首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of δ~(18)O and salinity data was employed to explore the freshwater balance in the Canada Basin in summer 2008.The Arctic river water and Pacific river water were quantitatively distinguished by using different saline end-members.The fractions of total river water,including the Arctic and Pacific river water,were high in the upper 50 m and decreased with depth as well as increasing latitude.In contrast,the fraction of Pacific river water increased gradually with depth but decreased toward north.The inventory of total river water in the Canada Basin was higher than other arctic seas,indicating that Canada Basin was a main storage region for river water in the Arctic Ocean.The fraction of Arctic river water was higher than Pacific river water in the upper 50 m while the opposite was true below 50 m.As a result,the inventories of Pacific river water were higher than those of Arctic river water,demonstrating that the Pacific inflow through the Bering Strait is the main source of freshwater in the Canada Basin.Both the river water and sea-ice melted water in the permanent ice zone were more abundant than those in the region with sea-ice just melted.The fractions of total river water,Arctic river water,Pacific river water increased northward to the north of 82°N,indicating an additional source of river water in the permanent ice zone of the northern Canada Basin.A possible reason for the extra river water in the permanent ice zone is the lateral advection of shelf waters by the Trans-Polar Drift.The penetration depth of sea-ice melted waters was less than 30 m in the southern Canada Basin,while it extended to 125 m in the northern Canada Basin.The inventory of seaice melted water suggested that sea-ice melted waters were also accumulated in the permanent ice zone,attributing to the trap of earlier melted waters in the permanent ice zone via the Beaufort Gyre.  相似文献   

2.
夏季楚科奇海河水与海冰融化水组分的空间变化特征   总被引:2,自引:1,他引:1  
通过对2008年夏季楚科奇海水氧同位素组成的分析,运用S、δ18 O的质量平衡关系计算出河水组分和海冰融化水组分的份额,揭示出楚科奇海河水和海冰融化水组分的空间变化规律,并探讨其影响因素。楚科奇海河水组分的份额介于1.9%~18.4%之间,呈现随深度增加而降低的趋势;河水组分积分高度的变化范围为1.3~16.6m,平均为(4.8±4.0)m。河水组分份额与积分高度均呈现东高西低、北强南弱的特征,与太平洋入流东侧为富含河水组分的阿拉斯加沿岸流、西侧为低河水组分的白令海陆架水,以及北部海域受波弗特流涡埃克曼辐聚作用的影响有关。海冰融化水份额呈现随深度增加而降低的趋势,20~30m以深受到冬季海冰形成时所释放盐卤水的明显影响。海冰融化水积分高度的变化范围为-3.2~1.7m,平均值为(-0.3±1.2)m,其空间分布呈现东低西高、南强北弱的特征,与太平洋入流输入通量的时间变化以及输入路径的西偏有关。  相似文献   

3.
2003-2012年间白令海峡断面淡水构成的时空变化   总被引:3,自引:1,他引:2  
潘红  陈敏  童金炉  邱雨生  郑敏芳 《海洋学报》2015,37(11):135-146
通过对2003-2012年间白令海峡64.3°N断面海水氧同位素组成的分析,应用海水δ18 O值和盐度的质量平衡关系区分出淡水中河水和海冰融化水组分的贡献,探讨白令海峡淡水组成的分布特征及其年际变化。研究表明,断面东侧阿拉斯加沿岸水影响区呈现低δ18 O值、低盐、高温、高河水组分的特征,西侧阿拉德尔水具有高δ18 O值、高盐、低海冰融化水的特征,中部白令陆架水的δ18 O值、盐度和淡水组成则居于上述二者之间。阿拉斯加沿岸水影响区河水组分的份额约为阿拉德尔水和白令陆架水的2倍,并呈现出2010年2012年2003年2008年的时间变化规律,受控于育空河入海径流量的时间变化。白令陆架水和阿拉斯加沿岸水影响区的海冰融化水份额较为接近,均比阿拉德尔水影响区的海冰融化水份额高约45%。海冰融化水的年际变化表现出2003年2008年≈2012年2010年的规律,受控于白令海海冰的年际变动。从断面淡水构成看,通过白令海峡的淡水平均由46%的河水和54%的海冰融化水构成,且阿拉德尔水、白令陆架水和阿拉斯加沿岸水影响区河水组分与海冰融化水组分的比值自2003年至2012年间呈增加趋势,证明太平洋入流中淡水构成的变化对北冰洋海冰的融化也起着一定的作用。  相似文献   

4.
Variation of freshwater components in the Canada Basin during 1967–2010   总被引:2,自引:0,他引:2  
As a conservative tracer, oxygen isotopes in seawater are widely used for water mass analysis, along with temperature and salinity. In this study, seawater oxygen-18 datasets in the Canada Basin during 1967–2010 were obtained from the four cruises of the Chinese National Arctic Research Expedition(1999, 2003, 2008, and 2010) and the NASA database. Fractions of sea ice meltwater and river runoff were determined from the salinity-18O system. Our results showed that the river runoff decreased from the south to the north in the Canada Basin. The enhanced amount of river runoff observed in the southern Canada Basin may originate from the Mackenzie River, transported by the Beaufort Gyre. The river runoff component showed maximum fractions during 1967–1969, 1978–1979, 1984–1985, 1993–1994, and 2008–2010, indicating the refresh time of the river runoff was 5.0–16.0 a in the Canada Basin. The temporal variation of the river runoff was related to the change of the Arctic Oscillation(AO) index, suggesting the freshwater stored in the Canada Basin was affected by surface sea ice drift and water mass movement driven by atmospheric circulation.  相似文献   

5.
The third Chinese National Arctic Research Expedition(CHINARE) was conducted in the summer of 2008.During the survey,the surface seawater partial pressure of CO_2(pCO_2) was measured,and sea water samples were collected for CO_2 measurement in the Canada Basin.The distribution of pCO_2 in the Canada Basin was determined,the influencing factors were addressed,and the air-sea CO_2 flux in the Canada Basin was evaluated.The Canada Basin was divided into three regions:the ice-free zone(south of 77°N),the partially ice-covered zone(77°–80°N),and the heavily ice-covered zone(north of 80°N).In the ice-free zone,pCO_2 was high(320 to 368μatm,1 μatm=0.101 325 Pa),primarily due to rapid equilibration with atmospheric CO_2 over a short time.In the partially ice-covered zone,the surface pCO_2 was relatively low(250 to 270 μatm) due to ice-edge blooms and icemelt water dilution.In the heavily ice-covered zone,the seawater pCO_2 varied between 270 and 300 μatm due to biological CO_2 removal,the transportation of low pCO_2 water northward,and heavy ice cover.The surface seawater pCO_2 during the survey was undersaturated with respect to the atmosphere in the Canada Basin,and it was a net sink for atmospheric CO_2.The summertime net CO_2 uptake of the ice-free zone,the partially ice-covered zone and the heavily ice-covered zone was(4.14±1.08),(1.79±0.19),and(0.57±0.03) Tg/a(calculated by carbon,1Tg=10~(12) g),respectively.Overall,the net CO_2 sink of the Canada Basin in the summer of 2008 was(6.5±1.3) Tg/a,which accounted for 4%–10% of the Arctic Ocean CO_2 sink.  相似文献   

6.
Extremely low summer sea-ice coverage in the Arctic Ocean in 2007 allowed extensive sampling and a wide quasi-synoptic hydrographic and δ18O dataset could be collected in the Eurasian Basin and the Makarov Basin up to the Alpha Ridge and the East Siberian continental margin. With the aim of determining the origin of freshwater in the halocline, fractions of river water and sea-ice meltwater in the upper 150 m were quantified by a combination of salinity and δ18O in the Eurasian Basin. Two methods, applying the preformed phosphate concentration (PO*) and the nitrate-to-phosphate ratio (N/P), were compared to further differentiate the marine fraction into Atlantic and Pacific-derived contributions. While PO*-based assessments systematically underestimate the contribution of Pacific-derived waters, N/P-based calculations overestimate Pacific-derived waters within the Transpolar Drift due to denitrification in bottom sediments at the Laptev Sea continental margin.Within the Eurasian Basin a west to east oriented front between net melting and production of sea-ice is observed. Outside the Atlantic regime dominated by net sea-ice melting, a pronounced layer influenced by brines released during sea-ice formation is present at about 30–50 m water depth with a maximum over the Lomonosov Ridge. The geographically distinct definition of this maximum demonstrates the rapid release and transport of signals from the shelf regions in discrete pulses within the Transpolar Drift.The ratio of sea-ice derived brine influence and river water is roughly constant within each layer of the Arctic Ocean halocline. The correlation between brine influence and river water reveals two clusters that can be assigned to the two main mechanisms of sea-ice formation within the Arctic Ocean. Over the open ocean or in polynyas at the continental slope where relatively small amounts of river water are found, sea-ice formation results in a linear correlation between brine influence and river water at salinities of about 32–34. In coastal polynyas in the shallow regions of the Laptev Sea and southern Kara Sea, sea-ice formation transports river water into the shelf’s bottom layer due to the close proximity to the river mouths. This process therefore results in waters that form a second linear correlation between brine influence and river water at salinities of about 30–32. Our study indicates which layers of the Arctic Ocean halocline are primarily influenced by sea-ice formation in coastal polynyas and which layers are primarily influenced by sea-ice formation over the open ocean. Accordingly we use the ratio of sea-ice derived brine influence and river water to link the maximum in brine influence within the Transpolar Drift with a pulse of shelf waters from the Laptev Sea that was likely released in summer 2005.  相似文献   

7.
1Introduction ThephysicalcharacteristicsintheArcticOcean includewidecontinentalshelves,accountingfor36% oftheocean’ssurfacearea(MooreandSmith,1986) withseasonalicecover.Theprincipalwatersentering theArcticOceanarefromtheNorthAtlanticviathe FramStraitandtheBarentsSea,andtheNorthPacific viatheBeringStrait.Withinthearcticinterior,thewa- tersjoininthelarge-scalecirculationandaresubse- quentlymodifiedbyprocessesofair/sea/iceinterac- tion,riverinflow,andexchangewithsurrounding shelves.Howeve…  相似文献   

8.
Fresh water flowing from the Arctic Ocean via the East Greenland Current influences deep water formation in the Nordic Seas as well as the salinity of the surface and deep waters flowing from there. This fresh water has three sources: Pacific water (relatively fresh cf. Atlantic water), river runoff, and sea ice meltwater. To determine the relative amounts of the three sources of fresh water, in May 2002 we collected water samples across the East Greenland Current in sections from 81.5°N to the Irminger Sea south of Denmark Strait. We used nitrate-phosphate relationships to distinguish Pacific waters from Atlantic waters, salinity to obtain the sum of sea ice melt water and river runoff water, and total alkalinity to distinguish the latter. River runoff contributed the largest part of the total fresh water component, in some regions with some inventories exceeding 12 m. Pacific fresh water (Pacific source water S ∼ 32 cf. Atlantic source water S ∼ 34.9) typically provided about 1/3 of the river runoff contribution. Sea ice meltwater was very nearly non-existent in the surface waters of all sections, likely at least in part as a result of the samples being collected before the onset of the melt season. The fresh water from the Arctic Ocean was strongly confined to near the Greenland coast. We thus conjecture that the main source of fresh water from the Arctic Ocean most strongly impacting deep convection in the Nordic Seas would be sea ice as opposed to fresh water in the liquid phase, i.e., river runoff, Pacific fresh water, and sea ice meltwater.  相似文献   

9.
Continuous CTD data from a series of recent cruises show that the distribution of the water mass characteristics in the central Benguela region from the Orange River mouth (28°38'S) to alvis Bay (22°57'S) is discontinuous in the central and intermediate waters at about the latitude of Lüderitz (26°40'S), Namibia. The central and intermediate water masses at the shelf edge and shelf break north of the Lüderitz upwelling cell have a high salinity relative to the potential temperature compared to similar waters south of the upwelling cell. It is shown that the feed waters for the wind-induced upwelling on the shelf to the north and south of the Lüderitz discontinuity are different in character and source. The distribution of the water masses shows that the shelf-edge poleward undercurrent provides low-oxygen water from different regions in the Atlantic Ocean to be upwelled onto the shelf. North of th Lüderitz upwelling cell, the central and intermediate waters come from the oxygen-depleted Angola Basin, whereas south of the discontinuity those waters are from the interior of the adjacent Cape Basin, which is less oxygen-deficient. This has implications for the dispersion of low-oxygen water and the triggering of anoxic events, and consequences for the biota on the shelf, including commercially important fish species.  相似文献   

10.
The Arctic Ocean has wide shelf areas with extensive biological activity including a high primary productivity and an active microbial loop within the surface sediment. This in combination with brine production during sea ice formation result in the decay products exiting from the shelf into the deep basin typically at a depth of about 150 m and over a wide salinity range centered around S ~33. We present data from the Beringia cruise in 2005 along a section in the Canada Basin from the continental margin north of Alaska towards the north and from the International Siberian Shelf Study in 2008 (ISSS-08) to illustrate the impact of these processes. The water rich in decay products, nutrients and dissolved inorganic carbon (DIC), exits the shelf not only from the Chukchi Sea, as has been shown earlier, but also from the East Siberian Sea. The excess of DIC found in the Canada Basin in a depth range of about 50–250 m amounts to 90±40 g C m?2. If this excess is integrated over the whole Canadian Basin the excess equals 320±140×1012 g C. The high DIC concentration layer also has low pH and consequently a low degree of calcium carbonate saturation, with minimum aragonite values of 60% saturation and calcite values just below saturation. The mean age of the waters in the top 300 m was calculated using the transit time distribution method. By applying a future exponential increase of atmospheric CO2 the invasion of anthropogenic carbon into these waters will result in an under-saturated surface water with respect to aragonite by the year 2050, even without any freshening caused by melting sea ice or increased river discharge.  相似文献   

11.
In spring and fall 2005, cross- and along-shelf transects were sampled to evaluate the influence of physical forcing, including sea ice, tides, and winds, on the lower trophic levels of the Bering Sea ecosystem. The hydrography, nutrients, chlorophyll, and zooplankton abundance and species composition were all affected by the presence or absence of sea ice on a north–south transect along the 70-m isobath. In May, shelf waters between ~59°N and 62°N were cold and relatively fresh, and benthic invertebrate larvae and chaetognaths were a significant fraction of the zooplankton community, while to the south the water was warmer, saltier, and the zooplankton community was dominated by copepods. The position of the transition between ice-affected and ice-free portions of the shelf was consistent among temperature, salinity, nutrients, and oxygen. This transition in the hydrographic variables persisted through the summer, but it shifted ~150 km northward as the season progressed. While a transition also occurred in zooplankton species composition, it was farther north than the physical/chemical transition and did not persist through the summer. Mooring data demonstrated that the change in the position of the transition in physical and chemical properties was due to northward or eastward advection of water onto and across the shelf. From south to north along the 70-m isobath, tidal energy decreased, resulting in a less sharply stratified water column on the northern portion of the middle shelf, as opposed to a well-defined, two-layered system in the southern portion. This more gradual stratification in the north permitted a greater response to mixing from winds, which were homogeneous from north to south. Thus the physical and biological structure at any one location over the middle shelf is dynamic over the course of a year, and results from a combination of in situ processes and climate-mediated regional forcing which is dominated in most years by sea ice.  相似文献   

12.
本文提出“生物环境容忍带”概念,讨论生物对气候环境的适应性和一定条件下的容忍性,以此为据,论证了中国东部沿海23000年以来的生物气候界线、冰缘外围环境和气候环境变迁轮廓。  相似文献   

13.
We have measured helium isotopic ratios of thirty-seven Pacific water samples from various depths collected in adjacent regions of Honshu, Japan. The 3He/4He ratios vary significantly from 0.989 R atm to 1.208 R atm where R atm is the atmospheric ratio of 1.39 × 10−6. The mid-depth (750–1500 m) profile of 3He/4He ratios at ST-1 located Northwestern Pacific Ocean east of Japan (Off Joban; 37°00′ N, 142°40′ E) is significantly different from that at ST-2 of the Northern Philippine Sea south of Japan (Nankai Trough; 33°07′ N, 139°59′ E), suggesting that these waters were separated by a topographic barrier, the Izu-Ogasawara Ridge. Taking 3He/4He data of the Geosecs expeditions in the western North Pacific, an extensive plume of 15% excess 3He relative to the air may be traced at ST-1 over 12,000 kilometers to the northwest of the East Pacific Rise where the mantle helium may originate. The 20% excess found at ST-2 may be attributable to the additional source of the subduction-type mantle helium in the Okinawa Trough. A 15% excess of 3He has also been discovered at a depth of about 1000∼1500 m at ST-3 adjacent to Miyakejima Island (33°57′ N, 139°22′ E) and ST-4 of Sagami Bay (35°00′ N, 139°22′ E). It is confirmed that mid-depth all over the western North Pacific water is affected by the mantle helium with a high 3He/4He ratio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Sea-ice physical characteristics were investigated in the Arctic section of 143°-180°W during August and early September 2008. Ship-based observations show that both the sea-ice thickness and concentration recorded during southward navigation from 30 August to 6 September were remarkably less than those recorded during northward navigation from 3 to 30 August, especially at low latitudes. Accordingly, the marginal ice zone moved from about 74.0°N to about 79.5°N from mid-August to early September. Melt-pond coverage increased with increasing latitude, peaking at 84.4°N, where about 27% of ice was covered by melt ponds. Above this latitude, melt-pond coverage decreased evidently as the ice at high latitudes experienced a relatively short melt season and commenced its growth stage by the end of August. Regional mean ice thickness increased from 0.8 (±0.5) m at 75.0°N to 1.5 (±0.4) m at 85.0°N along the northward navigation while it decreased rapidly to 0.6 (±0.3) m at 78.0°N along the southward navigation. Because of relatively low ice concentration and thin ice in the investigated Arctic sector, both the short-term ice stations and ice camp could only be set up over multiyear sea ice. Observations of ice properties based on ice cores collected at the short-term ice stations and the ice camp show that all investigated floes were essentially isothermal with high temperature and porosity, and low density and salinity. Most ices had salinity below 2 and mean density of 800-860 kg/m~3 . Significant ice loss in the investigated Arctic sector during the last 15 a can be identified by comparison with the previous observations.  相似文献   

15.
Coastal Oyashio Water (COW), defined as a water mass with a temperature lower than 2 °C and a salinity lower than 33.0, is distributed in the North Pacific Ocean off southeastern Hokkaido, Japan, from winter to spring. COW is rich in macronutrients and dissolved iron and is thus considered to affect the spring phytoplankton blooms in the Oyashio region. Although river water and sea-ice melt water have been considered freshwater end-members of COW, the contributions of these freshwater sources to COW have not been well described. In this study, the humic-like components in dissolved organic matter were first applied as a parameter to evaluate the freshwater end-members of COW in March 2015. Linear regressions with negative slopes were determined between the humic-like components and the salinity of COW. The intercepts of the regressions against the humic-like components were within the ranges of those observed for the local rivers of Hokkaido but were very different from those of sea ice. These findings suggest that river water contributed to the COW observed here as a freshwater end-member, although the contribution of sea-ice melt water to COW could not be evaluated. This novel approach also highlighted two different less-saline water masses in COW. The first was characterized by a lower temperature and relatively high levels of humic-like components, while the second was higher in temperature and had higher levels of humic-like components. It is suggested that these different characteristics are due to the contributions of water from different rivers and/or different effects of sea-ice melt water.  相似文献   

16.
Hydrographic data from National Oceanographic Data Center (NODC) and Responsible National Oceanographic Data Centre (RNODC) were used to study the seasonal variability of the mixed layer in the central Bay of Bengal (8–20°N and 87–91°E), while meteorological data from Comprehensive Ocean Atmosphere Data Set (COADS) were used to explore atmospheric forcing responsible for the variability. The observed changes in the mixed-layer depth (MLD) clearly demarcated a distinct north–south regime with 15°N as the limiting latitude. North of this latitude MLD remained shallow (∼20 m) for most of the year without showing any appreciable seasonality. Lack of seasonality suggests that the low-salinity water, which is perennially present in the northern Bay, controls the stability and MLD. The observed winter freshening is driven by the winter rainfall and associated river discharge, which is advected offshore under the prevailing circulation. The resulting stratification was so strong that even a 4 °C cooling in sea-surface temperature (SST) during winter was unable to initiate convective mixing. In contrast, the southern region showed a strong semi-annual variability with deep MLD during summer and winter and a shallow MLD during spring and fall intermonsoons. The shallow MLD in spring and fall results from primary and secondary heating associated with increased incoming solar radiation and lighter winds during this period. The deep mixed layer during summer results from two processes: the increased wind forcing and the intrusion of high-salinity waters of Arabian Sea origin. The high winds associated with summer monsoon initiate greater wind-driven mixing, while the intrusion of high-salinity waters erodes the halocline and weakens the upper-layer stratification of the water column and aids in vertical mixing. The deep MLD in the south during winter was driven by wind-mixing, when the upper water column was comparatively less stable. The deep MLD between 15 and 17°N during March–May cannot be explained in the context of local atmospheric forcing. We show that this is associated with the propagation of Rossby waves from the eastern Bay. We also show that the nitrate and chlorophyll distribution in the upper ocean during spring intermonsoon is strongly coupled to the MLD, whereas during summer river runoff and cold-core eddies appear to play a major role in regulating the nutrients and chlorophyll.  相似文献   

17.
The dramatic decline of summer sea ice extent and thickness has been witnessed in the western Arctic Ocean in recent decades, which hasmotivated scientists to search for possible factors driving the sea ice variability. An eddy-resolving, ice-ocean coupled model covering the entire Arctic Ocean is implemented, with focus on the western Arctic Ocean. Special attention is paid to the summer Alaskan coastal current (ACC), which has a high temperature (up to 5℃ ormore) in the upper layer due to the solar radiation over the open water at the lower latitude. Downstream of the ACC after Barrow Point, a surface-intensified anticyclonic eddy is frequently generated and propagate towards the Canada Basin during the summer season when sea ice has retreated away from the coast. Such an eddy has a warm core, and its source is high-temperature ACC water. A typical warm-core eddy is traced. It is trapped just below summer sea ice melt water and has a thickness about 60 m. Temperature in the eddy core reaches 2-3℃, and most water inside the eddy has a temperature over 1℃. With a definition of the eddy boundary, an eddy heat is calculated, which can melt 1 600 km2 of 1mthick sea ice under extreme conditions.  相似文献   

18.
Full-depth conductivity-temperature-depth-oxygen profiler (CTDO2) data at low latitudes in the western North Pacific in winter 1999 were analyzed with water-mass analysis and geostrophic calculations. The result shows that the deep circulation carrying the Lower Circumpolar Water (LCPW) bifurcates into eastern and western branch currents after entering the Central Pacific Basin. LCPW colder than 0.98°C is carried by the eastern branch current, while warmer LCPW is carried mainly by the western branch current. The eastern branch current flows northward in the Central Pacific Basin, supplying water above 0.94°C through narrow gaps into an isolated deep valley in the Melanesian Basin, and then passes the Mid-Pacific Seamounts between 162°10′E and 170°10′E at 18°20′N, not only through the Wake Island Passage but also through the western passages. Except near bottom, dissolved oxygen of LCPW decreases greatly in the northern Central Pacific Basin, probably by mixing with the North Pacific Deep Water (NPDW). The western branch current flows northwestward over the lower Solomon Rise in the Melanesian Basin and proceeds westward between 10°40′N and 12°20′N at 150°E in the East Mariana Basin with volume transport of 4.1 Sv (1 Sv=106 m3 s−1). The current turns north, west of 150°E, and bifurcates around 14°N, south of the Magellan Seamounts, where dissolved oxygen decreases sharply by mixing with NPDW. Half of the current turns east, crosses 150°E at 14–15°N, and proceeds northward primarily between 152°E and 156°E at 18°20′N toward the Northwest Pacific Basin (2.1 Sv). The other half flows northward west of 150°E and passes 18°20′N just east of the Mariana Trench (2.2 Sv). It is reversed by a block of topography, proceeds southward along the Mariana Trench, then detours around the south end of the trench, and proceeds eastward along the Caroline Seamounts to the Solomon Rise, partly flowing into the West Mariana and East Caroline Basins. A deep western boundary current at 2000–3000 m depth above LCPW (10.0 Sv) closes to the coast than the deep circulation. The major part of it (8.5 Sv) turns cyclonic around the upper Solomon Rise from the Melanesian Basin and proceeds along the southern boundary of the East Caroline Basin. Nearly half of it proceeds northward in the western East Caroline Basin, joins the current from the east, then passes the northern channel, and mostly enters the West Caroline Basin (4.6 Sv), while another half enters this basin from the southern side (>3.8 Sv). The remaining western boundary current (1.5 Sv) flows over the middle and lower Solomon Rise, proceeds westward, then is divided by the Caroline Seamounts into southern (0.9 Sv) and northern (0.5 Sv) branches. The southern branch current joins that from the south in the East Caroline Basin, as noted above. The northern branch current proceeds along the Caroline Seamounts and enters the West Mariana Basin.  相似文献   

19.
《Ocean Modelling》2004,6(3-4):265-284
Within the framework of the Arctic Ocean Model Intercomparison Project results from several coupled sea ice–ocean models are compared in order to investigate vertically integrated properties of the Arctic Ocean. Annual means and seasonal ranges of streamfunction, freshwater and heat content are shown. For streamfunction the entire water column is integrated. For heat and freshwater content integration is over the upper 1000 m. The study represents a step toward identifying differences among model approaches and will serve as a base for upcoming studies where all models will be executed with common forcing. In this first stage only readily available outputs are compared, while forcing as well as numerical parameterizations differ.The intercomparison shows streamfunctions differing in pattern and by several Sverdrups in magnitude. Differences occur as well for the seasonal range, where streamfunction is subject to large variability.Annual mean heat content, referenced to 0 °C, in the Canada Basin varies from −3.5 to +1.8 GJ m−2 among the models, representing both colder and warmer solutions compared to the climatology. Seasonal range is highest in regions with seasonal or no ice cover.Corresponding freshwater content, referenced to 34.8 ppt, shows differences most obviously in the Beaufort Sea and Canada Basin where maximum values vary between 6 and 24 m for the individual models. Maxima in the seasonal range are related to river inflow.In the current stage of the project, applied windstress contributes significantly to the differences. However differences due to model resolutions and model parameterizations can already be detected.  相似文献   

20.
The recent sea-ice reduction in the Arctic Ocean is not spatially uniform, but is disproportionally large around the Northwind Ridge and Chukchi Plateau compared to elsewhere in the Canada Basin. In the Northwind Ridge region, Pacific Summer Water (PSW) delivered from the Bering Sea occupies the subsurface layer. The spatial distribution of warm PSW shows a quite similar pattern to the recent ice retreat, suggesting the influence of PSW on the sea-ice reduction. To understand the regionality of the recent ice retreat, we examine the dynamics and timing of the delivery of the PSW into this region. Here, we adopt a two-layer linearized potential vorticity equation to investigate the behavior of Rossby waves in the presence of a topographic discontinuity in the high latitude ocean. The analytical results show a quite different structure from those of mid-latitude basins due to the small value of β. Incident barotropic waves excited by the sea-ice motion with large annual variation can be scattered into both barotropic and baroclinic modes at the discontinuity. Since the scattered baroclinic Rossby wave with annual frequency cannot propagate freely, a strong baroclinic current near the topographic discontinuity is established. The seasonal variation of current near the topographic discontinuity would cause a kind of selective switching system for shelf water transport into the basin. In our simple analytical model, the enhanced northward transport of summer water and reduced northward transport of winter water are well demonstrated. The present study indicates that these basic dynamics imply that a strengthening of the surface forcing during winter in the Canada Basin could cause sea-ice reduction in the Western Arctic through the changes of underlying Pacific Summer Water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号