首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
Based on the analysis of cyclic triaxial test for the South-Sea sand, a comprehensive normalized model of soil stress-strain relationship is presented herein, which includes effects of not only initial stress states but also loading cycles. Consequently, a pseudo-static procedure to analyse the deformation behavior of foundations is suggested. Example of calculations shows that the suggested procedure is convenient in application.  相似文献   

2.
Centrifuge experiments are carried out to investigate the responses of suction bucket foundations under horizontal dynamic loading. The effects of loading amplitude, the size of the bucket and the structural weight on the dynamic responses are investigated. It is shown that, when the loading amplitude is over a critical value, the sand at the upper part around the bucket softens or even liquefies. The liquefaction index (excess pore pressure divided by initial effective stress. In this paper, the developmental degree of excess pore pressure is described by liquefaction index) decreases from the upper part to the lower part of the sand foundation in the vertical direction and decreases from near to far away from the bucket's side wall in the horizontal direction, large settlements of the bucket and the sand around the bucket are induced by the horizontal dynamic loading. The dynamic responses of the bucket of a smaller height (when the diameter is the same) are heavier. A cyclic crack some distance near the bucket occurs in the sand.  相似文献   

3.
The holocene sand bodies in Changjiang delta area may be classified genetically as river mouth sand, marine sand and river channel-filled sand, which are different in external geometry, internal characteristics, spatial distribution and contact with overlying and underlying beds, The sand bodies ate distributed in two-storeyed beds in vertical sequence. The transgressive sands are overlain by regressive ones, and there is a wedge of marine clay between them.  相似文献   

4.
Sand waves in the Taiwan Shoal are characterized by two distinct spatial scales. Giant sand waves have a length of2 kilometers with height between 5 m and 25 m, whilst small sand waves is less than 100-m long with height less than 5 m between giant sand wave peaks(crests). A series of five high-resolution multi-beam echo-sounding surveys between 2012 and 2020 in the middle of Taiwan Shoal indicated that artificial dredging on the giant sand waves had caused sand wave reform and evolution. Overal...  相似文献   

5.
A liftboat has big independent spuncans. The interaction between the liftboat structure and the foundation can provide significant fixity. Both methods of numerical simulation and experimental test are adopted to study the fixity. An experimental model to the scale of 1:40 ofa liftboat was mounted on a sand box in the laboratory, and also a three-dimensional FEM model was established in the numerical simulation. The variation of the fixity and the maximum stress in the legs are studied. On the basis of the fact that the experimental data are in good agreement with the numerical simulation results, the fixity is further studied by numerical simulation with different soil foundation parameters and different sizes of spuncans.  相似文献   

6.
Sand wave deposition in the Taiwan Shoal of China   总被引:1,自引:0,他引:1  
The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data were gotten, which gave an initial image of the boundaries of the Taiwan Shoal and revealed the internal structure of the sand waves in this area. The results showed that the major component of the sediment samples was sand, and sand waves occurred everywhere in this area, which closely followed the range of the Taiwan Shoal as we know. The western boundary of the Taiwan Shoal thus reaches the 30 m isobaths near the shore, and as a result, its area potentially covers approximately 12 800-14 770 km2. The sand waves have different shapes under the complex ocean dynamics, and the height of sand waves in the near shore is usually smaller than that in the Taiwan Shoal. The number of sand waves ranged from 1-5 per kilometer, with more waves in the isobath-intensive area, suggesting the importance of topography for the formation of sand waves. The stratigraphic structure under the seabed has parallel bedding or cross bedding, and large dipping groove bedding can be seen locally in different parts, which may be the result of terrestrial deposition since the Late Pleistocene.  相似文献   

7.
The brightness reversal of submarine sand waves appearing in the small satellite constellation for environment and disaster monitoring and forecasting("HJ-1A/B") CCD sun glitter images can affect the observation and depth inversion of sand wave topography. The simulations of the normalized sun glitter radiance on the submarine sand waves confirm that the reversal would happen at a specific sensor viewing angle, defined as the critical angle. The difference between the calculated critical angle position and the reversal position in the image is about 1, which is excellent in agreement. Both the simulation and actual image show that sand wave crests would be indistinct at the reversal position, which may cause problems when using these sun glitter images to analyze spatial characteristics and migration of sand waves. When using the sun glitter image to obtain the depth inversion, one should take the advantage of image properties of sand waves and choose the location in between the reversal position and the brightest position. It is also necessary to pay attention to the brightness reversal when using "HJ-1A/B" CCD images to analyze other oceanic features, such as internal waves, oil slicks, eddies, and ship wakes.  相似文献   

8.
Numerical analysis and centrifuge modeling of shallow foundations   总被引:1,自引:0,他引:1  
The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen.  相似文献   

9.
Study on Key Technology of Using Shell Sand as Backfill for Sea Reclamation   总被引:1,自引:0,他引:1  
1 .IntroductionEpicontinental sea or land could formfromcontinental shelf because of the decreasing sea levelduring Quaternary.There is a large-area shell sand deposit more than ten meters thick in the neriticzone of China .To use the abundant marine shell sandresource as engineering material for ocean engi-neering and port engineeringis veryimportant .Sand (Gred and Bjorn,1999) ,fine sand (Zhangetal .,2002) , mediumand coarse sand (Qiuet al .,1995) ,highly weathered stone ballast (Zhanetal…  相似文献   

10.
The technique of geotextile tubes used to construct dikes for land reclamation has been widely used. The tubes are usually filled with slun'y of soil, such as sand, silt or clay. The tensile stress developed in the geotextile during filling the tube is the dominant factor for construction of a safe dike. The existing design methods are good for designing sausage shaped tubes and can not be directly applied for designing fiat tubes, which are commonly used in dike construction. This paper presents a procedure that can detenmine the relatiorrship among the tube size, the pumping pressure, the unit weight of the slurry, and the tensile stress developed in the geotextile during the tube filing. When the tubes are piling up to form the dike, the tubes in the bottom will sustain the load from the weight of the upper ones. A procedure is also developed to calculate the changes of the mechanical and geometrical behavior of the tubes under the load with a similar method. All these approaches have been programmed, which can help dike designers to select the suitable geotextile and determine the profile of the dike.  相似文献   

11.
Stiffness degradation will occur due to the generation of accumulated pore pressure in saturated soft clays under cyclic loading. The soil static-dynamic multi-purpose triaxial and torsional shear apparatus in Dalian University of Technology was employed to perform different types of test on saturated soft marine clay in the Yangtze estuary. Undisturbed samples of the clay were subjected to undrained cyclic vertical and torsional coupling shear and cyclic torsional shear after three-directional anisotorpic consolidation with different initial consolidation parameters. Investigated were the effects of the initial orientation angle of the major principal stress, initial ratio of deviatoric stress, initial coefficient of intermediate principal stress and continuous rotation of principal stress axes on the stiffness degradation. It is found that the degradation index decreases (or degradation degree increases) significantly with increasing initial orientation angle of the major principal stress and initial ratio of deviatoric stress. Compared to the effects of the initial orientation angle of the major principal stress and initial ratio of deviatoric stress, the effect of initial coefficient of intermediate principal stress is less evident and this trend is more clearly reflected by the results of the cyclic torsional shear tests than those of the cyclic coupling shear tests. At the same cycle number, the degradation index obtained from the cyclic torsional shear test is higher than that from the cyclic coupling shear test. The main reason is that the continuous rotation in principal stress directions during cyclic coupling shear damages the original structure of the soil more than the cyclic torsional shear does. Based on a series of experiments, a mathematical model for stiffness degradation is proposed and the relevant parameters are determined.  相似文献   

12.
低围压水平下砂的排水行为(英文)   总被引:2,自引:1,他引:2  
采用干样沉降法制备样品 ,选用静三轴仪对松砂和密砂样在 10 k Pa至 10 0 k Pa的低围压下的排水行为进行了实验研究 ,并对实验结果作了橡皮膜校正 ,在围压为 10 k Pa的密砂实验中 ,轴向应力的校正值可达到 12 %。实验研究表明低围压下松砂的剪胀性非常明显 ,且存在剪应力极值 ;围压越低 ,松砂和密砂的剪应力极值越小 ,达到最大剪应力所对应的剪应变越小。同时还表明低围压范围内相对密度不同 ,砂的应力应变特性不同 ;此外 ,低围压下砂的内摩擦角高于高围压下的值 ,从而在工程上应重视低围压水平下砂土工程参数的合理选取  相似文献   

13.
Based on the analytical solutions for wave-induced soil response in an unsaturated anisotropic seabed of finite thickness, an elliptical, i.e., noncircular rotation stress path is proven to be a more common state in a soil element with the cyclic shear stresses due to the traveling linear wave. The influence of an elliptical stress path on the characterization of failure strength is analyzed using three new parameters representing the shape, size, and the orientation of the ellipse. A series of cyclic rotational shear tests on the reconstituted specimens of Chinese Fujian Standard Sand have been performed to investigate the effect of elliptical stress path. A strength function in term of failure cycles is derived to quantify the failure strength of a given sand within a seabed subjected to regular wave loading. The results provide a basis for the evaluation of liquefaction potential of seabed but also point to a unique backbone cycle shear strength curve for soil under principal stress rotation.  相似文献   

14.
ABSTRACT

The behavior of loose anisotropically consolidated calcareous sand obtained from an island in the South China Sea was investigated under undrained monotonic and cyclic loading in a hollow cylinder torsional apparatus. The tests were conducted on specimens which consolidated under various initial effective confining pressures and consolidation stress ratios. The monotonic test results show that the failure and phase transformation line are essentially independent of the consolidation conditions, while the initial contractive tendency of the specimens decreases with an increasing consolidation stress ratio. During monotonic loading of the anisotropically consolidated specimens, a same major principal stress direction is observed at the constant stress ratio lines up to the phase transformation line, irrespective of initial effective confining pressure. The cyclic strength of the sand increases with an increasing consolidation stress ratio. Moreover, a pronounced stress dependence is observed in the sand with higher consolidation stress ratio. During cyclic loading, the generated excess pore water pressure presents considerable fluctuations. The normalized terminal excess pore water pressure is described as a function of consolidation stress ratio. The tests show that the particle shape, rather than particle crushing, plays an important role in the monotonic and cyclic behaviors of the calcareous sand.  相似文献   

15.
土体在剪切变形过程中产生主应力方向的旋转时,主应变率方向与主应力方向之间存在着非共轴现象,然而,传统的弹塑性本构模型并不能考虑该现象的影响。通过在传统本构模型屈服面的切线方向增加一项非共轴塑性应变率,即可实现对非共轴现象的反映。利用有限元软件ABAQUS的材料子程序接口UMAT,通过显式积分算法和自动分步方法实现了非共轴模型在有限元分析中的应用。首先,对砂土的单剪试验进行数值模拟,预测了主应力方向和主应变率方向之间的关系,所得结论与试验结果较为吻合。然后,针对吸力桶与砂质地基间的相互作用问题进行弹塑性有限元计算,分析了土体主应力方向在剪切变形过程中的旋转规律,以及桶体的端部阻力、侧壁摩擦阻力和顶部阻力在变形过程中的变化规律。最后,检验了非共轴现象对地基承载力计算结果的影响。研究结果表明,所开发的非共轴模型对非共轴现象具有良好的预测能力。  相似文献   

16.
Consolidation occurs in estuarine marine clays for coastal reclamation by dissipation of the excess pore pressure, which is induced by increasing the total overburden stress during conventional mechanical surcharging. The excess pore pressure can be decreased usually by the use of several construction methods such as sand drain and paper drain. Besides the drain methods, vacuum can also be used in the soil mass to consolidate the estuarine marine clays by decreasing the pore pressure as well as increasing the effective stress.The study on vacuum consolidation is devoted so far mainly for laboratory model tests or numerical analysis in Korea. Recently, an instrumentation system was applied to manage the vacuum-applied consolidation on a field, in which a sewage disposal plant was constructed. While vacuum was applied, the behaviors of estuarine marine clays such as the settlement, lateral deformation and pore water pressure have been investigated precisely. The behavior of estuarine marine clays during vacuum-applied consolidation shows some difference from the behavior of estuarine marine clays in the case of conventional preloading. A principal difference is that the lateral deformation corresponding to settlement is smaller than before vacuum application even though the surcharge height has been increased.  相似文献   

17.
A stress path with continuous rotation of the principal stress direction and continuous alteration of amplitude of deviatoric stress difference under the interaction of wave and earthquake loading was proposed based on the characteristics of the stress path under wave and earthquake loading, respectively. Using a GDS dynamic hollow cylinder apparatus, a series of cyclic triaxial-torsional coupling shear tests were performed on Nanjing saturated fine sand via the stress path mentioned previously under different relative densities, effective initial confining pressures, plastic fines contents, and loading frequencies to study the development of excess pore water pressure (EPWP) of saturated sand under the interaction of wave and earthquake loading. It was found that the development of EPWP follows the trend of fast-steady-mutative-drastic, which is different from that under the cyclic triaxial test or wave loading. The number of cycles causing initial liquefaction (NL) of saturated sand increases remarkably with relative densities. However, the relationships between NL and effective initial confining pressures, plastic fines content, or loading frequencies are more complex.  相似文献   

18.
南沙海槽南缘逆掩推复构造地区的动力学分析   总被引:1,自引:1,他引:1  
提出南沙海槽南缘推复构造的运动和形变是一种周期性的弹塑性运动,周期约为14Ma.建立推复楔形体的动力学模型及两个约束条件,求解得推复楔形体的底部中点的推复方向的主应力和逆掩面动摩擦系数的解析式.建立推复楔形体前缘地层被推复剪断的力学模型、密度模型和内摩擦角模型,求得推复前缘地层被推复剪断时的有效主应力、静岩压应力、推复方向的主应力及其合力和推复构造应力的解析式,建立推复底部的有效塑性屈服模型,求得推复底部屈服时中点的有效主应力和推复方向的主应力的解析式.选择两个剖面进行动力学计算,得到推复楔形体前缘的两个应力图、逆掩面的动摩擦系数及推复方向的主应力的合力.  相似文献   

19.
Cyclic vertical-torsional coupling tests were performed on saturated Nanjing fine sand with a relative density of 50% using a hollow cylinder apparatus. The effect of complex initial stress conditions on undrained dynamic strength of saturated Nanjing fine sand was investigated. It is shown that the initial confining pressure, p0, the initial stress ratio, R0, and the initial angle of maximum principal stress direction, α0, have great effects on the characteristics of the dynamic strength of Nanjing fine sand. The dynamic strength increases with p0 and R0, while it decreases with α0. The effect of initial intermediate principal stress parameter b0 on the dynamic strength is slight.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号