首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 781 毫秒
1.
The Three-River Headwaters region in China is an ecological barrier providing environmental protection and regional sustainable development for the mid-stream and downstream areas, which also plays an important role in animal husbandry in China. This study estimated the grassland yield in the Three-River Headwaters region based on MODIS NPP data, and calculated the proper livestock-carrying capacity of the grassland. We analyzed the overgrazing number and its spatial distribution characteristics through data comparison between actual and proper livestock-carrying capacity. The results showed the following:(1) total grassland yield(hay) in the Three-River Headwaters region was 10.96 million tons in 2010 with an average grassland yield of 465.70 kg/hm2(the spatial distribution presents a decreasing trend from the east and southeast to the west and northwest in turn);(2) the proper livestock-carrying capacity in the Three-River Headwaters region is 12.19 million sheep units(hereafter described as "SU"), and the average stocking capacity is 51.27 SU [the proper carrying capacity is above 100 SU/km2in the eastern counties, 60 SU/km2in the central counties(except Madoi County), and 30 SU/km2in the western counties]; and(3) total overgrazing number was 6.52 million SU in the Three-River Headwaters region in 2010, with an average overgrazing ratio of 67.88% and an average overgrazing number of 27.43 SU/km2. A higher overgrazing ratio occurred in Tongde, Xinghai, Yushu, Henan and Zêkog. There was no overgrazing in Zhiduo, Tanggula Township and Darlag, Qumerleb and Madoi. The remainder of the counties had varying degrees of overgrazing.  相似文献   

2.
Supported by MSS images in the mid and late 1970s,TM images in the early 1990s and TM/ETM images in 2004,grassland degradation in the"Three-River Headwaters"region (TRH region)was interpreted through analysis on RS images in two time series,then the spatial and temporal characteristics of grassland degradation in the TRH region were analyzed since the 1970s.The results showed that grassland degradation in the TRH region was a continuous change process which had large affected area and long time scale,and rapidly strengthen phenomenon did not exist in the 1990s as a whole.Grassland degradation pattern in the TRH region took shape initially in the mid and late 1970s.Since the 1970s,this degradation process has taken place continuously,obviously characterizing different rules in different regions.In humid and semi-humid meadow region,grassland firstly fragmentized, then vegetation coverage decreased continuously,and finally"black-soil-patch"degraded grassland was formed.But in semi-arid and arid steppe region,the vegetation coverage decreased continuously,and finally desertification was formed.Because grassland degradation had obviously regional differences in the TRH region,it could be regionalized into 7 zones, and each zone had different characteristics in type,grade,scale and time process of grassland degradation.  相似文献   

3.
The Three-River Headwaters Region (TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological secu- rity of China. Because of climate changes and human activities, ecological degradation oc- curred in this region. Therefore, "The nature reserve of Three-River Sou,'ce Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following: (1) In the past 12 years (2000-2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend. (2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure. (3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south. (4) The reverse characteristics of vegetation cov- erage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin. (5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature. (6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project.  相似文献   

4.
The Three-River Headwaters Region(TRHR), which is the source area of the Yangtze River, Yellow River, and Lancang River, is of key importance to the ecological security of China. Because of climate changes and human activities, ecological degradation occurred in this region. Therefore, "The nature reserve of Three-River Source Regions" was established, and "The project of ecological protection and construction for the Three-River Headwaters Nature Reserve" was implemented by the Chinese government. This study, based on MODIS-NDVI and climate data, aims to analyze the spatiotemporal changes in vegetation coverage and its driving factors in the TRHR between 2000 and 2011, from three dimensions. Linear regression, Hurst index analysis, and partial correlation analysis were employed. The results showed the following:(1) In the past 12 years(2000–2011), the NDVI of the study area increased, with a linear tendency being 1.2%/10a, of which the Yangtze and Yellow River source regions presented an increasing trend, while the Lancang River source region showed a decreasing trend.(2) Vegetation coverage presented an obvious spatial difference in the TRHR, and the NDVI frequency was featured by a bimodal structure.(3) The area with improved vegetation coverage was larger than the degraded area, being 64.06% and 35.94%, respectively during the study period, and presented an increasing trend in the north and a decreasing trend in the south.(4) The reverse characteristics of vegetation coverage change are significant. In the future, degradation trends will be mainly found in the Yangtze River Basin and to the north of the Yellow River, while areas with improving trends are mainly distributed in the Lancang River Basin.(5) The response of vegetation coverage to precipitation and potential evapotranspiration has a time lag, while there is no such lag in the case of temperature.(6) The increased vegetation coverage is mainly attributed to the warm-wet climate change and the implementation of the ecological protection project.  相似文献   

5.
Changes in soil organic carbon(SOC) in rangelands has been extensively investigated. Grazing in outlying rangeland areas has caused severe impacts on ecosystem functions. To reveal the effects of grazing on SOC, we evaluated the grassland in Xilin Gol League, Inner Mongolia, China. Grazing intensity was determined by using two image sets of vegetation index with normalized differences in grazing periods(July 12 th and 28th). The range of variation in vegetation index was then used to measure the grazing intensity. The SOC storage and density were obtained by conducting experiments on field soil samples. Results showed that 1) the grazing intensity in Xilin Gol League declined gradually from west to east; by contrast, the spatial distribution of SOC density increased gradually. 2) As grazing intensity increased, the carbon storage of rangeland decreased evidently. Minimum carbon storage was observed in grasslands classified under extreme overgrazing; by comparison, maximum values were found in areas classified under light overgrazing to moderate grazing. 3) The estimated soil carbon storage was 8.48 × 10~(11) kg, and the average carbon density was 4.08 kg/m~2. Our research demonstrated that grazing intensity likely affects soil carbon. Moderate grazing is an optimum strategy to maintain carbon storage and ensure sustainable grassland utilization.  相似文献   

6.
Based on the GIMMS AVHRR NDVI data (8 km spatial resolution) for 1982-2000, the SPOT VEGETATION NDVI data (1 km spatial resolution) for 1998-2009, and observa- tional plant biomass data, the CASA model was used to model changes in alpine grassland net primary production (NPP) on the Tibetan Plateau (TP). This study will help to evaluate the health conditions of the alpine grassland ecosystem, and is of great importance to the pro- motion of sustainable development of plateau pasture and to the understanding of the func- tion of the national ecological security shelter on the TP. The spatio-temporal characteristics of NPP change were investigated using spatial statistical analysis, separately on the basis of physico-geographical factors (natural zone, altitude, latitude and longitude), river basin, and county-level administrative area. Data processing was carried out using an ENVI 4.8 platform, while an ArcGIS 9.3 and ANUSPLIN platform was used to conduct the spatial analysis and mapping. The primary results are as follows: (1) The NPP of alpine grassland on the TP gradually decreases from the southeast to the northwest, which corresponds to gradients in precipitation and temperature. From 1982 to 2009, the average annual total NPP in the TP alpine grassland was 177.2x1012 gC yrl(yr represents year), while the average annual NPP was 120.8 gC m^-2 yr^-1. (2) The annual NPP in alpine grassland on the TP fluctuates from year to year but shows an overall positive trend ranging from 114.7 gC m^-2 yr^-1 in 1982 to 129.9 gC m^-2 yr^-1 in 2009, with an overall increase of 13.3%; 32.56% of the total alpine grassland on the TP showed a significant increase in NPP, while only 5.55% showed a significant decrease over this 28-year period. (3) Spatio-temporal characteristics are an important control on an- nual NPP in alpine grassland: a) NPP increased in most of the natural zones on the TP, only showing a slight decrease in the Ngari montane desert-steppe and desert zone. The positive trend in NPP in the high-cold shrub-meadow zone, high-cold meadow steppe zone and high-cold steppe zone is more significant than that of the high-cold desert zone; b) with in- creasing altitude, the percentage area with a positive trend in annual NPP follows a trend of "increasing-stable-decreasing", while the percentage area with a negative trend in annual NPP follows a trend of "decreasing-stable-increasing", with increasing altitude; c) the varia- tion in annual NPP with latitude and longitude co-varies with the vegetation distribution; d) the variation in annual NPP within the major river basins has a generally positive trend, of which the growth in NPP in the Yellow River Basin is most significant. Results show that, based on changes in NPP trends, vegetation coverage and phonological phenomenon with time, NPP has been declining in certain places successively, while the overall health of the alpine grassland on the TP is improving.  相似文献   

7.
Crop potential productivity is a key index of scientifically appraising crop production and land population-supporting capacity. This study firstly simulated the potential and waterlimited yield of summer maize in the Beijing-Tianjin-Hebei (BTH) region using WOFOST model with meteorological data of 40 years, and then analyzed yield gaps between the actual and potential yield based on statistical data at county level. The potential and water-limited yield of summer maize in the BTH region is 6854–8789 kg/hm2 and 6434–8741 kg/hm2, and the weighted average for whole region is 7861 kg/hm2 and 7185 kg/hm2, respectively. The simulated yields gradually decrease from northeast to southwest with changes in climatic conditions particularly temperature and precipitation. Annual variation of potential yield is higher in the central and southern parts than the northeastern part. Compared to potential yield, the water-limited yield has higher coefficient of variation (CV), because of precipitation effects. The actual yield of summer maize was 2537–8730 kg/hm2, regionally averaged at 5582 kg/hm2, about 70% of the potential yield, implying that the region has room to increase the yield by improving crop management and irrigation systems.  相似文献   

8.
The Bohai Rim region is one the most important bases for commodity grain pro-duction in China.With the rapid pace of agricultural industrialization,nitrogenous fertilizer has been used at an ever increasing rate,which resulted in the trace of accumulative nitrogen in the soil and caused serious environmental problems.In this study we made use of the farm-land nitrogen balance model to assess the spatial difference of farmland nitrogen nutrient budget in the Bohai Rim region in 2008 with the assistance of GIS.Our results indicated that:1) Farmland in this region has a nitrogen surplus totaling 5.0822 million tons,or an average of 288.54 kg/ha.2) In the Bohai Rim region,farmland nitrogen input and farmland nitrogen budget both show a spatial differentiation.Major grain-producing areas have a higher nitrogen input than that of the grazing-farming areas.The main sources of nitrogen input include chemical fertilizer,organic fertilizer,deposition from atmospheric drying and wetting,and biological fixation,which account for 79.47%,9.53%,4.62%,and 3.58% of the total input,respectively.Therefore,chemical fertilizer is the predominant source of nitrogen input to farmland.3) A total of 3.3398 million tons of nitrogen were output from the farmland via har-vested crops and it accounts for 52.36% of the total nitrogen output from farmland in this region.On average,the amount of nitrogen output from unit farmland is equal to 176.65kg/ha.This study has shed light on farmland nitrogen budget and its spatial variation in the study area,may provide scientific evidences for rationalizing the use of chemical fertilizer and managing agricultural operation on the regional scale and is also valuable for improving the economic and ecological efficiency of fertilizer use at the regional scale.  相似文献   

9.
Dai  Erfu  Wang  Yahui 《地理学报(英文版)》2020,30(6):1005-1020
Ecosystem services, which include water yield services, have been incorporated into decision processes of regional land use planning and sustainable development. Spatial pattern characteristics and identification of factors that influence water yield are the basis for decision making. However, there are limited studies on the driving mechanisms that affect the spatial heterogeneity of ecosystem services. In this study, we used the Hengduan Mountain region in southwest China, with obvious spatial heterogeneity, as the research site. The water yield module in the In VEST software was used to simulate the spatial distribution of water yield. Also, quantitative attribution analysis was conducted for various geomorphological and climatic zones in the Hengduan Mountain region by using the geographical detector method. Influencing factors, such as climate, topography, soil, vegetation type, and land use type and pattern, were taken into consideration for this analysis. Four key findings were obtained. First, water yield spatial heterogeneity is influenced most by climate-related factors, where precipitation and evapotranspiration are the dominant factors. Second, the relative importance of each impact factor to the water yield heterogeneity differs significantly by geomorphological and climatic zones. In flat areas, the influence of evapotranspiration is higher than that of precipitation. As relief increases, the importance of precipitation increases and eventually, it becomes the most influential factor. Evapotranspiration is the most influential factor in a plateau climate zone, while in the mid-subtropical zone, precipitation is the main controlling factor. Third, land use type is also an important driving force in flat areas. Thus, more attention should be paid to urbanization and land use planning, which involves land use changes, to mitigate the impact on water yield spatial pattern. The fourth finding was that a risk detector showed that Primarosol and Anthropogenic soil areas, shrub areas, and areas with slope 5° and 25°–35° should be recognized as water yield important zones, while the corresponding elevation values are different among different geomorphological and climatic zones. Therefore, the spatial heterogeneity and influencing factors in different zones should be fully con-sidered while planning the maintenance and protection of water yield services in the Hengduan Mountain region.  相似文献   

10.
The first-stage of an ecological conservation and restoration project in the Three-River Source Region(TRSR), China, has been in progress for eight years. However, because the ecological effects of this project remain unknown, decision making for future project implementation is hindered. Thus, in this study, we developed an index system to evaluate the effects of the ecological restoration project, by integrating field observations, remote sensing, and process-based models. Effects were assessed using trend analyses of ecosystem structures and services. Results showed positive trends in the TRSR since the beginning of the project, but not yet a return to the optima of the 1970 s. Specifically, while continued degradation in grassland has been initially contained, results are still far from the desired objective, ‘grassland coverage increasing by an average of 20%–40%'. In contrast, wetlands and water bodies have generally been restored, while the water conservation and water supply capacity of watersheds have increased. Indeed, the volume of water conservation achieved in the project meets the objective of a 1.32 billion m~3 increase. The effects of ecological restoration inside project regions was more significant than outside, and, in addition to climate change projects, we concluded that the implementation of ecological conservation and restoration projects has substantially contributed to vegetation restoration. Nevertheless, the degradation of grasslands has not been fundamentally reversed, and to date the project has not prevented increasing soil erosion. In sum, the effects and challenges of this first-stage project highlight the necessity of continuous and long-term ecosystem conservation efforts in this region.  相似文献   

11.
中国草畜平衡状态时空演变指示的草地生态保护格局   总被引:2,自引:0,他引:2  
黄麟  翟俊  祝萍  郑瑜晗 《地理学报》2020,75(11):2396-2407
中国草原牧区作为重要生态安全屏障和草地畜牧业生产基地,其草畜平衡状态直接影响草地退化与恢复,进而影响草地生态系统服务能力的强弱。本文分析了2000—2015年主要草原牧区草地植被覆盖、牧草供给、草畜平衡状态的时空变化特征,深入探讨草地退化与恢复及载畜压力下草地生态系统保护与恢复空间格局。结果表明:过去16年主要草原牧区草地面积净减少约163万hm2,6.7%的草地出现植被覆盖退化,而5.4%的草地呈现植被覆盖明显恢复。天然草地牧草供给量以增加为主,年增率约0.3 kg/hm2,然而其载畜压力亦持续增加,不考虑补饲的载畜压力指数高达3.8,除内蒙古东北部、青藏高原中部仍有载畜潜力,其余多处于超载状态;考虑实际冷季补饲的载畜压力指数约3.1,内蒙古中东部有所缓解;假设冷季全额补饲则载畜压力指数减至1.9,内蒙古、青藏高原等区域明显缓解。叠加上述数据,本文针对自然保护地、牧区、半农半牧区和农区等不同区域的草地生态保护格局,提出了平衡草地生态保护与畜牧生产利用的不同发展策略。  相似文献   

12.
30年来青海三江源生态系统格局和空间结构动态变化   总被引:23,自引:2,他引:21  
在多期遥感图像支持下,通过对生态系统类型进行辨识,获得了三江源地区生态系统类型空间分布数据集,并在此基础上分析了20世纪70年代中后期以来青海三江源地区生态系统格局和空间结构的动态变化。结果表明:30年来三江源地区生态系统格局稳定少动,生态系统类型变化相对缓慢,农田、森林、草地、水体与湿地和荒漠生态系统的年变化速率均小于0.5%,是长江、黄河流域乃至全国各区域生态系统转类变幅最小的稳定少动区。20世纪70年代中后期以来三江源地区生态系统类型的转变主要发生在草地和水体与湿地生态系统上,草地生态系统的变化主要发生在中部和东部地区,水体与湿地生态系统的变化主要发生在广大西部和北部地区。  相似文献   

13.
近30 年来青海三江源地区草地退化的时空特征   总被引:42,自引:2,他引:40  
在20 世纪70 年代中后期MSS 图像、90 年代初期TM 图像和2004 年TM/ETM 图像支 持下, 通过三期遥感影像的直接对比分析, 获得了三江源地区草地退化空间数据集, 并在此 基础上分析了70 年代以来青海三江源地区草地退化的主要时空特征。结果表明: 三江源地区 草地退化是一个在空间格局上影响范围大, 在时间过程上持续时间长的连续变化过程。研究 发现, 三江源草地退化的格局在70 年代中后期已基本形成, 70 年代中后期至今, 草地的退 化过程一直在继续发生, 总体上不存在90 年代至今的草地退化急剧加强现象。草地退化的过 程在不同区域和地带有明显不同的表现, 如在湿润半湿润地带的草甸类草地上, 发生着草地 破碎化先导, 随后发生覆盖度持续降低, 最后形成黑土滩的退化过程; 在干旱、半干旱地带 的草原类草地上, 发生着覆盖度持续降低, 最后形成沙地和荒漠化草地的退化过程。三江源 地区草地退化具有明显的区域差异, 草地退化可以分为7 个区, 各区草地退化在类型、程度、 范围与时间过程方面具有明显不同的特点。  相似文献   

14.
Being a key ecological security barrier and production base for grassland animal husbandry in China,the balance between grassland forage supply and livestock-carrying pressure in North China directly affects grassland degradation and restoration,thereby impacting grassland ecosystem services.This paper analyzes the spatiotemporal variation in grassland vegetation coverage,forage supply,and the balance between grassland forage supply and livestock-carrying pressure from 2000 to 2015 in North China.We then discuss the spatial pattern of grassland ecological conservation under the impacts of grassland degradation and restoration,and livestock-carrying pressure.Over the last 16 years,the total grassland area in North China decreased by about 16,000 km2,with vegetation coverage degraded by 6.7% of the grasslands but significantly restored by another 5.4% of grasslands.The provisioning of forage by natural grassland mainly increased over time,with an annual growth rate of approximately 0.3 kg/ha,but livestock-carrying pressure also increased continuously.The livestock-carrying pressure index without any supplementary feeding reached as high as 3.8.Apart from the potential livestock-carrying capacity in northeastern Inner Mongolia and the central Tibetan Plateau,most regions in North China are currently overloaded.Considering the actual supplementary feeding during the cold season,the livestock-carrying pressure index is about 3.1,with the livestock-carrying pressure mitigated in central and eastern Inner Mongolia.Assuming full supplementary feeding in the cold season,livestock-carrying pressure index will fall to 1.9,with the livestock-carrying pressure alleviated significantly in Inner Mongolia and on the Tibetan Plateau.Finally,we propose different conservation and development strategies to balance grassland ecological conservation and animal husbandry production in different regions of protected areas,pastoral areas,farming-pastoral ecotone,and farming areas,according to the grassland ecological protection patterns.  相似文献   

15.
三江源区草地生态系统综合评估指标体系   总被引:17,自引:1,他引:16  
基于联合国新千年全球生态系统评估 (MA)概念框架,提出了系统完整的三江源区草地生态系统评估指标体系,包括生态系统结构、支持功能、调节功能和供给功能的4大类15个一级指标、75个二级指标。针对位于青藏高原东部江河源区的草地生态系统的区域特点和人类对其功能的需求分析 ,设计了以土地覆盖结构和草地退化结构为核心的生态系统结构指标群;以初级生产力为核心的支持功能指标群;以水、碳调节为核心的调节功能指标群,以及以水供给和草地承载力为核心的供给功能指标群。在该指标体系中,设计了草地退化遥感分类系统,以实现年代际时间尺度草地生态系统退化过程的动态分析评估;提出了退化草地态势遥感分类系统,以实现大型生态工程实施后年际时间尺度草地生态系统退化态势的分析和评估。  相似文献   

16.
青海三江源地区近50年来的气温变化   总被引:24,自引:1,他引:23  
易湘生  尹衍雨  李国胜  彭景涛 《地理学报》2011,66(11):1451-1465
利用青海三江源地区12个气象站1961-2010年月气温资料及滑动平均、线性倾向估计、样条函数插值、Mann-Kendal检验等方法对气温变化的分析结果表明:(1)青海三江源地区及3个源区年、四季平均气温出现多次冷暖波动过程,但在统计意义上均呈显著增温趋势,2001年以后增温明显.其中,春、夏、秋季和全年平均气温从20...  相似文献   

17.
中国草原牧区和半牧区草畜平衡状况监测与评价   总被引:7,自引:0,他引:7  
草原超载过牧是造成我国草原大面积退化、沙化的主要原因之一,草畜平衡监测、评价和管理是实现我国草原植被恢复和重建的关键,也是研究的热点和难点。本文采用遥感和地面调查相结合的方法从宏观上监测和评价了农业部认定的264个牧区和半牧区县的草畜平衡状况,主要结论如下:(1)2008年监测区平均草畜平衡指数为33.58%,总体处于超载状态;(2)120个牧区县草畜平衡指数为27.37%,144个半牧业县为42.07%,半牧区县是我国实行草畜平衡管理的重点和难点;(3)六大牧区中牧区县2008年超载程度排序为:甘肃>四川>新疆>青海>西藏>内蒙古,半牧区县超载程度排序为青海>西藏>内蒙古>新疆>四川>甘肃。本文所得结论可为我国草原资源管理和保护提供参考价值和借鉴意义。  相似文献   

18.
放牧家畜与食草野生动物争草(畜兽冲突)是人兽冲突在草原放牧业中的具体体现,其涉及面广,对牧民生计影响明显。畜兽冲突强度研究对完善野生动物损害补偿制度、促进人与自然和谐共生具有重要意义。论文通过地面调查与模型模拟,考虑草地牧草产量、家畜存栏量和食草野生动物种群数量,提出了放牧家畜与食草野生动物争草冲突强度量化方法,评价了三江源国家公园玛多县牧草地畜兽争草强度。结果表明:(1)据2022年样线调查和随机森林模型估计,玛多县藏野驴(Equus kiang)、藏原羚(Procapra picticaudata)种群密度分别为0.2157头/km2、0.1655只/km2,种群数量分别为5307头、4073只,折合23264羊单位(SU),2018年末各类家畜存栏量34.2万SU,畜兽争草相对强度为1/14.7。(2)玛多县高寒草甸、高寒草原的可食牧草产量分别为118.7 g/m2、88.3 g/m2,可承载密度分别为0.2710 SU/hm2、0.1532 SU/hm2,理论承载力52.85万SU。家畜承载率、食草野生动物承载率、家畜+食草野生动物承载率分别为64.7%、4.4%和69.1%。(3)国家公园内的乡镇,草地承载力盈余,家畜承载率低、野生动物承载率高,但畜兽争草相对强度较大,建议完善移民搬迁、野生动物损害补偿制度,强化国家公园体制建设;国家公园外的乡镇,草地超载严重,家畜承载率高,畜兽争草强度不高,建议减畜增效、绿色发展。  相似文献   

19.
The Nord region of northern France, comprising the départements of the Nord and the Pas-de-Calais, epitomises the economic and social problems endured by many areas of the developed world which underwent rapid industrial growth and urbanisation in the nineteenth and early twentieth centuries but have experienced economic contraction and social depression since 1950. In 1968 the Nord region contained 3.8 million inhabitants (7.6 per cent of the French population) on 12,000 km2 (2.3 per cent of the national area) at an average density of 308 persons/km2, by comparison with the national average of 91/km2 (Roques 1969, p. 7). Eighty-one per cent of the regional population lived in urban areas, by contrast with 67 per cent nationally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号