首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
States will disagree about deployment of solar geoengineering, technologies that would reflect a small portion of incoming sunlight to reduce risks of climate change, and most disagreements will be grounded in conflicting interests. States that object to deployment will have many options to oppose it, so states favouring deployment will have a powerful incentive to meet their objections. Objections rooted in opposition to the anticipated unequal consequences of deployment may be met through compensation, yet climate policy is inhospitable to compensation via liability. We propose that multilateral parametric climate risk insurance might be a useful tool to facilitate agreement on solar geoengineering deployment. With parametric insurance, predetermined payouts are triggered when climate indices deviate from set ranges. We suggest that states favouring deployment could underwrite reduced-rate parametric climate insurance. This mechanism would be particularly suited to resolving disagreements based on divergent judgments about the outcomes of proposed implementation. This would be especially relevant in cases where disagreements are rooted in varying levels of trust in climate model predictions of solar geoengineering effectiveness and risks. Negotiations over the pricing and terms of a parametric risk pool would make divergent judgments explicit and quantitative. Reduced-rate insurance would provide a way for states that favour implementation to demonstrate their confidence in solar geoengineering by underwriting risk transfer and ensuring compensation without the need for attribution. This would offer a powerful incentive for states opposing implementation to moderate their opposition.

Key policy insights

  • States favouring deployment of solar geoengineering will need to address other states’ objections—unilateralism is implausible in practice

  • This might be partially achieved using parametric climate risk insurance based on objective indicators

  • A sovereign risk pool offering reduced-rate parametric insurance underwritten by states backing deployment could facilitate cooperation on solar geoengineering deployment

  • States favouring deployment would demonstrate their confidence in solar geoengineering by supporting the risk pool

  • Opposing states would be insured against solar geoengineering risks and proposing states would be incentivized to guard against overconfidence

  相似文献   

2.
Coral reefs are highly vulnerable to the impacts of rising marine temperatures and marine heatwaves. Mitigating dangerous climate change is essential and urgent, but many reef systems are already suffering on current levels of warming. Geoengineering options are worth exploring to protect the Great Barrier Reef (GBR) from extreme warming conditions, but we contend that they require strong governance and public consultation from the outset. Australian governments are currently funding feasibility testing of three geoengineering proposals for the GBR. Each proposal involves manipulating ocean or atmospheric conditions to lower water temperatures and thereby reduce the threat of mass coral bleaching events. Innovative strategies to protect the GBR and field testing of these is essential, but current laws do not guarantee robust governance for field testing of these technologies. Nor do they provide the foundation for a more coherent national policy on climate intervention technologies more generally. Responsible governance frameworks, including detailed risk assessment and early public consultation, are necessary for geoengineering research to build legitimacy and promote scientific progress.

Key policy insights

  • Marine heatwaves pose a serious threat to coral reefs, including Australia’s iconic Great Barrier Reef.

  • Australian governments have recognized the threats of warming waters, and are funding research of geoengineering options for the Great Barrier Reef.

  • The limited earlier field testing of geoengineering demonstrates the need for specific governance to manage risks, build legitimacy and maintain public support.

  • Australia requires a framework to govern geoengineering research and development before deployment of such technologies.

  相似文献   

3.
ABSTRACT

Consideration of solar geoengineering as a potential response to climate change will demand complex decisions. These include not only the choice of whether to deploy solar engineering, but decisions regarding how to deploy, and ongoing decision-making throughout deployment. Research on the governance of solar geoengineering to date has primarily engaged only with the question of whether to deploy. We examine the science of solar geoengineering in order to clarify the technical dimensions of decisions about deployment – both strategic and operational – and how these might influence governance considerations, while consciously refraining from making specific recommendations. The focus here is on a hypothetical deployment rather than governance of the research itself. We first consider the complexity surrounding the design of a deployment scheme, in particular the complicated and difficult decision of what its objective(s) would be, given that different choices for how to deploy will lead to different climate outcomes. Next, we discuss the on-going decisions across multiple timescales, from the sub-annual to the multi-decadal. For example, feedback approaches might effectively manage some uncertainties, but would require frequent adjustments to the solar geoengineering deployment in response to observations. Other decisions would be tied to the inherently slow process of detection and attribution of climate effects in the presence of natural variability. Both of these present challenges to decision-making. These considerations point toward particular governance requirements, including an important role for technical experts – with all the challenges that entails.

Key policy insights
  • Decisions about solar geoengineering deployment will be informed not only by political choices, but also by climate science and engineering.

  • Design decisions will pertain to the spatial and temporal goals of a climate intervention and strategies for achieving those goals.

  • Some uncertainty can be managed through feedback, but this would require frequent operational decisions.

  • Some strategic decisions will depend on the detection and attribution of climatic effects from solar geoengineering, which may take decades.

  • Governance for solar geoengineering deployment will likely need to incorporate technical expertise for making short-term adjustments to the deployment and conducting attribution analysis, while also slowing down decisions made in response to attribution analysis to avoid hasty choices.

  相似文献   

4.
Russia has significant potential for reducing its carbon emissions. However, investment in new low-carbon technologies has significant risks. Ambiguous energy and climate policy in Russia, along with deterioration of the country's investment climate, create investment barriers that are well described in qualitative terms in the literature. This paper attempts to provide a quantitative analysis of these barriers. For this numerical experiment, we apply the RU-TIMES model. Using a real options methodology, we estimate the risk-adjusted cost of capital in the Russian energy sector (including energy production and consumption technologies represented in the TIMES framework) to be approximately 43% (including a risk-free interest rate) and demonstrate the high risk of investment into energy-efficient and low-carbon technologies. Any future low-carbon emissions pathway depends on the ability of the Russian government to reduce climate and energy policy uncertainties, and to reduce financial risks through improvements of the general investment climate.

Key policy insights

  • The high cost of capital investment into Russian energy production and consumption may prevent the adoption of new energy-efficient and low-carbon technologies.

  • These investment risks, if not addressed, will delay Russia's low-carbon transition for the coming decades.

  • Adopting a clear and unambiguous long-term climate and energy policy is important to reduce these risks and alleviate some of the barriers to the new technologies.

  • The first step could be ratification of the Paris Agreement and adoption of a long-term emission target for the period up to 2050.

  相似文献   

5.
This paper examines power relations, coalitions and conflicts that drive and hinder institutional change in South African climate policy. The analysis finds that the most contested climate policies are those that create distributional conflicts where powerful, non-poor actors will potentially experience real losses to their fossil fuel-based operations. This finding opposes the assumption of competing objectives between emissions and poverty reduction. Yet, actors use discourse that relates to potentially competing objectives between emissions reductions, jobs, poverty reduction and economic welfare.

The analysis relates to the broader questions on how to address public policy problems that affect the two objectives of mitigating climate change and simultaneously boosting socio-economic development. South Africa is a middle-income country that represents the challenge of accommodating simultaneous efforts for emissions and poverty reduction.

Institutional change has been constrained especially in the process towards establishing climate budgets and a carbon tax. The opposing coalitions have succeeded in delaying the implementation of these processes, as a result of unequal power relations. Institutional change in South African climate policy can be predominantly characterized as layering with elements of policy innovation. New policies build on existing regulations in all three cases of climate policy examined: the climate change response white paper, the carbon tax and the renewable energy programme. Unbalanced power relations between coalitions of support in government and civil society and opposition mainly from the affected industry result in very fragile institutional change.

Key policy insights

  • The South African government has managed to drive institutional change in climate policy significantly over the past 7 years.

  • Powerful coalitions of coal-related industries and their lobbies have constrained institutional change and managed to delay the implementation of carbon pricing measures.

  • A successfully managed renewable energy programme has started to transform a coal- and nuclear-powered electricity sector towards integrating sustainable energy technologies. The programme is vulnerable to intergovernmental opposition and requires management at the highest political levels.

  • Potential conflict with poverty reduction measures is not a major concern that actively hinders institutional change towards climate objectives. Predominantly non-poor actors frequently use poverty-related discourse to elevate their interests to issues of public concern.

  相似文献   

6.
This article shows the potential impact on global GHG emissions in 2030, if all countries were to implement sectoral climate policies similar to successful examples already implemented elsewhere. This assessment was represented in the IMAGE and GLOBIOM/G4M models by replicating the impact of successful national policies at the sector level in all world regions. The first step was to select successful policies in nine policy areas. In the second step, the impact on the energy and land-use systems or GHG emissions was identified and translated into model parameters, assuming that it would be possible to translate the impacts of the policies to other countries. As a result, projected annual GHG emission levels would be about 50 GtCO2e by 2030 (2% above 2010 levels), compared to the 60 GtCO2e in the ‘current policies’ scenario. Most reductions are achieved in the electricity sector through expanding renewable energy, followed by the reduction of fluorinated gases, reducing venting and flaring in oil and gas production, and improving industry efficiency. Materializing the calculated mitigation potential might not be as straightforward given different country priorities, policy preferences and circumstances.

Key policy insights

  • Considerable emissions reductions globally would be possible, if a selection of successful policies were replicated and implemented in all countries worldwide.

  • This would significantly reduce, but not close, the emissions gap with a 2°C pathway.

  • From the selection of successful policies evaluated in this study, those implemented in the sector ‘electricity supply’ have the highest impact on global emissions compared to the ‘current policies’ scenario.

  • Replicating the impact of these policies worldwide could lead to emission and energy trends in the renewable electricity, passenger transport, industry (including fluorinated gases) and buildings sector, that are close to those in a 2°C scenario.

  • Using successful policies and translating these to policy impact per sector is a more reality-based alternative to most mitigation pathways, which need to make theoretical assumptions on policy cost-effectiveness.

  相似文献   

7.
One of the most important challenges for the South East Europe region will be replacing more than 30% of its presently installed fossil fuel generation capacity by the end of 2030, and more than 95% by 2050 if its age structure is considered. This requires a strong policy framework to incentivise new investments in a region currently lacking investors, but also presents an opportunity to shape the electricity sector over the long term according to the broader energy transition strategy of the EU and the Energy Community. The aim of this paper is to assess what type of long-term pathways exist for electricity sector development in the region if they follow the energy transition process of the EU. In this model-based scenario assessment, long term electricity sector futures are explored using a set of interlinked electricity models evaluating the level of renewable energy investment required in the region to reach a deep decarbonization target, assuming emission reduction above 94% by 2050 compared to 1990 in line with the long term market integration and climate policy goals of the EU. It also explores what are the most important system wide impacts of the high deployment of renewable energy concerning generation adequacy and security of supply.

Key policy insights

  • Energy policies in the South East Europe (SEE) region, both at the national and regional level, should focus on enabling renewable energy integration, as this will be a key component of the future energy mix.

  • EU and Energy Community policies should be incorporated into national energy planning to ensure that SEE countries embark on the energy transition process at an early stage.

  • Stranded costs should be carefully considered in decision-making on new fossil-fuel generation and gas network investment in order to avoid lock-in to carbon intensive technologies.

  • If consistent decarbonization policy prevails, with a significant and persistent CO2 price signal, the role of natural gas remains transitory in the region.

  • The SEE region offers relatively cheap decarbonization options: the power sector can reduce GHG emissions above 94% by 2050 in the modelled scenarios.

  相似文献   

8.
Hydropower is the dominant renewable energy source to date, providing over two-thirds of all renewable electricity globally. For countries with significant hydropower potential, the technology is expected to play a major role in the energy transition needed to meet nationally determined contributions (NDCs) for greenhouse gas (GHG) emission reductions as laid out in the Paris Agreement. For the Republic of Ecuador, large hydropower is currently considered as the main means for attaining energy security, reducing electricity prices and mitigating GHG emissions in the long-term. However, uncertainty around the impacts of climate change, investment cost overruns and restrictions to untapped resources may challenge the future deployment of hydropower and consequently impact decarbonization efforts for Ecuador’s power sector. To address these questions, a partial equilibrium energy system optimization model for Ecuador (TIMES-EC) is used to simulate alternative electricity capacity expansion scenarios up to 2050. Results show that the share of total electricity supplied by hydropower in Ecuador might vary significantly between 53% to 81% by 2050. Restricting large hydropower due to social-environmental constraints can cause a fourfold increase in cumulative emissions compared to NDC implied levels, while a 25% reduction of hydropower availability due to climate change would cause cumulative emissions to double. In comparison, a more diversified power system (although more expensive) which limits the share of large hydropower and natural gas in favour of other renewables could achieve the expected NDC emission levels. These insights underscore the critical importance of undertaking detailed whole energy system analyses to assess the long-term challenges for hydropower deployment and the trade-offs among power system configuration, system costs and expected GHG emissions in hydropower-dependent countries, states and territories.

Key policy insights

  • Ecuador’s hydropower-based NDC is highly vulnerable to the occurrence of a dry climate scenario and restrictions to deployment of large hydropower in the Amazon region.

  • Given Ecuador’s seasonal runoff pattern, fossil-fuel or renewable thermoelectric backup will always be required, whatever the amount of hydropower installed.

  • Ecuador’s NDC target for the power sector is achievable without the deployment of large hydropower infrastructure, through a more diversified portfolio with non-hydro renewables.

  相似文献   

9.
Stable forests – those not already significantly disturbed nor facing predictable near-future risks of anthropogenic disturbance – may play a large role in the climate solution, due to their carbon sequestration and storage capabilities. Their importance is recognized by the Paris Agreement, but stable forests have received comparatively little attention through existing forest protection mechanisms and finance. Instead, emphasis has been placed on targeting locations where deforestation and forest degradation are happening actively. Yet stopping deforestation and forest degradation does not guarantee durable success, especially outside the geographic scope of targeted efforts. As a result, today’s stable forests may be at risk without additional efforts to secure their long-term conservation.

We synthesize the gaps in existing policy efforts that could address the climate-related benefits derived from stable forests, noting several barriers to action, such as uncertainty around the level of climate services that stable forests provide and difficulties describing the real level of threat posed. We argue that resource and finance allocation for stable forests should be incorporated into countries’ and donors’ comprehensive portfolios aimed at tackling deforestation and forest degradation as well as resulting emissions. A holistic and forward-looking approach will be particularly important, given that success in tackling deforestation and forest degradation where it is currently happening will need to be sustained in the long term.

Key policy insights

  • Climate policies, finance, and implementation have tended to focus on areas of recent forest loss and near-term threats of anthropogenic disturbance, resulting in an imbalance of effort that fails to adequately address stable forests.

  • In some contexts, policy measuresintended to secure the climate-related benefits of stable forests have competed poorly against more urgent threats. Policymakers and finance mechanisms should view stable forests as a complementary element within a holistic, long-term approach to resource management.

  • International mechanisms and national frameworks should be adjusted and resourced to promote the long-term sustainability and permanence of stable forests.

  • Beyond additional resources, the climate benefits of stable forests may be best secured by pro-actively designing implementing policies that recognize the rights and interests of stakeholders who are affected by land management decisions.

  相似文献   

10.
While carbon pricing is widely seen as a crucial element of climate policy and has been implemented in many countries, it also has met with strong resistance. We provide a comprehensive overview of public perceptions of the fairness of carbon pricing and how these affect policy acceptability. To this end, we review evidence from empirical studies on how individuals judge personal, distributional and procedural aspects of carbon taxes and cap-and-trade. In addition, we examine preferences for particular redistributive and other uses of revenues generated by carbon pricing and their role in instrument acceptability. Our results indicate a high concern over distributional effects, particularly in relation to policy impacts on poor people, in turn reducing policy acceptability. In addition, people show little trust in the capacities of governments to put the revenues of carbon pricing to good use. Somewhat surprisingly, most studies do not indicate clear public preferences for using revenues to ensure fairer policy outcomes, notably by reducing its regressive effects. Instead, many people prefer using revenues for ‘environmental projects’ of various kinds. We end by providing recommendations for improving public acceptability of carbon pricing. One suggestion to increase policy acceptability is combining the redistribution of revenue to vulnerable groups with the funding for environmental projects, such as on renewable energy.

Key policy insights

  • If people perceive carbon pricing instruments as fair, this increases policy acceptability and support.

  • People’s satisfaction with information provided by the government about the policy instrument increases acceptability.

  • While people express high concern over uneven distribution of the policy burden, they often prefer using carbon pricing revenues for environmental projects instead of compensation for inequitable outcomes.

  • Recent studies find that people’s preferences shift to using revenues for making policy fairer if they better understand the functioning of carbon pricing, notably that relatively high prices of CO2-intensive goods and services reduce their consumption.

  • Combining the redistribution of revenue to support both vulnerable groups and environmental projects, such as on renewable energy, seems to most increase policy acceptability.

  相似文献   

11.
State governments in the United States are well placed to identify opportunities for mitigation and the needs for adaptation to climate change. However, the cost of these efforts can have important implications for budgets that already face pressures from diverse areas such as unfunded pensions and growing health care costs. In this work, the current level of spending on climate-related activities at the state level are evaluated and policy recommendations are developed to improve financial management practices as they relate to climate risk. An examination of state budgets reveals that climate mitigation and adaptation activities represent less than 1% of spending in most states. The data collection highlights the obstacles to collecting accurate spending data and the lack of budgetary and accounting procedures in place. More importantly, the difficulty in benchmarking these activities poses challenges for the analysis of state-level policies as well as planning and modelling future climate-related spending. Other policy contexts, including public pensions and infrastructure, can provide guidance on budgetary and accounting tools that may help states prepare for and more efficiently manage climate-related expenditures.

Key policy insights

  • Climate change mitigation and adaptation will require substantial investments across many levels of government on a wide range of activities.

  • Currently, US states are not clearly demarcating climate expenditures, hindering the identification of climate-related budgetary risks.

  • In the absence of guidelines, these longer term fiscal outlays may remain chronically underfunded in favour of more near-term spending priorities.

  • Establishing appropriate financial management and data collection practices is important for more sophisticated cost-effectiveness and policy analyses.

  相似文献   

12.
Energy-intensive industries play an important role in low-carbon development, being particularly exposed to climate policies. Concern over possible carbon leakage in this sector poses a major challenge for designing effective carbon pricing instruments (CPI). Different methodologies for assessing carbon leakage exposure are currently used by different jurisdictions, each of them based on different approaches and indicators. This paper aims to analyse the extent to which the use of different methodologies leads to different results in terms of exposure to the risk of carbon leakage, using the Brazilian industry sector as a case study. Results indicate that carbon leakage exposure is an expected outcome of eventual CPI implementation in Brazilian industry. However, results vary according to the chosen methodology, so the definition of the criteria is paramount for assessing sectoral exposure to the risk of carbon leakage.

Key policy insights

  • Despite increasing discussion about the implementation of carbon pricing on the Brazilian industrial sector, the evaluation of carbon leakage risks is still neglected.

  • Assessments of the risk of carbon leakage are directly related to the indicators and criteria used by each methodology. Thus, a given subsector may present different levels of exposure to carbon leakage depending on the methodological choice.

  • More than a purely technical discussion, the methodological definition of carbon leakage risk is a political discussion – it can be well-conducted, leading to the success of a CPI, or even sabotaged, by implicitly subsidizing energy-intensive industries.

  相似文献   

13.
Climate policy uncertainty significantly hinders investments in low-carbon technologies, and the global community is behind schedule to curb carbon emissions. Strong actions will be necessary to limit the increase in global temperatures, and continued delays create risks of escalating climate change damages and future policy costs. These risks are system-wide, long-term and large-scale and thus hard to diversify across firms. Because of its unique scale, cost structure and near-term availability, Reducing Emissions from Deforestation and forest Degradation in developing countries (REDD+) has significant potential to help manage climate policy risks and facilitate the transition to lower greenhouse gas emissions. ‘Call’ options contracts in the form of the right but not the obligation to buy high-quality emissions reduction credits from jurisdictional REDD+ programmes at a predetermined price per ton of CO2 could help unlock this potential despite the current lack of carbon markets that accept REDD+ for compliance. This approach could provide a globally important cost-containment mechanism and insurance for firms against higher future carbon prices, while channelling finance to avoid deforestation until policy uncertainties decline and carbon markets scale up.

Key policy insights

  • Climate policy uncertainty discourages abatement investments, exposing firms to an escalating systemic risk of future rapid increases in emission control expenditures.

  • This situation poses a risk of an abatement ‘short squeeze,’ paralleling the case in financial markets when prices jump sharply as investors rush to square accounts on an investment they have sold ‘short’, one they have bet against and promised to repay later in anticipation of falling prices.

  • There is likely to be a willingness to pay for mechanisms that hedge the risks of abruptly rising carbon prices, in particular for ‘call’ options, the right but not the obligation to buy high-quality emissions reduction credits at a predetermined price, due to the significantly lower upfront capital expenditure compared to other hedging alternatives.

  • Establishing rules as soon as possible for compliance market acceptance of high-quality emissions reductions credits from REDD+ would facilitate REDD+ transactions, including via options-based contracts, which could help fill the gap of uncertain climate policies in the short and medium term.

  相似文献   

14.
Marisa Beck 《Climate Policy》2018,18(7):928-941
Narrative research is in vogue in the social sciences. A current debate in philosophy of economics concerns the role of storytelling in economic modelling, and a growing research programme in policy studies investigates the influence of stories on policy outcomes. These two streams of research have yet to be connected in an investigation of how scientific models, in addition to delivering numerical results, also shape policy through the stories that are told with them. This article addresses that gap, arguing that stories produced with integrated assessment models of global climate change are particular types of policy narratives. An analytical framework for studying their composition and content is suggested. The narrative analysis of modelled stories illuminates some of the models' underpinning values and beliefs. These values and beliefs influence the normative, policy-relevant conclusions generated with the models. For illustration, the framework is applied to the analysis of two variations of the Dynamic Integrated Climate Economy model that are used to tell different stories about climate justice and climate policy.

Key policy insights

  • IAMs consist of mathematical structures and the stories told by manipulating these structures.

  • There is an intricate but not fully deterministic relationship between IAM structures and stories.

  • Examining both these elements contributes to our understanding of the models' role in climate governance.

  • Appreciation of modelled stories may facilitate more effective use of IAMs in the policy process.

  相似文献   

15.
Brianna Craft 《Climate Policy》2018,18(9):1203-1209
The Paris Agreement establishes a global goal on adaptation which will be assessed through the global stocktake, the first attempt by the international climate change regime to measure collective progress on adaptation. This policy analysis identifies four main challenges to designing a meaningful assessment. These are: designing a system that can aggregate results; managing the dual mandate of reviewing collective progress and informing the enhancement of national level actions; methodological challenges in adaptation; and political challenges around measurement. We propose a mixed-methods approach to addressing these challenges, combining short-term needs for reporting with longer-term aims of enhancing national adaptation actions.

Key policy insights

  • Broad domains of adaptation activity could be identified within each of the objectives of the adaptation goal and progress could be measured and aggregated through simple scorecards.

  • The goal should have both process and outcome indicators as well as some narrative linking activities to outcomes over time.

  • Reporting could be a compilation of national data using qualitative and quantitative sources, aligning with the global stocktake’s aim of enhancing national actions over time and reducing immediate reporting burdens.

  • There would be a complementary role at least in the short term for an expert assessment of priority areas.

  相似文献   

16.
Energy and climate policies may have significant economy-wide impacts, which are regularly assessed based on quantitative energy-environment-economy models. These tend to vary in their conclusions on the scale and direction of the likely macroeconomic impacts of a low-carbon transition. This paper traces the characteristic discrepancies in models’ outcomes to their origins in different macro-economic theories, most importantly their treatment of technological innovation and finance. We comprehensively analyse the relevant branches of macro-innovation theory and group them into two classes: ‘Equilibrium’ and ‘Non-equilibrium’. While both approaches are rigorous and self-consistent, they frequently yield opposite conclusions for the economic impacts of low-carbon policies. We show that model outcomes are mainly determined by their representations of monetary and finance dimensions, and their interactions with investment, innovation and technological change. Improving these in all modelling approaches is crucial for strengthening the evidence base for policy making and gaining a more consistent picture of the macroeconomic impacts of achieving emissions reductions objectives. The paper contributes towards the ongoing effort of enhancing the transparency and understanding of sophisticated model mechanisms applied to energy and climate policy analysis. It helps tackle the overall ‘black box’ critique, much-cited in policy circles and elsewhere.

Key policy insights

  • Quantitative models commissioned by policy-makers to assess the macroeconomic impacts of climate policy generate contradictory outcomes and interpretations.

  • The source of the differences in model outcomes originates primarily from assumptions on the workings of the financial sector and the nature of money, and of how these interact with processes of low-carbon energy innovation and technological change.

  • Representations of innovation and technological change are incomplete in energy-economy-environment models, leading to limitations in the assessment of the impacts of climate-related policies.

  • All modelling studies should state clearly their underpinning theoretical school and their treatment of finance and innovation.

  • A strong recommendation is given for modellers of energy-economy systems to improve their representations of money and finance.

  相似文献   

17.
Discourse analyses and expert interviews about climate engineering (CE) report high levels of reflectivity about the technologies’ risks and challenges, implying that CE experts are unlikely to display moral hazard behaviour, i.e. a reduced focus on mitigation. This has, however, not been empirically tested. Within CE experts we distinguish between experts for radiation management (RM) and for carbon dioxide removal (CDR) and analyse whether RM and CDR experts display moral hazard behaviour. For RM experts, we furthermore look at whether they agree to laboratory and field research, and how they perceive the risks and benefits of one specific RM method, Stratospheric Aerosol Injection (SAI). Analyzing experts’ preferences for climate-policy options, we do not find a reduction of the mitigation budget, i.e. moral hazard, for RM or CDR experts compared to climate-change experts who are neither experts for RM nor for CDR. In particular, the budget shares earmarked for RM are low. The perceptions of risks and benefits of SAI are similar for RM and climate-change experts. Despite the difference in knowledge and expertise, experts and laypersons share an understanding of the benefits, while their perceptions of the risks differ: experts perceive the risks to be larger.

Key policy insights

  • Experts surveyed all prioritize mitigation over carbon dioxide removal and in particular radiation management.

  • In the views of the experts, SAI is not a viable climate policy option within the next 25 years, and potentially beyond, as global field-testing (which would be a precondition for long-term deployment) is widely rejected.

  • In the case of SAI, greater knowledge leads to increased awareness of the uncertainty and complexity involved. Policy-makers need to be aware of this relationship and the potential misconceptions among laypersons with limited knowledge, and should follow the guidelines about communicating risks and uncertainties of CE that experts have been advised to follow.

  相似文献   

18.
Despite the ambitious temperature goal of the 2015 Paris Agreement, the pace of reducing global CO2 emissions remains sluggish. This creates conditions in which the idea of temperature ‘overshoot and peak-shaving’ is emerging as a possible strategy to meet the Paris goal. An overshoot and peak-shaving scenario rests upon the ‘temporary’ use of speculative solar radiation management (SRM) technologies combined with large-scale carbon dioxide removal (CDR). Whilst some view optimistically the strategic interdependence between SRM and CDR, we argue that this strategy comes with a risk of escalating ‘climate debt’. We explain our position using the logic of debt and the analogy of subprime mortgage lending. In overshoot and peak-shaving scenarios, the role of CDR and SRM is to compensate for delayed mitigation, placing the world in a double debt: ‘emissions debt’ and ‘temperature debt’. Analogously, this can be understood as a combination of ‘subprime mortgage’ (i.e. large-scale CDR) and ‘home-equity-line-of-credit’ (i.e. temporary SRM). With this analogy, we draw some important lessons from the 2007–2009 US subprime mortgage crisis. The analogy signals that the efficacy of temporary SRM cannot be evaluated in isolation of the feasibility of large-scale CDR and that the failure of the overshoot promise will lead to prolonged peak-shaving, masking an ever-rising climate debt. Overshoot and peak-shaving scenarios should not be presented as a secured feasible investment, but rather as a high-risk speculation betting on insecure promises. Obscuring the riskiness of such scenarios is a precipitous step towards escalating a climate debt crisis.

Key policy insights

  • The slow progress of mitigation increases the attraction of an ‘overshoot and peak-shaving’ scenario which combines temporary SRM with large-scale CDR

  • Following the logic of debt, the role of CDR and SRM in this scenario is to compensate for delayed mitigation, creating a double debt of CO2 emissions and global temperature

  • Using the analogy of subprime lending, this strategy can be seen as offering a combination of subprime mortgage and open-ended ‘line-of-credit’

  • Because the ‘success’ of peak-shaving by temporary SRM hinges critically on the overshoot promise of large-scale CDR, SRM and CDR should not be discussed separately

  相似文献   

19.
The Paris Agreement is the last hope to keep global temperature rise below 2°C. The consensus agrees to holding the increase in global average temperature to well below 2°C above pre-industrial levels, and to aim for 1.5°C. Each Party’s successive nationally determined contribution (NDC) will represent a progression beyond the party’s then current NDC, and reflect its highest possible ambition. Using Ireland as a test case, we show that increased mitigation ambition is required to meet the Paris Agreement goals in contrast to current EU policy goals of an 80–95% reduction by 2050. For the 1.5°C consistent carbon budgets, the technically feasible scenarios' abatement costs rise to greater than €8,100/tCO2 by 2050. The greatest economic impact is in the short term. Annual GDP growth rates in the period to 2020 reduce from 4% to 2.2% in the 1.5°C scenario. While aiming for net zero emissions beyond 2050, investment decisions in the next 5–10 years are critical to prevent carbon lock-in.

Key policy insights

  • Economic growth can be maintained in Ireland while rapidly decarbonizing the energy system.

  • The social cost of carbon needs to be included as standard in valuation of infrastructure investment planning, both by government finance departments and private investors.

  • Technological feasibility is not the limiting factor in achieving rapid deep decarbonization.

  • Immediate increased decarbonization ambition over the next 3–5 years is critical to achieve the Paris Agreement goals, acknowledging the current 80–95% reduction target is not consistent with temperature goals of ‘well below’ 2°C and pursuing 1.5°C.

  • Applying carbon budgets to the energy system results in non-linear CO2 emissions reductions over time, which contrast with current EU policy targets, and the implied optimal climate policy and mitigation investment strategy.

  相似文献   

20.
This paper explores policies for Negative Emissions Technologies (NETs), in an attempt to move beyond the supply-side focus of the majority of NETs research, as well as the current dominance of carbon pricing as the main NETs policy proposal. The paper identifies a number of existing policies from four key areas – energy/transport, agriculture, sub-soil, and oceans – which will have an impact on three NETs: Bioenergy with Carbon Capture and Storage (BECCS), Direct Air Capture (DAC), and terrestrial Enhanced Rock Weathering (ERW). We propose that non-climate co-benefits may be valuable in terms of the policy ‘demand pull’ for NETs; in particular, we find that ERW may provide multiple co-benefits which can be mandated through existing policy structures. However, interaction with numerous policy areas may also create barriers, particularly where there is tension between the priorities of different government departments. On the basis of existing and analogous policies from a range of geographical contexts and scales, this paper proposes four options for NETs policy that could be reasonably implemented in the near-term. We also argue that ERW demonstrates the importance of scale and framing, because the policy environment depends on whether it is framed as a soil amendment at local scales or as a climate stabilization technique at international scale.

Key policy insights

  • Co-benefits may assist the ‘demand pull’ for novel technologies by providing multiple policy angles for incentivisation rather than relying on a ‘fix-all’ policy such as a high carbon price.

  • DAC with storage might be overly reliant on a high carbon price, because it only provides one core benefit – that of atmospheric carbon reduction.

  • ERW may provide multiple co-benefits which can be mandated through existing policy structures, but should focus on using waste rock rather than mining virgin material.

  • We propose four near-term options for NETs policy: funding for small-scale BECCS demonstration and an international biomass certification mechanism; small-scale loans for ERW on farms and promotion of locally-sourced rock residues; amendment of fertilizer subsidy schemes to include silicate rock; and a clearer framework for licensing sub-soil access for CO2 storage.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号