首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
陈兆辉  陈石  张双喜  刘金钊 《地震》2021,41(1):25-39
本文基于EGM2008重力场模型研究了青藏高原东南缘均衡重力异常和多尺度的布格重力异常特征,以鲁甸和景谷地震为例,认识其深部构造环境和动力学过程,为该区域的构造运动和地震孕育环境研究提供依据.结果表明,研究区布格重力异常和均衡重力异常与地质构造格局相关性较好,川滇地块剧烈的区域布格重力异常和非均衡状态与其强烈的地壳变形...  相似文献   

2.
Although Tanlu fault is one of the most important tectonic fault zones and active earthquake belts in eastern China, little is known about its deep structure. In this study, we use the existing Bouguer gravity data to study the middle section of the Tanlu fault zone, which is also known as the Yishu fault zone. Our gravity inversion results indicate that the Moho has an abrupt offset in depth at the Tanlu fault zone and it has a relatively smooth variation away from the fault zone. The crustal structures on both sides are different from each other. Sediment is thin on the west side with an average thickness of less than 5 km, while it is as thick as 6 km on the east side. The thinnest sediment (3-4 km) is at the fault zone. Moho depth increases from 33 to 34 km on east side and from 36 to 38 km on west side. Tanlu fault zone is shown as a wide zone of linear gradient in the Bouguer gravity anomaly.  相似文献   

3.
应用布格重力异常研究郯庐断裂构造   总被引:8,自引:1,他引:7       下载免费PDF全文
唐新功  陈永顺  唐哲 《地震学报》2006,28(6):603-610
使用布格重力资料对郯庐断裂带的中段部分(沂沭断裂带)进行了研究. 结果表明, 郯庐断裂带莫霍面及地壳内界面均发生错断,断裂带两侧地壳各界面起伏平缓. 该结果与前人的郯庐断裂带是切穿地壳的深大断裂的认识相一致. 在郯庐断裂带两侧,地壳结构明显不同,西侧沉积层较薄,平均在5 km以下;东侧多数在6 km以上;在断裂带中央沉积物最薄,大约为3~4 km. 断裂带东侧莫霍面埋深浅,大约为33~34 km;西侧莫霍面埋深明显增加,达到36~38 km.反映了莫霍面深度在断裂带附近整体是向西增加的. 郯庐断裂带在重力场分布中则表现为一条宽度较大的线性布格重力异常梯度带.   相似文献   

4.
利用华东地区1970年以来的地震目录,对华东地区、郯庐断裂带100km范围、2007年度划定为地震危险区的苏鲁皖交界地区及安徽地区,以地震活动性参数群体异常变化项目数为参量,进行相应的均值之差与标准差统计分析,提取其变化率R(李永莉等,2003),即通过统计计算地震活动性参数异常项目月变化率R值,观察R值变化特征。结果发现,华东地区、安徽地区中强震前R值异常表现为中短期异常特征,郯庐断裂带100km范围内及本年度划定为危险区的苏鲁皖交界地区,R值异常表现为中长期异常特征。  相似文献   

5.
The Chaohu-Tongling area in Anhui Province is a typical moderate-to-strong earthquake active area in the mainland of China. Four earthquakes occurred in this area, displayed as a NNE-trending zonal distribution, including the 1585 M5(3/4) Chaoxian earthquake and the 1654 M5(1/4) Lujiang earthquake, which formed a striking moderate-to-strong seismic activity zone. Field survey, shallow geophysical prospecting, drilling data, collection and dating of chronology samples and comprehensive analysis of fault activity indicate that the Fanshan, Xiajialing and Langcun faults are not active since Quaternary. The NNE-trending Tongling Fault is a buried middle-Pleistocene fault, but it can produce moderate-to-strong earthquakes and control the evolution and development of three en echelon geologic structures. The intensity of the four earthquakes is characterized by southward progressive decrease, which is in accordance with the characteristics that the subsidence range of Wuwei Basin is obviously larger than that of Guichi Basin to its south since late Cenozoic. In terms of deep structure, the characteristics of spatial distribution of Tongling Fault indicate that it corresponds to a NNE-striking Bouguer gravity anomaly gradient belt. So there is a spatial correspondence between the middle-Pleistocene Tongling Fault, the en echelon structures, the differential movement of the neotectonics, the Bouguer gravity anomaly gradient belt and the moderate-to-strong seismic activity belt in the Chaohu-Tongling area, indicating that they should be the tectonic indications of occurrence for moderate-to-strong earthquakes.  相似文献   

6.
为深入理解研究区的构造运动规律,进一步探求地壳物质可能的运移模式,本文基于Crust1.0地壳结构模型和最新莫霍面深度模型对自由空气重力异常数据进行联合约束,采用三维重力反演技术得到了郯庐断裂带中段的三维密度结构。反演结果显示,研究区的背景场稳定,断裂构造发育部位表现为重力密度低值,特别是营潍断裂带正处于大范围的重力密度低值区并纵贯整个研究区,由此可推断重力密度低值区可指示断裂构造的存在。   相似文献   

7.
2014年11月22日16时55分在四川省甘孜藏族自治州康定县发生的6.3级地震,结束了鲜水河断裂带近30多年以来没有较大地震发生的历史,其潜在的地震危险性再次引起国内外地学工作者的关注.为了研究鲜水河断裂带南东段深部孕震环境和探求康定MS6.3地震的成因,本文先利用四川区域数字地震台网和康定地区及周边所布设的流动地震台阵在2009年1月1日至2014年12月5日期间所记录到7397次区域地震事件的99287条P波到时资料,反演得到了鲜水河断裂带南东段上地壳范围内不同深度的三维P波速度结构特征;再对康定震区及周边的重力、航磁数据进行视密度、视磁化强度反演,得到了壳内不同深度密度的横向变化信息和视磁化强度的分布特征;在此基础上综合研究鲜水河断裂带南东段的深部孕震环境.研究结果表明,雅江—九龙一带的低速区与泸定—宝兴高速区的速度结构特征表明了鲜水河断裂带南东段两侧壳内物质存在显著的横向介质差异,康定MS6.3地震发生在该高低速异常区的分界线上;结合康定MS6.3地震的1028个余震序列的精确定位结果可以看出,重新定位后的余震沿着鲜水河断裂带南东段呈条带状分布,且震源深度优势分布层位深度为8~15km,该余震序列的空间分布特征与鲜水河断裂南东段的深部介质条件密切相关.鲜水河断裂带南东段特有的视密度和视磁化强度异常分布特征反映了康定地区东西两侧块体的基底性质存在明显差异,康定—石棉及其以东地区所表现出的磁异常高和重力高的位场特征,反映该区域由强磁性、高密度物质组成,而康定MS6.3地震就发生在康定—石棉重力梯度变化带上、雅安—泸定磁性穹窿区的西边界线上.随着川青块体向南东方向滑移,受到四川盆地西缘边界刚性基底对川青块体的强烈阻挡,加剧了康定—石棉及其以东地区基底岩层的褶皱变形并产生了强烈的应力积累,所积累的应力突然释放导致了康定MS6.3地震的发生,这正是此次鲜水河断裂带南东段康定地区强震孕育和发生的深部构造环境和介质特征.根据本文对鲜水河断裂带南东段深部孕震环境的综合研究成果可知,石棉段处于重磁异常梯级带上且其北东侧表现出的高密度、强磁性和高波速等物性特征有利于区域应力的相对集中,因此,鲜水河断裂带南东段石棉地区的地震活动趋势和地震危险性背景值得进一步关注和研究.  相似文献   

8.
郯庐断裂带南段及邻区中小地震视应力的时空特征研究   总被引:1,自引:0,他引:1  
李发  戈宁  王行舟  凌学书  张炳 《地震》2012,32(4):53-61
利用安徽地区测震台网记录的波形资料, 采用波形分析和反演的方法计算了郯庐断裂带南段及邻区中小地震的视应力, 分析研究视应力的时空变化特征, 并讨论其与地震矩等震源参数之间的关系。 结果表明: ① 利用提取的地震震源谱数据计算得到郯庐断裂带南段及邻区中小地震的视应力值为0.05~0.9 MPa, 平均为0.20 MPa, 以此可作为该区域的背景应力水平; ② 时间变化显示视应力在黄海ML5.1、 江西九江ML6.0及河南太康ML5.0地震前呈现持续高值异常状态, 震后趋于正常水平, 而江西九江6.0级地震后视应力再次出现高值异常, 随后发生了安徽定远ML4.7地震, 一定程度上说明郯庐断裂南段及邻区中小地震的高视应力水平与华东地区中强震有较好的对应关系; ③ 空间分布显示高视应力集中区与地震高辐射能区域具有一定的相关性, 主要位于嘉山—滁州段的皖、 苏交界区附近和庐江县附近, 该区域相继发生过定远4.7级和安庆4.8级地震, 并推断认为庐江县附近发生破坏性地震的危险性可能更大, 值得高度关注; ④ 视应力随着地震矩增加而增加的趋势不明显, 拐角频率与地震矩大体呈负相关。  相似文献   

9.
利用小波多尺度分解研究郯庐断裂带苏鲁段构造   总被引:1,自引:0,他引:1  
本文利用小波多尺度分解技术对位于苏鲁地区郯庐断裂带的布格重力异常资料进行了场源分离,同时结合功率谱并与地质构造环境相联系,深入研究了郯庐断裂带苏鲁段的地壳深部空间展布.研究发现在布格重力场和区域场中郯庐断裂带苏鲁段总体表现为一条明显的重力异常梯级带,而这条梯级带又具有分段性排布的特点;在局部场中反映莫霍面深度的5阶小波变换细节的重力梯度带边缘和大的构造带边界基本吻合;麦坡地震断裂带至今仍然活跃着.  相似文献   

10.
The main rupture of Ludian MS6.5 earthquake is directed to the northwest, which occurred in the east of Xianshuihe-Xiaojiang fault zone. The epicenter is in the transitional zone of the Sichuan-Yunnan block and the South China block, where there are many slip and nappe structures. Some controversy still remains on the earthquake tectonic environment. So, Bouguer gravity anomalies calculated by EGM2008 were broken down into 1-5 ranks using the way of Discrete Wavelet Transform(DWT), then we get the lateral heterogeneity in different depths of the crust. The distribution characteristics of Bouguer gravity anomaly are analyzed using measured gravity profile data. We also get its normalized full gradient(NFG)picture, and study the differences between different depths in crust. The results show that: (1)the characteristic of Buoguer gravity anomaly in southwest to northeast is high-low-high between the Lianfeng Fault(LFF)and Zhaotong-Ludian Fault(ZLF). The mainshock and aftershocks are distributed in the middle of the low-value zone, which means that the east moving materials of Qinghai-Tibet plateau broke through the southern section of Lianfeng Fault(LFF), moving along the Baogunao-Xiaohe zone(low-value belt)to the southeast, stopped by the Zhaotong-Ludian Fault(ZLF), and then earthquake occurred.(2)The third-order discrete wavelet transform(DWT)details show that: there is a good consistency between the negative gravity anomaly in upper crust and the distribution of major faults, which reflects that the rupture caused by the movements of the faults in crust has reduced gravity anomaly. There is a NW-trending negative anomaly belt near the epicenter, which may has some relationship to the southward development of the Daliangshan Fault(DLSF). So we speculate that the southward movement of Daliangshan Fault is the main direct force source of Ludian earthquake.(3)In the picture of the fourth-order DWT details, there is an obvious positive gravity anomaly under the epicenter of Ludian earthquake, which confirms the presence of a high-density body in the middle crust. While the fifth-order DWT details show that: A positive anomaly belt is below the epicenter too, which may be caused by mantle material intruding to the lower crust. Tensile force in crust caused by mantle uplift and extrusion-torsion force caused by Indian plate push are the main force source in the tensile and strike slip movement of the Ludian earthquake.(4)The normalized total gradient of Bouguer gravity anomalies of Huili-Ludian-Zhaotong profile shows that: there is obvious ‘deformation’ in the Xiaojiang fault zone which dips to the east and controls the local crust movement. There is a local ‘constant body’ at the bottom of the epicenter. The stable constant body in density has limiting effects to the earthquake rupture, which is the reason that the earthquake rupture' scale in strike and in depth are limited.(5)The ability of earthquake preparation in Zhaotong-Ludian Fault is lower than the Xianshuihe-Xiaojiang fault zone, and the maximum earthquake capacity in this area should be around magnitude 7.  相似文献   

11.
文中通过多源数据融合、模型构建、数据试验、二维离散小波变换和功率谱分析等方法获取了大别造山带东段深、浅部场源布格异常及其场源似深度,并结合地壳结构、地质构造、岩石圈有效弹性厚度和地震活动等资料,讨论了地壳深、浅部的结构特征及地震活动构造背景。结果表明,低频布格异常显示大别造山带东段与华北地块间深部构造缝合带在东部应位于青山-晓天断裂前缘,在落儿岭-土地岭断裂和商城-麻城断裂之间向N偏移至梅山-龙河口断裂之下,造山带南侧与扬子地块间深部构造缝合带位于襄樊-广济断裂以北约20km,造山带东侧与扬子地块间的深部构造转换带位于郯庐断裂带之下,造山带东段腹地显著的低频布格异常低值表明对应部位的莫霍面存在明显下凹,造山带内部的布格异常高梯度带表明其深部结构不完整;高频布格异常揭示肥中断裂、六安-合肥断裂、肥西-韩摆渡断裂和郯庐断裂带等主要断裂对地壳中上部密度结构的影响明显,落儿岭-土地岭断裂对地壳中上部密度结构的影响范围向N延伸至肥西-韩摆渡断裂前缘。结合地震活动资料进一步分析认为,大别造山带东段与华北地块在青山-晓天断裂前缘附近接触和相互作用,且大别造山带东段地壳深、浅部结构均不完整,不利于应力积累,趋向于在断裂交错的脆弱部位频繁释放应力,是霍山地区小地震活动频繁的主要原因。  相似文献   

12.
The relationship between the latest activity of active fault and seismic events is of the utmost importance. The Tan-lu fault zone in eastern China is a major fault zone, of which the active characteristics of the segments in Jiangsu, Shandong and Anhui has been the focus of research. This study takes the Dahongshan segment of the Tanlu Fault in Sihong County as the main research area. We carried out a detailed geological survey and excavated two trenches across the steep slope on the southwest side of the Dahongshan. Each trench shows fault clearly. Combining the comparative analysis of previous work, we identified and cataloged the late Quaternary deformation events and prehistoric earthquake relics, and analyzed the activity stages and behavior of this segment. Fault gonge observed in the trench profiles shows that multiple earthquake events occurred in the fault. The faulting dislocated the Neogene sandstone, black gravel layer and gray clay layer. Brown clay layer is not broken. According to the relations of dislocated stratums, corresponding 14C and OSL samples were collected and dated. The result indicates that the Dahongshan segment of the Tanlu Fault has experienced strong earthquakes since the late Quaternary. Thrust fault, normal fault and strike-slip fault are found in the trenches. The microscopic analysis of slices from fault shows that there are many stick-creep events taking place in the area during the late Quaternary. Comprehensive analysis shows that there have been many paleoearthquakes in this region since the late Quaternary, the recent active time is the late Pleistocene, and the most recent earthquake event occurred in(12~2.5ka BP). The neotectonic activity is relatively weak in the Anhui segment(south of the Huaihe River)of Tanlu fault zone. There are difficulties in the study of late Quaternary activity. For example, uneven distribution of the Quaternary, complex geological structure, larger man-made transformation of surface and so on. The progressive research may be able to promote the study on the activity of the Anhui segment of Tanlu fault zone.  相似文献   

13.
本文采用天然地震近震走时反演地壳三维速度结构的方法获得了郯庐断裂带鲁苏皖段及附近地壳(30°N—37°N,113°E—122°E)三维速度结构.对地壳内分层速度结构的分析发现,郯庐断裂带鲁苏皖段存在速度的分段特征.郯庐断裂带鲁苏皖段浅层35.3°N以北,34.5°N—35.3°N间,33°N—34.5°N间呈现的速度分段和地表出露地层有关,与地质上安丘段、莒县—郯城段,新沂—泗洪段三个破裂单元相对应,且和各段的地震活动相呼应,表明郯庐带新沂到泗洪段可能是断裂的闭锁段.郯庐断裂带鲁苏皖段地壳速度结构自浅至深分为三段,大体位置是:南段(32.5°N—33°N以南),中段(32.5°N—33°N至35°N—35.3°N),北段(35°N—35.3°N以北).上地壳分段与苏鲁超高压变质岩带的插入有关,中、下地壳速度分段则可能和火山岩滞留有关.地壳各层速度结构不同段的速度差异反映了构造块体的速度差异,表明各构造块体在地壳下部仍有差异,郯庐带西侧速度总体高于东侧,反映了不同构造块体的形成和组成差别,也说明了该断裂带可能延伸到莫霍面.而不同深度的分段性可能反映了不同地质演化过程.  相似文献   

14.
沂沭断裂带重力场及地壳结构特征   总被引:5,自引:2,他引:3  
沂沭断裂带为郯庐断裂带山东段,新构造运动显著,是华北地区的强震活动带之一。文中收集了该地区的布格重力数据,利用小波多尺度分析方法对重力场进行有效分离,研究区域地壳结构特征及断裂空间展布,并应用Parker变密度模型对区域莫霍面进行反演分析,得到以下几点结论:1)重力区域场显示,沂沭断裂带形成了NNE走向的大型重力梯度带,分隔了鲁西、鲁东地块,成为区域内重要的地球物理分界线。2)重力局部场显示,中上地壳结构复杂,沂沭带内部呈现两堑一垒的重力异常格局,5条主干断裂形成线性梯度带分布于东、西地堑内,鲁西块体的多条NW向活动断裂交切于沂沭断裂带,多数断裂只交切于西地堑,而蒙山山前断裂和苍尼断裂横穿沂沭断裂带;下地壳结构相对简单,发生明显的褶曲构造,表现出大规模高、低密度异常相间排列的典型特征。3)区域莫霍面形态东高西低,沂沭断裂带形成了莫霍面陡变带,造成了东西分异格局,潍坊东—莒县—临沂一线出现莫霍面上隆区,具有强震发生的深部孕震环境。4)区域内地震多发于高、低重力异常转化带之间,特别是活动断裂对应的重力梯度条带之上,地震的发生与断裂活动有着密切的关系,沂沭断裂带地震活动性最强,且东地堑强于西地堑。  相似文献   

15.
Tanlu fault zone is the largest strike-slip fault system in eastern China. Since it was discovered by aeromagnetics in 1960s, it has been widely concerned by scholars at home and abroad, and a lot of research has been done on its formation and evolution. At the same time, the Tanlu fault zone is also the main seismic structural zone in China, with an obvious characteristic of segmentation of seismicity. Major earthquakes are mostly concentrated in the Bohai section and Weifang-Jiashan section. For example, the largest earthquake occurring in the Bohai section is M7.4 earthquake, and the largest earthquake occurring in the Weifang-Jiashan section is M8.5 earthquake. Therefore, the research on the active structure of the Tanlu fault zone is mainly concentrated in these two sections. With the deepening of research, some scholars carried out a lot of research on the middle section of Tanlu fault zone, which is distributed in Shandong and northern Jiangsu Province, including five nearly parallel fault systems, i.e. Changyi-Dadian Fault(F1), Baifenzi-Fulaishan Fault(F2), Yishui-Tangtou Fault(F3), Tangwu-Gegou Fault(F4) and Anqiu-Juxian Fault(F5). They find that the faults F3 and F5 are still active since the late Quaternary. In recent years, we have got a further understanding of the geometric distribution, active age and active nature of Fault F5, and found that it is still active in Holocene. At the same time, the latest research on the extension of F5 into Anhui suggests that there is a late Pleistocene-Holocene fault existing near the Huaihe River in Anhui Province. The Tanlu fault zone extends into Anhui Province and the extension section is completely buried, especially in the Hefei Basin south of Dingyuan. At present, there is little research on the activity of this fault segment, and it is very difficult to study its geometric structure and active nature, and even whether the fault exists has not been clear. Precisely determining the distribution, active properties and the latest active time of the hidden faults under urban areas is of great significance not only for studying the rupture behavior and segmentation characteristics of the southern section of the Tanlu fault zone, but also for providing important basis for urban seismic fortification. By using the method of shallow seismic prospecting and the combined drilling geological section, this paper carries out a detailed exploration and research on the Wuyunshan-Hefei Fault, the west branch fault of Tanlu fault zone buried in Hefei Basin. Four shallow seismic prospecting lines and two rows of joint borehole profiles are laid across the fault in Hefei urban area from north to south. Using 14C, OSL and ESR dating methods, ages of 34 samples of borehole stratigraphic profiles are obtained. The results show that the youngest stratum dislocated by the Wuyunshan-Hefei Fault is the Mesopleistocene blue-gray clay layer, and its activity is characterized by reverse faulting, with a maximum vertical offset of 2.4m. The latest active age is late Mesopleistocene, and the depth of the shallowest upper breaking point is 17m. This study confirms that the west branch of Tanlu fault zone cuts through Hefei Basin and is still active since Quaternary. Its latest activity age in Hefei Basin is late of Middle Pleistocene, and the latest activity is characterized by thrusting. The research results enrich the understanding of the overall activity of Tanlu fault zone in the buried section of Hefei Basin and provide reliable basic data for earthquake monitoring, prediction and earthquake damage prevention in Anhui Province.  相似文献   

16.
从大尺度和小尺度两方面研究郯庐断裂带苏鲁段地壳介质非均匀性。使用地震波数据,研究了郯庐断裂带苏鲁段地壳速度结构的非均匀性,单位虚波Qmps的非均匀性,地壳介质泊松比的非均匀性,反映地壳介质小尺度非均匀性的分层κ值和y值。计算了1668年郯城8 1/2级地震震源区长度和沿断裂带的震源区边界,根据地震构造和地震活动性确定断裂的闭锁段,地震应力的积累单元和调整单元。对比1668年郯城8 1/2级地震的地壳介质状况,将各种非均匀性参数综合分析,结果表明,各种参数指向一致,未来大震的可能区域是33°-34.5°N,118°-118.8°E的北北东向区域,震级可达8级。  相似文献   

17.
Tancheng-Lujiang Fault runs through Shandong,Jiangsu,Anhui Provinces of East China,and this segment is called the Shandong-Jiangsu-Anhui segment of the Tancheng-Lujiang fault zone in the paper.By comparative analysis on the data of seismogeology,deep seismic exploration,seismic tomography,seismic activity,geomorphology,crustal motion velocity field and deformation observation,etc.,and based on the principles of historical earthquake recurrence and structure analogy,the possibility is discussed of the occurrence of strong earthquake in the Shandong-Jiangsu-Anhui segment.It is found by comparison between the Wangji-Jiashan region of south Sihong County and epicenter area of the 1668 Tancheng M 81/2 earhtquake that there are high similarities between these two regions in terms of deep-seated and shallow geologic structure,neotectonic movement,and seismic activity,etc.According to the studies of historic seismic event recurrence and tectonic comparison,the area along Wangji to Jiashan of Sihong County along the Shandong-Jiangsu-Anhui segment of the Tancheng-Lujiang fault zone is likely to generate M7 or above strong earthquake.  相似文献   

18.
By using moving average method to separate Bouguer gravity anomaly field in Sichuan-Yunnan region, we got the low-frequency Bouguer gravity anomaly field which reflects the undulating of Moho interface. The initial model is obtained after seismic model transformation and elevation correction. Then, we used Parker method to invert the low-frequency Bouguer gravity anomaly field to obtain the depth of Moho interface and crustal thickness in the area. The results show that the Qinghai-Tibet block in the northwest of the study area deepens and thickens from the edge to the interior, with the depth of Moho interface and the crust thickness of about 52~62km and 54~66km, respectively. The depth of Moho interface in Sichuan Basin is about 38~42km. In Sichuan-Yunnan block, the depth of Moho interface is about 42~62km from southeast to northwest. Beneath the West Yunnan block, west of the Red River fault zone, the Moho depth is about 34~52km from south to north. The Longmen Mountains and Red River fault zone are the gradient zone of the Moho depth change. Along the Red River fault zone, the depth difference of Moho interface is increasing gradually from north to south. No obvious uplift is found on the Moho interface of Panzhihua rift valley. The depth of Moho interface distribution in Sichuan and Yunnan is obviously restricted by the collision between the Indian plate and the Eurasian plate and the lateral subduction of the Indo-China peninsula. The mean square error of the depth of Moho interface is less than 1.7km between the result of divisional density interface inversion and artificial seismic exploration. At the same time, we compared the integral with divisional inversion result. It shows that:in areas where there is obvious difference between the crust velocity and density structure in different tectonic blocks, the use of high resolution seismic exploration data as the constraints to the divisional density interface inversion can effectively improve the reliability of inversion results.  相似文献   

19.
依据EIGEN-6C4重力模型和ETOPO1高程模型数据,围绕新疆精河6.6级地震展开岩石圈均衡与挠曲机理研究,得到如下结论:(1)震中附近的布格与自由空气重力异常分别为-221和-92mGal(10~(-5 )m·s~(-2)),震中位于重力异常高梯度带上;(2)震中周边地区地壳厚度约为50km,密度结构总体变化平缓,东西方向地壳厚度变化较小,但自南向北地壳厚度逐渐变薄,精河6.6级地震初始破裂发生在上中地壳分界面附近;(3)震中附近岩石圈承载的垂向构造应力为20MPa左右,震中位于岩石圈垂向构造应力极大值附近的高梯度带上;(4)地震周边地区岩石圈有效弹性厚度最优解为26km,加载比最优解为F_1=1,F_2=F_3=0,表明该区域岩石圈相对坚硬,且导致岩石圈变形的初始加载全部来自地表.  相似文献   

20.
Longmenshan fault zone is a famous orogenic belt and seismic zone in the southeastern Tibetan plateau of China. The Wenchuan MS8.0 earthquake on May 12, 2008 and the Ya'an MS7.0 earthquake on April 20, 2013 occurred in the central-southern part of Longmenshan fault zone. Because of its complex geological structures, frequent earthquakes and special geographical locations, it has attracted the attention of many scholars around the world. Satellite gravity field has advantages in studying gravity field and gravity anomaly changes before and after earthquake. It covers wide range, can be updated regularly, without difficulty in terms of geographical restrictions, and is not affected by environmental factors such as weather, terrain and traffic. Therefore, the use of high-precision Earth satellite gravity field data inversion and interpretation of seismic phenomena has become a hot topic in earth science research. In order to understand satellite gravity field characteristics of the Longmenshan earthquake zone in the southeastern Tibetan plateau and its seismogenic mechanism of earthquake disasters, the satellite gravity data was used to present the terrain information of the study area. Then, by solving the regional gravity anomaly of the Moho surface, the crustal thickness of the study area was inverted, and the GPS velocity field data was used to detect the crustal deformation rate and direction of the study area. Combining the tectonic setting of the Longmenshan fault zone and the existing deep seismic sounding results of the previous researchers, the dynamic characteristics of the gravity time-varying field after the earthquake in the Longmenshan earthquake zone was analyzed and the mechanism of the earthquake was explored. The results show that the eastward flow of deep materials in the eastern Tibetan plateau is strongly blocked at the Longmenshan fault zone. The continuous collision and extrusion process result in a "deep drop zone" in the Moho surface, and the long-term stress effect is conducive to the formation of thrust-nappe and strike-slip structures. The Longmenshan earthquake zone was in the large-scale gradient zone of gravity change before the earthquake, the deep plastic fluid material transport velocity differed greatly, the fluid pressure was enhanced, and the rock mechanical strength in the seismic source region was weakened, which contributed to the intrusion of crustal fluid and the upwelling of the asthenosphere. As a result, the continuous accumulation of material and energy eventually led to continuous stress imbalance in the deep part and shear rupture of the deep weak structure, causing the occurrence of the thrust-nappe and strike-slip earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号