首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. A. Stepashko 《Oceanology》2006,46(3):411-417
A correlation between the age and position of 25 seamounts in the West Pacific Ocean formed, judging from the 40Ar/39Ar data, in the period from 120 to 65 My B.P. was recognized. The seamounts studied are joined into linear zones with extensions up to 5000 km; the age of the seamounts decreases in the southeastern direction. In the interval 93–83 My B.P., the seamount formation was extremely rapid; this interval coincides with the period of acceleration in the Pacific plate movements. In the middle of this interval, 87 My B.P., an intensification of the magmatic activity accompanying the seamount formation was observed simultaneously with the extinction of the Isanagi plate and the appearance of the Kula plate. The results of this study are in the best agreement with the hypothesis of diffuse tension of the Pacific plate at its displacement in the northwestern direction, which led to the formation of weak zones of decompressional melting. The complementary character of the system of tension zones in the western part of the ocean with respect to the system of major transform faults in its eastern part, which probably reflects the common general process of deformation of the Pacific lithosphere in the Cretaceous, is shown.  相似文献   

2.
Geophysical data on the northern part of the Pacific Ocean were systematized to compile a map of geomagnetic and geothermal studies of the Bering Sea. The absence of reliable data about the formation time of the Bering Sea structures of oceanic and continental origins is noted; this hampered the assessment of the geodynamical processes in the North Pacific. Based on the geophysical data, we estimated the age of the structures of the Bering Sea floor such as the Commander Basin (21 My), the Shirshov Ridge (95 and 33 My in the northern and southern parts, respectively), the Aleutian Basin (70 My), the Vitus Arch (44 My), the Bowers Ridge (30 My), and the Bowers Basin (40 My). These values are confirmed by the geological, geophysical, and kinematic data. A numerical modeling of the formation of extensive regional structures (Emperor Fracture Zone, Chinook Trough, and others) in the Northern Pacific is carried out. A conclusion was made on the basis of the geological and geothermal analysis that the northern and southern parts of the Shirshov Ridge have different geological ages and different tectonic structures. The northern part of the ridge is characterized by an upthrust-nappe terrain origin, while the southern part has originated from a torn-away island arc similar to the origin of the Bowers Ridge. The sea floor of the Aleutian Basin represents a detached part of the Upper Cretaceous Kula plate, on which spreading processes took place in the Vitus Arch area in the Eocene. The final activity phase in the Bering Sea began 21 My B.P. by spreading of the ancient oceanic floor of the Commander Basin. Based on the age estimations of the structures of the Bering Sea floor, the results of the modeling of the process of formation of regional fracture zones and of the geomagnetic, geothermal, tectonic, geological, and structural data, we calculated and compiled a kinematic model (with respect to a hot spot reference system) of the northern part of the Pacific Ocean for 21 My B.P.  相似文献   

3.
A new map of chrons for the American-Antarctic Ridge area has been compiled. Its analysis and the calculations performed showed that the seafloor spreading with respect to its axis started before 85 My B.P. The spreading directions were 115° (chrons C34-C29), 145° (chrons C29-C21), 110° (chrons C21-C5C), and 85° (chrons C5C-C1). The maximum rates of about 4 cm/year were reached earlier than 52 My B.P.; subsequently, a progressive general decrease in the spreading rate has been observed. According to our forecast, the spreading may cease in the following 3.5 My.  相似文献   

4.
从地质演化特征探讨墨西哥湾地区油气富集的基本规律   总被引:2,自引:0,他引:2  
墨西哥湾东部主体经历了中生代裂谷拉张、中侏罗世裂谷和地壳衰减、晚侏罗世洋壳形成及早白垩世的区域沉降4个演化阶段;西部主要受中生代太平洋板块向北美板块的俯冲影响,属弧后拉张。由于持续稳定的沉降,墨西哥湾沉积了巨厚的以海相地层为主的中生代地层,并提供了有利的烃源岩、储层和盖层。大量的构造、地层和复合型圈闭为油气富集提供了有利的场所。墨西哥湾盆地为典型的高演化拉张盆地,巴西东部(包括海区)为中等演化拉张盆地,二者均已成为重要的油气富集区。我国东部海区中生界南部以海相地层为主,北部以陆相地层为主,为一个低—中等演化的拉张盆地。前二者的油气富集规律为我国东部海区中生代盆地的找油提供了借鉴作用。  相似文献   

5.
The Clarion-Clipperton Zone (CCZ) of the central Pacific is one of the few regions in the world’s oceans that are still lacking full coverage of reliable identifications of seafloor spreading anomalies. This is mainly due to the geometry of the magnetic lineations’ strike direction sub-parallel to the Earth’s magnetic field vector near the equator resulting in low amplitude magnetic anomalies, and the remoteness of the region which has hindered systematic surveying in the past. Following recently granted research licenses for manganese nodules in the CCZ by the International Seabed Authority, new magnetic data acquired with modern instrumentation became available which combined with older underway data make the identification of seafloor spreading anomalies possible for large parts of the CCZ and adjacent areas. The spreading rates deduced from the seafloor spreading patterns show a sharp increase at the end of Chron 21 (47.5 Ma) which corresponds to the age of the bend in the Hawaii-Emperor seamount chain and an associated plate tectonic reorganisation in the Central Pacific. An accurate map of crustal ages for the central-eastern Pacific based on our anomaly picks may provide a basis for improved plate tectonic reconstructions of the region.  相似文献   

6.
太阳盆地中新生代断裂特征及成因机制   总被引:2,自引:0,他引:2  
太阳盆地位于北黄海盆地的东部,是一个发育在中-朝克拉通基底之上的中、新生代沉积盆地,勘探程度非常低。最新二维地震资料揭示,太阳盆地的断裂体系可以分控盆断裂、控凹(坳)断裂、控带断裂、控圈断裂和分割性断裂。盆地发育以NE向和NW向为主的的正断层和逆断层,而少量断层呈近EW或SN向。对不同类型的断裂构造特征及样式分析表明,断裂的活动期次可分为4期:晚侏罗世—早白垩世伸展断层、晚白垩世逆冲断层、始新世伸展正断层和新近纪正断层。中、新生代以来,中国东部构造演化主要受其东部太平洋板块活动控制,晚侏罗纪开始,洋壳俯冲在东部的欧亚大陆之下,伴随着太平洋—菲律宾板块的俯冲,太阳盆地发生NNE—SSW向的拉张;晚白垩世时期,由于太平洋板块俯冲方向的改变,区域性拉张变为区域性NNW—SSE向挤压,太阳盆地的一系列NW向逆断层形成;在始新世—渐新世,太平洋板块向东亚大陆作斜向减速俯冲,导致太阳盆地遭受NWW—SEE向拉张作用,再次断陷;渐新世末期,受喜山运动第Ⅱ幕的影响,太阳盆地发生再次的构造反转,形成一系列的小规模断层。  相似文献   

7.
Until recently, the ideas about the age of the Black Sea deep-water basin have been based on land geological observations in the coastal areas at the interaction periphery, underwater observations from manned submersibles, and on the data of seismic reflection and refraction studies and drilling. Formerly, the scarcity of the information led to a wide scattering of the age determinations: from the Jurassic to the Eocene. Recently, with the appearance of reliable geological and geophysical data, the range of the age estimates has been considerably reduced during the last few years, although there is no commonly accepted opinion on this issue. Therefore, the first attempt to determine the age of the Western Black Sea basin using an analysis of the anomalous magnetic field is of certain interest. The following results were obtained: the basin probably opened between 71.338 and 71.587 My B.P. (subchron C32n.1r). During the interval 68.737–71.071 My B.P. (subchron C31r), extinction of the spreading axes took place. Thus, the total duration of the Campanian-Maestrichtian phase of the opening was about 3 My (interval from 71.587 to 68.737 My B.P.). This result does not agree with the geological and geophysical data available to date. To solve this problem, collection of new geological data and further studies of the structure of the anomalous magnetic field are required.  相似文献   

8.
The data from a recent magnetic compilation by Verhoefet al. (1991) off west Africa were used in combination with data in the western Atlantic to review the Mesozoic plate kinematic evolution of the central North Atlantic. The magnetic profile data were analyzed to identify the M-series sea floor spreading anomalies on the African plate. Oceanic fracture zones were identified from magnetic anomalies and seismic and gravity measurements. The identified sea floor spreading anomalies on the African plate were combined with those on the North American plate to calculate reconstruction poles for this part of the central Atlantic. The total separation poles derived in this paper describe a smooth curve, suggesting that the motion of the pole through time was continuous. Although the new sea floor spreading history differs only slightly from the one presented by Klitgord and Schouten (1986), it predicts smoother flowlines. On the other hand, the sea floor spreading history as depicted by the flowlines for the eastern central Atlantic deviates substantially from that of Sundvik and Larson (1988). A revised spreading history is also presented for the Cretaceous Magnetic Quiet Zone, where large changes in spreading direction occurred, that can not be resolved when fitting magnetic isochrons only, but which are evident from fracture zone traces and directions of sea floor spreading topography.Deceased 11 November 1991  相似文献   

9.
白垩纪以来太平洋上地幔组成和温度变化   总被引:1,自引:0,他引:1  
The geological evolution of the Earth during the mid-Cretaceous were shown to be anomalous, e.g., the pause of the geomagnetic field, the global sea level rise, and increased intra-plate volcanic activities, which could be attributed to deep mantle processes. As the anomalous volcanic activities occurred mainly in the Cretaceous Pacific, here we use basalt chemical compositions from the oceanic drilling(DSDP/ODP/IODP) sites to investigate their mantle sources and melting conditions. Based on locations relative to the Pacific plateaus, we classified these sites as oceanic plateau basalts, normal mid-ocean ridge basalts, and near-plateau seafloor basalts. This study shows that those normal mid-ocean ridge basalts formed during mid-Cretaceous are broadly similar in average Na8, La/Sm and Sm/Yb ratios and Sr-Nd isotopic compositions to modern Pacific spreading ridge(the East Pacific Rise). The Ontong Java plateau(125–90 Ma) basalts have distinctly lower Na8 and143Nd/144 Nd, and higher La/Sm and 87Sr/86 Sr than normal seafloor basalts, whereas those for the near-plateau seafloor basalts are similar to the plateau basalts, indicating influences from the Ontong Java mantle source. The super mantle plume activity that might have formed the Ontong Java plateau influenced the mantle source of the simultaneously formed large areas of seafloor basalts. Based on the chemical data from normal seafloor basalts, I propose that the mantle compositions and melting conditions of the normal mid-ocean ridges during the Cretaceous are similar to the fast spreading East Pacific Rise. Slight variations of mid-Cretaceous normal seafloor basalts in melting conditions could be related to the local mantle source and spreading rate.  相似文献   

10.
南海形成演化探究   总被引:18,自引:0,他引:18  
通过分析前人对南海的研究,对南海扩张期次、扩张脊结构、动力来源等几个关键研究问题进行探讨。认为应将南海放入到欧亚板块、印度一澳大利亚板块和太平洋板块三大板块相互作用的统一构造应力场中进行研究。利用FLAC软件,首次对南海及邻区进行数值模拟分析,并进一步探讨了南海的形成演化机制,认为南海的打开和扩张是印度板块与欧亚板块的碰撞、地幔柱上涌以及太平洋板块向欧亚板块的俯冲共同作用的结果。  相似文献   

11.
通过选取南黄海盆地东北凹典型地震剖面,开展精细的构造解释,系统梳理了东北凹构造样式特征。采用平衡剖面恢复技术和伸缩率计算方法,恢复了东北凹各时期的地质演化剖面,分析了东北凹不同构造演化阶段的伸缩率变化特征。研究表明,南黄海盆地东北凹主要发育伸展构造、走滑构造(负花状)和反转构造等多种构造组合样式,经历了晚侏罗世的仪征运动和渐新世末的三垛运动,相应地在中—上侏罗统和渐新统沉积时期,东北凹处于明显的收缩阶段,伴随发育TK40和T20不整合界面。同时,本文结合区域应力场特征,探讨了南黄海盆地东北凹的构造演化历程:以两次构造运动为界,划分为3个构造演化阶段(晚三叠世—侏罗纪的初始断陷阶段、白垩纪—渐新世的裂陷-反转阶段、新近纪—第四纪的区域沉降阶段)。南黄海盆地东北凹伸缩率的时空变化及构造演化过程,是对“晚中生代以来,古太平洋板块相对欧亚板块俯冲汇聚速率和方向的改变”的局部响应。  相似文献   

12.
Gorda Ridge is the southern segment of the Juan de Fuca Ridge complex, in the north-east Pacific. Along-strike spreading-rate variation on Gorda Ridge and deformation of Gorda Plate are evidence for compression between the Pacific and Gorda Plates. GLORIA sidescan sonographs allow the spreading fabric associated with Gorda Ridge to be mapped in detail. Between 5 and 2 Ma, a pair of propagating rifts re-orientated the northern segment of Gorda Ridge by about 10° clockwise, accommodating a clockwise shift in Pacific-Juan de Fuca plate motion that occurred around 5 Ma. Deformation of Gorda Plate, associated with southward decreasing spreading rates along southern Gorda Ridge, is accommodated by a combination of clockwise rotation of Gorda Plate crust, coupled with left-lateral motion on the original normal faults of the ocean crust. Segments of Gorda Plate which have rotated by different amounts are separated by narrow deformation zones across which sharp changes in ocean fabric trend are seen. Although minor lateral movement may occur on these NW to WNW structures, no major right-lateral movement, as predicted by previous models, is observed.  相似文献   

13.
南海北部新生代的构造运动特征   总被引:7,自引:3,他引:4  
新生代以来,南海北部陆架陆坡区及其邻区的地壳构造运动是在统一的区域构造应力场和总体区域性张裂沉降背景之下发生的,构造运动具有多旋回振荡式发生的特点,并贯穿了晚白垩世末之后的整个新生代.它的发生与太平洋板块的构造运动密切相关,这是由于太平洋板块之下的软流层流动方向和强度的振荡式改变而引发的.  相似文献   

14.
Ferromanganese crusts comparable with central Pacific occurrences with respect to thickness and extension have been discovered at the Tropic Seamount in the subtropical NE Atlantic. A comparison with typical hydrogenetic crusts from a central Pacific seamount revealed lower concentration of the Mn phase with Mn, Co, Ni, Zn, and Cu but a strongly increased terrigenous input of Fe, Pb, Al, and Si in the Atlantic crusts. Growth rates are increased compared with the Pacific crusts, and crust ages average at 10 My. The old phosphatized crust generation that started to grow about 20 My ago on the Pacific seamounts is not pronounced at the Tropic Seamount. The typical hydrographic and morphological parameters for hyrogenetic crust growth have also been found at the Tropic Seamount, which implies that the Tropic Seamount crusts have developed according to the hydrogenetic growth model. There are no indications of hydrothermal influence.  相似文献   

15.
Morphology and tectonics of the Galapagos Triple Junction   总被引:1,自引:0,他引:1  
We describe the results of GLORIA and SEABEAM surveys, supplemented by other marine geophysical data, of the Galapagos Triple Junction where the Pacific, Cocos and Nazca plates meet. The data allowed detailed topographic and tectonic maps of the area to be produced. We located each spreading axis with a precision of about 1 km. All three plate boundaries change character as the triple junction is approached to take on morphologies typical of slower spreading axes: the fast-spreading East Pacific Rise develops the morphology of a medium-spreading rise, and the medium-spreading Cocos-Nazca Rise takes on the appearance of a slow-spreading ridge. The axis of the East Pacific Rise was found to be completely continuous throughout the survey area, where it runs along the 102°05 W meridian. The Cocos-Nazca axis, however, fails to meet it, leaving a 20-km-wide band of apparently normal East Pacific Rise crust between its tip and the East Pacific Rise axis. As a consequence there must be considerable intra-plate deformation within the Cocos and Nazca plates. A further 40 km of the Cocos-Nazca axis is characterised by oblique faulting that we interpret to be a sign of rifting of pre-existing East Pacific Rise crust. We infer that true sea-floor spreading on the Cocos-Nazca axis does not begin until 60 km east of the East Pacific Rise axis. Other areas of similar oblique faulting occur on the Pacific plate west of the triple junction and along the rough-smooth boundaries of the Galapagos Gore. We present a model involving intermittent rifting, rift propagation, and sea-floor spreading, to explain these observations.  相似文献   

16.
The Woodlark triple junction region, a topographically and structurally complex triangular area of Quaternary age, lies east of Simbo Ridge and southwest of the New Georgia island group, Solomon Islands, at the junction of the Pacific, Australian and Solomon Sea plates. SeaMARC II side-scan imagery and bathymetry in conjunction with seismic reflection profiles, 3.5 kHz records, and petrologic, magnetic and gravity data show that the active Woodlark spreading centre does not extend into this region.South of the triple junction region, the Woodlark spreading centre reoriented at about 2 Ma into a series of short ESE-trending segments. These segments continued to spread until about 0.5 Ma, when the lithosphere on their northern sides was transferred from the Solomon Sea plate to the Australian plate. Simultaneously the Simbo transform propagated northwards along the western side of the transferred lithosphere, forming a trench-trench-transform triple junction located NNW of Simbo island and a new leaky plate boundary segment that built Simbo Ridge.As the Pacific plate approached, the area east of northern Simbo Ridge was tilted northwards, sheared by dominantly right-lateral faults, elevated, and intruded by arc-related magmas to form Ghizo Ridge. Calc-alkalic magmas sourced beneath the Pacific plate built three large strato-volcanic edifices on the subducting Australian plate: Simbo at the northern end of Simbo Ridge, and Kana Keoki and Coleman seamounts on an extensional fracture adjoining the SE end of Ghizo Ridge.A sediment drape, supplied in part from Simbo and Kana Keoki volcanoes, mantles the east-facing slopes of northern Simbo and Ghizo Ridges and passes distally into sediment ponded in the trench adjoining the Pacific plate. As a consequence of plate convergence, parts of the sediment drape and pond are presently being deformed, and faults are dismembering Kana Keoki and Coleman seamounts.The Woodlark system differs from other modern or Tertiary ridge subduction systems, which show wide variation in character and behaviour. Existing models describing the consequences of ridge subduction are likely to be predictive in only a general way, and deduced rules for the behaviour of oceanic lithosphere in ridge subduction systems may not be generally applicable.  相似文献   

17.
The geologic history of the eastern Indian Ocean between northwest Australia and the Java Trench is known to involve two separate events of rifting and sea-floor spreading. Late Jurassic spreading in the Argo Abyssal Plain off northwest Australia was followed by Early Cretaceous spreading in the Cuvier and Perth Abyssal Plains off west Australia. However, the evolution and interaction of these events has not been clear. Mesozoic sea-floor spreading anomalies have been identified throughout the Argo Abyssal Plain that define a rifting event and subsequent northward spreading on the northwestern Australian margin at 155 m.y.b.p. Magnetic anomalies northwest of the Argo Abyssal Plain indicate a ridge jump to the south at about 130 m.y.b.p. that is approximately synchronous with east-west rifting along the southwestern Australian margin. The Joey Rise in the Argo Plain was probably formed by volcanism at the intersection of this new rift and the spreading ridge to the north. The southern and northern spreading systems were connected through the Exmouth Plateau which was stretched and faulted as spreading progressed. The RRR triple junction was formed at the intersection of the two spreading systems and appears to have migrated west along the northern edge of the Gascoyne Abyssal Plain. Spreading off northwest Australia cannot be easily related to simultaneous spreading in the west central Pacific via any simple tectonic scheme.  相似文献   

18.
Sea floor spreading anomalies in the Lofoten-Greenland basins reveal an unstable plate boundary characterized by several small-offset transforms for a period of 4 m.y. after opening. North of the Jan Mayen Fracture Zone, integrated analysis of magnetic and seismic data also document a distinct, persistent magnetic anomaly associated with the continent-ocean boundary and a locally, robust anomaly along the inner boundary of the break-up lavas. These results provide improved constraints on early opening plate reconstructions, which include a new anomaly 23-to-opening pole of rotation yielding more northerly relative motion vectors than previously recognized; and a solution of the enigmatic, azimuthal difference between the conjugate Eocene parts of the Greenland-Senja Fracture Zone if the Greenland Ridge is considered a continental sliver. The results confirm high, 2.36–2.40 cm yr–1, early opening spreading rates, and are consistent with the start of sea floor spreading during Chron 24r. The potential field data along the landward prolongations of the Bivrost Fracture Zone suggest that its location is determined by a Mesozoic transfer system which has acted as a first-order, across-margin tectono-magmatic boundary between the regional Jan Mayen and Greenland-Senja Fracture Zone systems, greatly influencing the pre-, syn- and post-breakup margin development.  相似文献   

19.
The northern East China Sea Shelf Basin consists of three depressions (the Domi, Jeju, and Socotra Depressions), separated by basement highs or rises. Reconstruction of depth-converted seismic reflection profiles from these depressions reveals that the northern East China Sea Shelf Basin experienced two phases of rifting, followed by regional subsidence. Initial rifting in the Late Cretaceous was driven by the NW?CSE crustal stretching of the Eurasian plate, caused by the subduction of the Pacific plate beneath the plate margin. Major extension (~15 km) took place during the early phase of basin formation. The initial rifting was terminated by regional uplift in the Late Eocene-Early Oligocene, which was probably due to reorganization of plate boundaries. Rifting resumed in the Early Oligocene; the magnitude of extension was mild (<1 km) during this period. A second phase of uplift in the Early Miocene terminated the rifting, marking the transition to the postrift phase of regional subsidence. Up to 2,600 m of sediments and basement rock were removed by erosion during and after the second phase of uplift. An inversion in the Late Miocene interrupted the postrift subsidence, resulting in an extensive thrust-fold belt in the eastern part of the area. Subsequent erosion removed about 900 m of sediments. The regional subsidence has dominated the area since the Late Miocene.  相似文献   

20.
The northern Mascarene Basin, lying between Madagascar and the Seychelles Plateau in the north-west Indian Ocean, is marked at its north-western end by the Amirante Arc, an enigmatic ridge-trench complex superficially resembling an island arc. Structural trends in the area have been mapped using GLORIA sidescan sonar data, seismic reflection profiles and bathymetric maps. It is concluded that the north-west Mascarene Basin was created during the Late Cretaceous by sea-floor spreading about a north-west trending spreading axis cut by northeast trending transform faults. A major transform fault between the northern tip of Madagascar and the western margin of the Seychelles Plateau is proposed as a boundary between the Late Cretaceous Mascarene basin and the older Somali Basin to the north-west. The northern segment of the Amirante Ridge may mark part of the transform. The southern segment of the Ridge and its associated trench are, however, wholly contained within the Late Cretaceous ocean floor of the Mascarene Basin, and are best explained as compressional features related to a change in sea-floor spreading geometry in the Late Cretaceous or earliest Tertiary. Two models for the evolution of the Mascarene Basin are proposed, the major differences between them being the amount of subduction at the southern Amirante Arc and the timing of the initial separation between India and the Seychelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号