 10 Ma during the early post‐rift phase, and the post‐rift rapid subsidence might be the result of losing the dynamic support with the decaying or moving away of the deep thermal source, and the rapid cooling of the asthenosphere. We concluded that the excess post‐rift subsidence occurs to compensate for the syn‐rift subsidence deficit, and the deep thermal anomaly might have affected the eastern Qiongdongnan Basin since the Late Oligocene.  相似文献   

8.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

9.
Because salt can decouple sub‐ and supra‐salt deformation, the structural style and evolution of salt‐influenced rifts differs from those developed in megoscopically homogenous and brittle crust. Our understanding of the structural style and evolution of salt‐influenced rifts comes from scaled physical models, or subsurface‐based studies that have utilised moderate‐quality 2D seismic reflection data. Relatively few studies have used high‐quality 3D seismic reflection data, constrained by borehole data, to explicitly focus on the role that along‐strike displacement variations on sub‐salt fault systems, or changes in salt composition and thickness, play in controlling the four‐dimensional evolution of supra‐salt structural styles. In this study, we use 3D seismic reflection and borehole data from the Sele High Fault System (SHFS), offshore Norway to determine how rift‐related relief controlled the thickness and lithology of an Upper Permian salt‐bearing layer (Zechstein Supergroup), and how the associated variations in the mechanical properties of this unit influenced the degree of coupling between sub‐ and supra‐salt deformation during subsequent extension. Seismic and borehole data indicate that the Zechstein Supergroup is thin, carbonate‐dominated and immobile at the footwall apex, but thick, halite‐dominated and relatively mobile in high accommodation areas, such as near the lateral fault tips and in the immediate hangingwall of the fault system. We infer that these variations reflect bathymetric changes related to either syn‐depositional (i.e. Late Permian) growth of the SHFS or underfilled, fault scarp‐related relief inherited from a preceding (i.e. Early Permian) rift phase. After a period of tectonic quiescence in the Early Triassic, regional extension during the Late Triassic triggered halokinesis and growth of a fault‐parallel salt wall, which was followed by mild extension in the Jurassic and forced folding of Triassic overburden above the fault systems upper tip. During the Early Cretaceous, basement‐involved extension resulted in noncoaxial tilting of the footwall, and the development of an supra‐salt normal fault array, which was restricted to footwall areas underlain by relatively thick mobile salt; in contrast, at the footwall apex, no deformation occurred because salt was thin and immobile. The results of our study demonstrate close coupling between tectonics, salt deposition and the style of overburden deformation for >180 Myr of the rift history. Furthermore, we show that rift basin tectono‐stratigraphic models based on relatively megascopically homogeneous and brittle crust do not appropriately describe the range of structural styles that occur in salt‐influenced rifts.  相似文献   

10.
Pervasive fracture networks are common in many reservoir‐scale carbonate bodies even in the absence of large deformation and exert a major impact on their mechanical and flow behaviour. The Upper Cretaceous Jandaíra Formation is a few hundred meters thick succession of shallow water carbonates deposited during the early post‐rift stage of the Potiguar rift (NE Brazil). The Jandaíra Formation in the present onshore domain experienced <1.5 km thermal subsidence and, following Tertiary exhumation, forms outcrops over an area of >1000 km2. The carbonates have a gentle, <5?, dip to the NE and are affected by few regional, low displacement faults or folds. Despite their simple tectonic history, carbonates display ubiquitous open fractures, sub‐vertical veins, and sub‐vertical as well as sub‐horizontal stylolites. Combining structural analysis, drone imaging, isotope studies and mathematical modelling, we reconstruct the fracturing history of the Jandaíra Formation during and following subsidence and analyse the impact fractures had on coeval fluid flow. We find that Jandaíra carbonates, fully cemented after early diagenesis, experienced negligible deformation during the first few hundreds of meters of subsidence but were pervasively fractured when they reached depths >400–500 m. Deformation was accommodated by a dense network of sub‐vertical mode I and hybrid fractures associated with sub‐vertical stylolites developed in a stress field characterised by a sub‐horizontal σ1 and sub‐vertical σ2. The development of a network of hybrid fractures, rarely reported in the literature, activated the circulation of waters charged in the mountainous region, flowing along the porous Açu sandstone underlying the Jandaíra carbonates and rising to the surface through the fractured carbonates. With persisting subsidence, carbonates reached depths of 800–900 m entering a depth interval characterised by a sub‐vertical σ1. At this stage, sub‐horizontal stylolites developed liberating calcite which sealed the sub‐vertical open fractures transforming them in veins and preventing further flow. During Tertiary exhumation, several of the pre‐existing veins and stylolites opened and became longer, and new fractures were created typically with the same directions of the older features. The simplicity of our model suggests that most rocks in passive margin settings might have followed a similar evolution and thus display similar structures.  相似文献   

11.
《Basin Research》2018,30(3):448-479
The onshore central Corinth rift contains a syn‐rift succession >3 km thick deposited in 5–15 km‐wide tilt blocks, all now inactive, uplifted and deeply incised. This part of the rift records upward deepening from fluviatile to lake‐margin conditions and finally to sub‐lacustrine turbidite channel and lobe complexes, and deep‐water lacustrine conditions (Lake Corinth) were established over most of the rift by 3.6 Ma. This succession represents the first of two phases of rift development – Rift 1 from 5.0–3.6 to 2.2–1.8 Ma and Rift 2 from 2.2–1.8 Ma to present. Rift 1 developed as a 30 km‐wide zone of distributed normal faulting. The lake was fed by four major N‐ to NE‐flowing antecedent drainages along the southern rift flank. These sourced an axial fluvial system, Gilbert fan deltas and deep lacustrine turbidite channel and lobe complexes. The onset of Rift 2 and abandonment of Rift 1 involved a 30 km northward shift in the locus of rifting. In the west, giant Gilbert deltas built into a deepening lake depocentre in the hanging wall of the newly developing southern border fault system. Footwall and regional uplift progressively destroyed Lake Corinth in the central and eastern parts of the rift, producing a staircase of deltaic and, following drainage reversal, shallow marine terraces descending from >1000 m to present‐day sea level. The growth, linkage and death of normal faults during the two phases of rifting are interpreted to reflect self‐organization and strain localization along co‐linear border faults. In the west, interaction with the Patras rift occurred along the major Patras dextral strike‐slip fault. This led to enhanced migration of fault activity, uplift and incision of some early Rift 2 fan deltas, and opening of the Rion Straits at ca. 400–600 ka. The landscape and stratigraphic evolution of the rift was strongly influenced by regional palaeotopographic variations and local antecedent drainage, both inherited from the Hellenide fold and thrust belt.  相似文献   

12.
The <1.5‐km thick Fiq Member of the Ghadir Manqil Formation, Huqf Supergroup, Oman, contains a succession of Marinoan‐age glacially and non‐glacially influenced deposits overlain by a transgressive, 13C‐depleted, deep‐water dolostone (Hadash Formation) that deepens up into the marine shales and siltstones of the Masirah Bay Formation. The Fiq Member and Hadash–Masirah Bay Formations are well exposed in the core of the Jebel Akhdar of northern Oman and provide a valuable insight into the processes operating during a Neoproterozoic glacial epoch and its aftermath. The Fiq Member comprises seven stratigraphic units (F1–F7) of proximal and distal glacimarine, non‐glacial sediment gravity flow, and non‐glacial shallow marine facies associations. These units can be correlated over almost the entire Neoproterozoic outcrop belt (ca. 80 km) of the Jebel Akhdar. Four units contain glacimarine rainout diamictites, commonly at the top of cycles beneath strong lithofacies dislocations suggesting flooding. The units are thought to have been generated by combined glacio‐isostatic and glacio‐eustatic forcing caused by changing volumes of terrestrial glacier ice. The lateral persistence and thickness of massive diamictite units increase upwards in the stratigraphy, the youngest (F7) diamictite being abruptly overlain by the Hadash Formation. Correlation of lithofacies associations across the rift basin and palaeocurrents indicate that siliciclastic sediment and glacially entrained debris were derived from both basin margins. Open‐water conditions existed during interglacials, attested to by the presence of wave‐rippled sandstones in the western part of the basin. The Hadash carbonate also exhibits variations between east and west, showing that despite an overall deep‐water depositional setting, rift margin and intrabasinal structure continued to exert a control on facies development during the post‐glacial aftermath. Onlap of basin margins continued through the deposition of the Masirah Bay Formation. The sedimentology and stratigraphy of the Fiq Member and Hadash–Masirah Bay Formations have a number of implications for the Snowball Earth hypothesis. The overall stratigraphic evolution of the Fiq Member suggests a dynamic, temperate/polythermal style of glaciation, perhaps nucleated on uplifted continental or rift margin topography, with marine‐terminating glaciers. Some transgressions coupled to deglaciations within the Fiq glacial epoch were accompanied by minor deposition of carbonate. However, final deglaciation triggered the deposition of a <8‐m thick, deep‐water dolomite contaminated with siliciclastics, with a lithofacies assemblage still reflecting the underlying bathymetric template, followed by relatively deep marine shales and siltstones. The preservation of relatively deep marine Masirah Bay sediments above the Fiq basin margin suggests either tectonic collapse of the rift shoulder or, more likely, rapid eustatic rise accompanying deglaciation.  相似文献   

13.
The Upper Muschelkalk sedimentary record constitutes a major transgressive pulse of north‐eastern Iberia during the Ladinian. This record is arranged in two transgressive–regressive (T–R) sequences formed by two stepped microbial‐dominated carbonate ramp systems where accommodation was mainly controlled by extensional faults. This study seeks to gain new insights into how the evolution of syn‐rift subsidence controls the creation of accommodation space, the depositional styles and, especially, the palaeogeographical domains where specific microbialites developed (thrombolites and stromatolites). Thrombolite bodies (at least 40 m thick) display two types of architecture, biostromal and mud‐mounded and stromatolite bodies (at least 7 m thick) consist of tabular and domed, head‐shaped morphologies. Domed and mounded forms are usually developed during stages of increasing accommodation rates, low‐to flat‐nelief forms tend to grow in association with periods of low accommodation rates. A sea‐level fall of at least 50 m occurred at the end of the Early Ladinian leaving the platform subaerially exposed. As a result, a prominent karst with significant erosional incisions and profuse collapse breccia fillings was formed in the inner and middle ramp settings. The resultant subaerial unconformity bounds T–R sequences 1 and 2. Subsidence curves display two stages of rapid/decelerated total subsidence, constituting two discrete rift/post‐rift pulses in the large Triassic rifting period: (i) Buntsandstein – Middle Muschelkalk, and (ii) Late Muschelkalk – Imon Formation (Rhaetian). The second pulse is characterized by a rapid syn‐rift subsidence during the Late Muschelkalk, and a decelerated post‐rift subsidence throughout the deposition of Keuper facies and Imon Formation. The Late Muschelkalk rapid syn‐rift pulse of total subsidence produces gains in accommodation, which controls the development of the stromatolites and thrombolites (biostromes and mud‐mounds).  相似文献   

14.
Dolomitization in the Western Canadian Sedimentary Basin has been extensively researched, producing vast geochemical datasets. This provides a unique opportunity to assess the regional sources and flux of dolomitizing fluids on a larger scale than previous studies. A meta‐analysis was conducted on stable isotope, strontium isotope (87Sr/86Sr), fluid inclusion and lithium‐rich formation water data published over 30 years, with new petrographic, X‐ray diffraction, stable isotope and rare‐earth element (REE+Y) data. The Middle to Upper Devonian Swan Hills Formation, Leduc Formation and Wabamun Group contain replacement dolomite (RD) cross‐cut by stylolites, suggesting replacement dolomitization occurred during shallow burial. Stable isotope, REE+Y and 87Sr/86Sr data indicate RD formed from Devonian seawater, then recrystallized during burial. Apart from the Wabamun Group of the Peace River Arch (PRA), saddle dolomite cement (SDC) is more δ18O(PDB) depleted than RD, and cross‐cuts stylolites, suggesting precipitation during deep burial. SDC 87Sr/86Sr data indicate contributions from 87Sr‐rich basinal brines in the West Shale Basin (WSB) and PRA, and authigenic quartz/albite suggests basinal brines interacted with underlying clastic aquifers before ascending faults into carbonate strata. The absence of quartz/albite within dolomites of the East Shale Basin (ESB) suggests dolomitizing fluids only interacted with carbonate strata. We conclude that replacement dolomitization resulted from connate Devonian seawater circulating through aquifers and faults during shallow burial. SDC precipitated during deep burial from basinal brines sourced from basal carbonates (ESB) and clastic aquifers (WSB, PRA). Lithium‐rich formation waters suggest basinal brines originated as residual evapo‐concentrated Middle Devonian seawater that interacted with basal aquifers and ascended faults during the Antler and Laramide Orogenies. These results corroborate those of previous studies but are verified by new integrated analysis of multiple datasets. New insights emphasize the importance of basal aquifers and residual evapo‐concentrated seawater in dolomitization, which is potentially applicable to other regionally dolomitized basins.  相似文献   

15.
In this study, we integrate 3D seismic reflection, wireline log, biostratigraphic and core data from the Egersund Basin, Norwegian North Sea to determine the impact of syn‐depositional salt movement and associated growth faulting on the sedimentology and stratigraphic architecture of the Middle‐to‐Upper Jurassic, net‐transgressive, syn‐rift succession. Borehole data indicate that Middle‐to‐Upper Jurassic strata consist of low‐energy, wave‐dominated offshore and shoreface deposits and coal‐bearing coastal‐plain deposits. These deposits are arranged in four parasequences that are aggradationally to retrogradationally stacked to form a net‐transgressive succession that is up to 150‐m thick, at least 20 km in depositional strike (SW‐NE) extent, and >70 km in depositional dip (NW‐SE) extent. In this rift‐margin location, changes in thickness but not facies are noted across active salt structures. Abrupt facies changes, from shoreface sandstones to offshore mudstones, only occur across large displacement, basement‐involved normal faults. Comparisons to other tectonically active salt‐influenced basins suggest that facies changes across syn‐depositional salt structures are observed only where expansion indices are >2. Subsidence between salt walls resulted in local preservation of coastal‐plain deposits that cap shoreface parasequences, which were locally removed by transgressive erosion in adjacent areas of lower subsidence. The depositional dip that characterizes the Egersund Basin is unusual and likely resulted from its marginal location within the evolving North Sea rift and an extra‐basinal sediment supply from the Norwegian mainland.  相似文献   

16.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

17.
Rift basin tectono‐stratigraphic models indicate that normal fault growth controls the sedimentology and stratigraphic architecture of syn‐rift deposits. However, such models have rarely been tested by observations from natural examples and thus remain largely conceptual. In this study we integrate 3D seismic reflection, and biostratigraphically constrained core and wireline log data from the Vingleia Fault Complex, Halten Terrace, offshore Mid‐Norway to test rift basin tectono‐stratigraphic models. The geometry of the basin‐bounding fault and its hangingwall, and the syn‐rift stratal architecture, vary along strike. The fault is planar along a much of its length, bounding a half‐graben containing a faultward‐thickening syn‐rift wedge. Locally, however, the fault has a ramp‐flat‐ramp geometry, with the hangingwall defined by a fault‐parallel anticline‐syncline pair. Here, an unusual bipartite syn‐rift architecture is observed, comprising a lower faultward‐expanding and an upper faultward‐thinning wedge. Fine‐grained basinfloor deposits dominate the syn‐rift succession, although isolated coarse clastics occur. The spatial and temporal distribution of these coarse clastics is complex due to syn‐depositional movement on the Vingleia Fault Complex. High rates of accommodation generation in the fault hangingwall led to aggradational stacking of fan deltas that rapidly (<5 km) pinch out basinward into offshore mudstone. In the south of the basin, rapid strain localization meant that relay ramps were short‐lived and did not represent major, long‐lived sediment entry points. In contrast, in the north, strain localization occurred later in the rift event, thus progradational shorefaces developed and persisted for a relatively long time in relay ramps developed between unlinked fault segments. The footwall of the Vingleia Fault Complex was characterized by relatively low rates of accommodation generation, with relatively thin, progradational hangingwall shorelines developed downdip of the fault block apex, sometime after the onset of sediment supply to the hangingwall. We show that rift basin tectono‐stratigraphic models need modifying to take into account along‐strike variability in fault structure and basin physiography, and the timing and style of syn‐rift sediment dispersal and facies, in both hangingwall and footwall locations.  相似文献   

18.
Morphological scaling relationships between source‐to‐sink segments have been widely explored in modern settings, however, deep‐time systems remain difficult to assess due to limited preservation of drainage basins and difficulty in quantifying complex processes that impact sediment dispersals. Integration of core, well‐logs and 3‐D seismic data across the Dampier Sub‐basin, Northwest Shelf of Australia, enables a complete deep‐time source‐to‐sink study from the footwall (Rankin Platform) catchment to the hanging wall (Kendrew Trough) depositional systems in a Jurassic late syn‐rift succession. Hydrological analysis identifies 24 drainage basins on the J50.0 (Tithonian) erosional surface, which are delimited into six drainage domains confined by NNE‐SSW trending grabens and their horsts, with drainage domain areas ranging between 29 and 156 km2. Drainage outlets of these drainage domains are well preserved along the Rankin Fault System scarp, with cross‐sectional areas ranging from 0.08 to 0.31 km2. Corresponding to the six drainage domains, sedimentological and geomorphological analysis identifies six transverse submarine fan complexes developing in the Kendrew Trough, ranging in areas from 43 to 193 km2. Seismic geomorphological analysis reveals over 90‐km‐long, slightly sinuous axial turbidity channels, developing in the lower topography of the Kendrew Trough which erodes toe parts of transverse submarine fan complexes. Positive scaling relationships exist between drainage outlet spacing and drainage basin length, and drainage outlet cross‐sectional area and drainage basin area, which indicates the geometry of drainage outlets can provide important constraints on source area dimensions in deep‐time source‐to‐sink studies. The broadly negative bias of fan area to drainage basin area ratios indicates net sediment losses in submarine fan complexes caused by axial turbidity current erosion. Source‐to‐sink sediment balance studies must be done with full evaluating of adjacent source‐to‐sink systems to delineate fans and their associated up‐dip drainages, to achieve an accurate tectonic and sedimentologic picture of deep‐time basins.  相似文献   

19.
A transition from supradetachment to rift basin signature is recorded in the ~1,500 m thick succession of continental to shallow marine conglomerates, mixed carbonate‐siliciclastic shallow marine sediments and carbonate ramp deposits preserved in the Bandar Jissah Basin, located southeast of Muscat in the Sultanate of Oman. During deposition, isostatically‐driven uplift rotated the underlying Banurama Detachment and basin fill ~45° before both were cut by the steep Wadi Kabir Fault as the basin progressed to a rift‐style bathymetry that controlled sedimentary facies belts and growth packages. The upper Paleocene to lower Eocene Jafnayn Formation was deposited in a supradetachment basin controlled by the Banurama Detachment. Alluvial fan conglomerates sourced from the Semail Ophiolite and the Saih Hatat window overlie the ophiolitic substrate and display sedimentary transport directions parallel to tectonic transport in the Banurama Detachment. The continental strata grade into braidplain, mouth bar, shoreface and carbonate ramp deposits. Subsequent detachment‐related folding of the basin during deposition of the Eocene Rusayl and lower Seeb formations marks the early transition towards a rift‐style basin setting. The folding, which caused drainage diversion and is affiliated with sedimentary growth packages, coincided with uplift‐isostasy as the Banurama Detachment was abandoned and the steeper Marina, Yiti Beach and Wadi Kabir faults were activated. The upper Seeb Formation records the late transition to rift‐style basin phase, with fault‐controlled sedimentary growth packages and facies distributions. A predominance of carbonates over siliciclastic sediments resulted from increasing near‐fault accommodation, complemented by reduced sedimentary input from upland catchments. Hence, facies distributions in the Bandar Jissah Basin reflect the progression from detachment to rift‐style tectonics, adding to the understanding of post‐orogenic extensional basin systems.  相似文献   

20.
In the Northern Adriatic Sea, the occurrence of gas seepage and of unique rock outcrops has been widely documented. The genesis of these deposits has recently been ascribed to gas venting, leading to their classification as methane‐derived carbonates. However, the origin of seeping gas was not clearly constrained. Geophysical data collected in 2009 reveal that the gas‐enriched fluid vents are deeply rooted. In fact, the entire Plio‐Quaternary succession is characterized by widespread seismic anomalies represented by wipe‐out zones, and interpreted as gas chimneys. They commonly root at the base of the Pliocene sequence but also within the Palaeogene succession, where they appear to be associated to deep‐seated faults. We suggest that there is a structural control on chimney distribution. Chimneys originate and terminate at different stratigraphic levels; commonly they reach the seafloor, where authigenic carbonate deposits form locally. Gas analyses of some gas bubble streams just above the rock outcrops reveal that gas is composed mainly of methane. Geochemical analyses performed at four selected outcrop sites show that these deposits formed as a consequence of active gas venting. In particular, geochemical analyses indicate carbonate precipitation from microbial oxidation of methane‐rich fluids, although a straightforward correlation with the source depth of gas feeding the authigenic carbonates cannot yet be clearly defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号