首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The global mean temperature during the recent decade (2007-2016) has increased above 1 ℃ relative to the pre-industrial period (1861-1890). The climate change and impact under 1.5 ℃ warming in the future have become a great concern in global society. Temperature projections, especially in regional scale, show great uncertainty depending on used climate models. Taking advantage of pattern scaling technique and observed temperature changes during 1951-2005, we tried to project the temperature changes globally under 1.5 ℃ threshold relative to current climate state, i.e. about 1 ℃ warming around 2007-2016. The projections of 21 climate models from the Coupled Model Intercomparison Project - Phase 5 under four Representative Concentration Pathways (RCP2.6, RC4.5, RCP6.0 and RCP8.5) were used to correct the assumptions in pattern scaling. Results showed that the geographical distribution and warming amplitude of surface air temperature changes under 1.5 ℃ threshold are similar in the four scenarios. Warming over most of the land would be above 0.6 ℃, 0.3 ℃ warmer than ocean. The Northern Hemisphere would be 0.2 ℃ warmer than the Southern Hemisphere. The temperature over China region will increase by 0.7 ℃. The warming in the Northern and Central China under RCP2.6 was obviously higher than that in the other scenarios. Ignoring the impact of correction method, uncertainty in temperature projection based on pattern scaling was much smaller than that in climate models, both in global and regional scales.  相似文献   

2.
大兴安岭区域未来气候变化趋势及其对湿地的影响   总被引:2,自引:1,他引:1  
基于未来2种排放情景下的RCM-PRECIS输出的大兴安岭区域气温与降水量预测数据,采用Mann-Kendall(简称M-K)非参数检验法和线性倾向率法,分析大兴安岭区域2015-2050年气候变化趋势及其对湿地的影响.结果表明,在未来2种情景下,2015-2050年的年平均气温升高显著,A2情景的增温速率(0.54℃·(10a)-1)高于B2情景(0.41℃·(10a)-1),与东北地区增温速率(0.56℃·(10a)-1)一致,B2情景增温速率低于东北地区增温速率;大兴安岭区域自2032年气温开始出现增暖突变现象,增温幅度显著增大.2种情景下季节平均气温的增温速率大小依次为夏季、冬季、春季和秋季,A2情景夏、冬、春、秋季分别为0.59、0.56、0.56、0.52℃·(10a)-1,B2情景分别为0.48、0.47、0.42、0.37℃·(10a)-1;各季突变增温时间点和增温趋势显著时段存在差异.2种情景下2015-2050年的年降水量有微弱的减少趋势,M-K检测基本无显著变化;季节降水总体而言,大兴安岭区域未来36a降水量仍以夏季为主,占全年降水量的60%左右;春季和秋季次之,各占全年降水量的18%~19%.未来大兴安岭区域气候呈现暖干化趋势,其中21世纪20、40年代大兴安岭湿地受到气候暖干化的胁迫相应较强,未来气候暖干化趋势是大兴安岭湿地生态系统萎缩和退化的主要诱因之一,未来大兴安岭湿地生态系统仍将受到气候暖干化趋势的巨大威胁,面临萎缩和严重退化趋势.  相似文献   

3.
The features of climate change and their effects on glacier snow melting in the past 50 years (1961–2010) in Xinjiang were studied. Regional climate data for 49 meteorological stations in the Tianshan Mountains and the northern and southern areas of Xinjiang were collected with the aid of techniques such as climatological statistical diagnosis, regional climate models, remote sensing, and geographic information system. The annual average temperature displayed a rising trend across the Tianshan mountainous area and both areas of Xinjiang. The trend was particularly apparent in winter and autumn with the rate of increase in the annual average minimum temperature being significantly higher than that of the maximum temperature. Rainfall also tended to increase in all three areas over the 50-year period, with the magnitude of change being highest in the mountainous area followed by northern Xinjiang and then southern Xinjiang. As a result of the rising temperatures, there was a negative material balance among the region's glaciers, of which the year 1982/1983 was the key year for the development of Tianshan mountain glacier snow. After this date, glacial ablation intensified with an annual change increase in average temperature of 1 °C, leading to a glacier material balance change of about 300 mm. To establish rainfall and temperature sequences for three regional climate change scenarios in the 2011–2050 period, we adopted the delta method using actual measurements during the 1961–2000 period against corrected data from rainfall and temperature simulations. All three scenarios indicated that temperatures will continue to increase, that the increase in rainfall may decrease in mountainous regions but will increase in the basin, and that the speed of glacial ablation in Xinjiang will continue to accelerate.  相似文献   

4.
Understanding the impacts of climate change on water quality and stream flow is important for management of water resources and environment. Miyun Reservoir is the only surface drinking water source in Beijing, which is currently experiencing a serious water shortage. Therefore, it is vital to identify the impacts of climate change on water quality and quantity of the Miyun Reservoir watershed. Based on long-time-series data of meteorological observation, future climate change scenarios for this study area were predicted using global climate models (GCMs), the statistical downscaling model (SDSM), and the National Climate Centre/Gothenburg University—Weather Generator (NWG). Future trends of nonpoint source pollution load were estimated and the response of nonpoint pollution to climate change was determined using the Soil and Water Assessment Tool (SWAT) model. Results showed that the simulation results of SWAT model were reasonable in this study area. The comparative analysis of precipitation and air temperature simulated using the SDSM and NWG separately showed that both tools have similar results, but the former had a larger variability of simulation results than the latter. With respect to simulation variance, the NWG has certain advantages in the numerical simulation of precipitation, but the SDSM is superior in simulating precipitation and air temperature changes. The changes in future precipitation and air temperature under different climate scenarios occur basically in the same way, that is, an overall increase is estimated. Particularly, future precipitation will increase significantly as predicted. Due to the influence of climate change, discharge, total nitrogen (TN) and total phosphorus (TP) loads from the study area will increase over the next 30 years by model evaluation. Compared to average value of 1961?~?1990, discharge will experience the highest increase (15%), whereas TN and TP loads will experience a smaller increase with a greater range of annual fluctuations of 2021 ~ 2050.  相似文献   

5.
This study investigates the variability of extreme rainfall (temperature) events in the twenty-first century based on 18 (24)-member multimodel simulations of models participating in phase 5 of the Couple Model Intercomparison Project (CMIP5). The study employed extreme indices defined by the WMO’s Experts Team on Climate Change Detection Indices, under two radiative forcing scenarios: RCP4.5 and RCP8.5. Two 30-year time periods, mid- (2021–2050) and end (2071–2100) of the twenty-first century, are considered for investigation of extremes, relative to the baseline period (1961–1990). Mann–Kendall test statistic and Sen’s slope estimator are used to investigate trend. Temperature shows a remarkable increase with an increase in radiative forcing. A sharp augmentation in temperature is projected towards the end of the twenty-first century. There will be almost zero cool days and cold nights by the end of the century. Very wet and extremely very wet days increase, especially over Uganda and western Kenya. Variation in maximum 1-day precipitation (R × 1 day) and maximum 5-day precipitation amount shows a remarkable increase in variance towards the end of the twenty-first century. Although the results are based on relatively coarse resolution data, they give likely conditions that can be utilized in long-term planning and be relied on in advanced studies.  相似文献   

6.
罗布  边多  白玛  拉巴 《冰川冻土》2020,42(2):653-661
利用多源气象要素数据估算了1998 - 2016年的藏北高寒牧区植被净初级生产力(Net Primary Productivity, NPP)的变化特征并预估了其在2 ℃全球变暖背景下的变化趋势, 结果表明: 研究区域71.9%的NPP呈上升趋势, 仅中部部分区域有下降趋势; 平均NPP以每年0.54%速率增加, 同期气温和降水均呈增加趋势, NPP和气温在2007前后有显著增加趋势; 总体来说降水是影响NPP的最主要气候因子, 且随着纬度升高其影响越来越大, 气温对于NPP的影响从东南向西北依次递减, 在西北地区出现弱的负相关; 在2 ℃全球变暖大背景下, 分析得出IPCC“典型浓度路径”(Representative Concentration Pathways, 简称RCPs)三种温室气体排放情景下(RCP2.6、 RCP4.5、 RCP8.5)的NPP平均状态几乎没有变化, 其影响仅限于对研究区东南部的较高NPP有较小的改善作用, 其作用依次为>, 表明气候变暖对研究区NPP影响有限, 预估结果对认清高原地区气候变化下NPP时空变化特征有重要意义。  相似文献   

7.
A three-dimensional groundwater flow model was implemented to quantify the temporal variation of shallow groundwater levels in response to combined climate and water-diversion scenarios over the next 40 years (2011–2050) in Beijing-Tianjin-Hebei (Jing-Jin-Ji) Plain, China. Groundwater plays a key role in the water supply, but the Jing-Jin-Ji Plain is facing a water crisis. Groundwater levels have declined continuously over the last five decades (1961–2010) due to extensive pumping and climate change, which has resulted in decreased recharge. The implementation of the South-to-North Water Diversion Project (SNWDP) will provide an opportunity to restore the groundwater resources. The response of groundwater levels to combined climate and water-diversion scenarios has been quantified using a groundwater flow model. The impacts of climate change were based on the World Climate Research Programme’s (WCRP’s) Coupled Model Intercomparison Project phase 3 (CMIP3) multi-model dataset for future high (A2), medium (A1B), and low (B1) greenhouse gas scenarios; precipitation data from CMIP3 were applied in the model. The results show that climate change will slow the rate of decrease of the shallow groundwater levels under three climate-change scenarios over the next 40 years compared to the baseline scenario; however, the shallow groundwater levels will rise significantly (maximum of 6.71 m) when considering scenarios that combine climate change and restrictions on groundwater exploitation. Restrictions on groundwater exploitation for water resource management are imperative to control the decline of levels in the Jing-Jin-Ji area.  相似文献   

8.
以北江飞来峡水库上游为研究对象,构建了网格分辨率为0.25°×0.25°的VIC(Variable Infiltration Capacity)水文模型,应用CMIP5多模式输出的降尺度结果与VIC模型耦合,对RCP2.6、RCP4.5和RCP8.5情景下未来时期(2020-2050年)飞来峡水库的入库洪水进行预估,并根据IPCC第5次评估报告处理和表达不确定性的方法来描述预估结论的可信度。结果表明,2020-2050年飞来峡水库年最大洪峰流量和年最大7日、15日洪量在RCP2.6情景下"大约可能"呈增加趋势,在RCP4.5和RCP8.5情景下"较为可能"呈增加趋势,水库防洪安全风险增大。与历史时期(1970-2000年)相比,未来水库极端入库洪水增加的可能性从大到小依次为RCP4.5、RCP2.6和RCP8.5情景,其中设计洪水100年、50年和20年一遇的洪峰流量在3种排放情景下均呈上升趋势,100年、50年和20年一遇的最大7日、15日洪量在RCP4.5情景下以上升为主,而在RCP2.6和RCP8.5情景下则主要呈减少态势。  相似文献   

9.
利用7个参加耦合模式比较计划第五阶段(CMIP5)的全球气候模式模拟数据,在RCP4.5、RCP8.5两种排放情景下,从年、季、月尺度上对中国以及中国的7个区域的气温和降水进行未来情景预估分析。分析结果表明:2010~2099年,两种情景下中国的气温增加明显,并呈现出春弱秋冬(尤其是一、八、九、十一、十二月)强的特征,北部(N)、西北东部(ENW)、西北西部(WNW)、西藏(Tibet)的升温趋势高于其他地区。RCP8.5情景下的气温线性趋势值大部分都高于RCP4.5情景下的值。在RCP4.5情景下,2060~2099年东北部(NE)呈现降温。两种情景下,全国降水量也呈增加趋势,呈现由东南向西北递减的地理分布,并表现出冬弱春夏强的季节变化特征。西北西部(WNW)在全年降水偏少,春夏季黄河以北降水趋势较小,降水大值中心在长江以南地区,尤其是在五、六、七、八月份。秋季,在RCP4.5、RCP8.5情景下SE降水线性趋势分别低于或等于全国平均水平,东北部(NE)、北部(N)、西北东部(ENW)的降水线性趋势略高。在2010~2039年,在RCP8.5情景下西南(SW)的降水减少。  相似文献   

10.
IPCC AR4多模式对中国地区未来40 a雪水当量的预估   总被引:3,自引:2,他引:1  
王芝兰  王澄海 《冰川冻土》2012,34(6):1273-1283
通过评估参加CMIP3计划的22 个GCM在20 世纪气候情景(20C3M)下中国地区雪水当量模拟能力的检验, 挑选出模拟能力较好的模式, 通过多模式集合方法, 对SEARS的模拟结果进行集合, 预估未来40 a雪水当量在中国地区的时空变化特征.结果表明: 在A1B情景下和B1情景下, 中国地区未来40 a雪水当量年际变化均呈减少趋势; 在A1B和B1情景下, 青藏高原地区、 华北平原地区、 长江中游地区及东北北部地区的雪水当量均呈减少趋势, 其中在昆仑山西段帕米尔高原地区减少最为显著, 其次为喜马拉雅山区和巴颜喀拉山东段地区.在中国北部的内蒙古高原地区、 云贵高原等部分地区的雪水当量则有所增加.总体上, A1B情景下比B1情景下雪水当量的减少更为明显. 2021-2050年雪水当量在青藏高原减少显著; 对于季节变化来说, 在秋冬季积雪的累积期, 雪水当量可能增加, 尤其在10-12月, 而在积雪消融的春夏季(2-6月)有所减少.  相似文献   

11.
施红霞  王澄海 《冰川冻土》2015,37(2):327-335
基于CMIP5模式模拟的净初级生产力(NPP), 对21世纪初期(2016-2035年), 中期(2046-2065年)和末期(2080-2099年)三种排放情景下(RCP2.6、RCP4.5、RCP8.5)北半球中高纬度陆地NPP的时空变化进行了预估, 并结合气候因子分析了NPP的变化和气温、降水、辐射之间的关系. 结果表明: 相对于1986-2005年, 21世纪北半球中高纬度陆地NPP呈增加趋势, RCP8.5情景下NPP的增加比RCP2.6和RCP4.5情景下更为明显; 在季节变化上, 北半球中高纬度NPP也以增加为主, 且NPP在夏季, 尤其是6月增加最显著. NPP对气候变化的响应存在明显的区域差异性, 在中低排放情景下(RCP2.6、RCP4.5), 相对于1986-2005年, 21世纪北半球中高纬度地区温度显著影响的范围在逐渐缩小, 而辐射和降水显著影响的范围在扩大. 在高排放情景下(RCP8.5), 21世纪北半球中高纬度地区NPP的变化主要与温度有关.  相似文献   

12.
利用第六次国际耦合模式比较计划(CMIP6)提供的5个气候模式,并结合基于地面气象站的CN05.1气象资料,评估了CMIP6模式对黄河上游地区1961—2014年气温变化的模拟能力。基于7个共享社会经济路径及代表性浓度路径(SSP-RCP)组合情景,结合多模式集合平均预估了2015—2100年黄河上游地区年均气温和季平均气温的时空变化规律。结果表明:多模式集合平均能较好地模拟黄河上游地区历史平均气温的空间分布格局与年变化。7个未来情景一致表明,2015—2100年黄河上游地区年平均气温呈现波动上升趋势[0.03~0.82 ℃?(10a)-1]。其中,低辐射强迫情景下(SSP1-1.9、SSP1-2.6及SSP4-3.4)气温先呈现增加趋势,21世纪中期到达增幅峰值,之后增温呈现放缓趋势;而中、高辐射强迫情景下(SSP2-4.5、SSP3-7.0、SSP4-6.0及SSP5-8.5)气温表现为持续上升态势。空间上,未来气温增幅显著的区域位于黄河上游西部地区;时间上,呈现夏季增温快,春季增温慢。四季增温的空间分布呈现出一致特征,表现为西部增温强于东部,北部增温强于南部。研究结果可为黄河流域水资源管理及气候变化的适应性研究提供科学依据。  相似文献   

13.
Yinhuang Irrigation District in Ningxia, as the top rice production area of high quality and quantity, has a long history in rice planting. The studies of the effective measures for the rice production replying the climate change were very important for reducing the harm of the future climate change and crop supply safety in Ningxia Province. Based on the coupling of the PRECIS model and the crop model CERES Rice, the effects of climate change on the rice production and growth stage in Yinhuang Irrigation District in Ningxia Province were simulated and evaluated, and the adaptability measures of rice production were studied. The results showed that the CERES Rice model had the preferable simulation capability, and the modified PRECIS model also could preferably simulate the required climate parameter. The crop model simulation results showed that the climate change had some influence on the rice production and growth stage in Yinhuang Irrigation District. The rice production goes down under future climate change scenarios in Ningxia Province. The trend of reduction of 2050s is more apparent than that of 2020s under the same scenarios,but the spatial change trend is similar. The extent and range of reduction of A2 scenario are wider than that of B2 scenario in the same period, but spatial change trend is different. For the change of growth stage, there has no obvious change in the north and the central part of the Yinhuang Irrigation District. The duration in 2050s shortens more obviously than that of 2020s under the same scenario, and the duration under B2 scenario shortens more obviously than that under A2 scenario in the same period. The results of adjusting the sowing date and the rice variety parameter G4 showed that the negative impact of climate change on the rice production can be reduced by sowing date advance in Yinhuang Irrigation District in Ningxia Province. There has obvious difference for the optimal G4 values of different region in Yinhuang Irrigation District, and the rice production can also be effectively upraised by adjusting the rice variety characteristic and cultivating the heat resistant rice varieties. The optimal G4 values can mitigate the damage of climate change on the rice production in Yinhuang Irrigation District in Ningxia Province.  相似文献   

14.
Climate change is expected to have substantial impacts on flow regime in the Upper Yellow River (UYR) basin that is one of the most important biodiversity hotspots in the world. These impacts will most possibly exert negative effects on the habitat availability for riverine species. Thus, it is necessary to understand the alteration of river flow regime under climate scenarios. In this paper, we use the modified hydrological model HBV in conjunction with three general circulation models under three representative concentration pathways (RCP 2.6, 4.5, and 8.5) to address changes in flow regime under climate change for the UYR basin in the mid-term (2050s) and end-term (2080s) of the twenty-first century. Flow regime is quantified using the Indicators of hydrological alteration approach. Thereafter, the potential threats to riverine ecosystem in the UYR basin are identified based on the projected alterations of various flow characteristics and their ecological influences. The results showed that the magnitude of monthly flow would increase during the dry period. The date of the annual 1-day minimum streamflow will likely shift toward earlier time under different scenarios, and significant increases in magnitude of annual minimum flow of different durations were detected under both RCP 4.5 and 8.5 scenarios in the 2080s. In addition, assessments of the modification degree of the overall flow regime revealed that climate change would remarkably modify (medium level) the overall flow regime in the UYR basin, particularly by the end of the twenty-first century or under the high emission scenarios. Besides, destruction of habitat and reduced availability of food induced by substantially increased hydrological instability in the 2080s would make two endangered fishes more vulnerable in the UYR basin. These findings provide insights into potential adaptive countermeasures for water resource management and environmental system restoration in the Upper Yellow River.  相似文献   

15.
李佳瑞  牛自耕  冯岚  姚瑞  陈鑫鑫 《地球科学》2020,45(6):1887-1904
为研究长江和黄河流域极端气温的变化特征,对耦合模式比较计划第5阶段22个大气环流模式数据进行精度评估、Delta降尺度并计算16个极端气温指标,采用可靠性集合平均方法对两流域历史和未来的极端气温进行预估.结果表明:除四川盆地外,两流域的观测值与REA(ensemble reliability average)值在空间上具有较好一致性;未来三个时期(2020s、2050s、2080s),典型浓度路径(Representative Concentration Pathways,RCP)4.5情景下指标变化趋势依次递减,RCP8.5情景下变化趋势逐渐递增;RCP4.5和RCP8.5情景下指标年际变化在21世纪40年代之前是相似的,但之后变化趋势差异增加;两流域的大多数指标呈现上升趋势,冬季趋势相较于其他季节更显著;两流域之间冷极端指标的差异大于暖极端指标.总的来说,两流域的暖极端事件将更加严重.   相似文献   

16.
Fengjin  Xiao  Lianchun  Song 《Natural Hazards》2011,58(3):1333-1344
The trends of global warming are increasingly significant, especially in the middle and high latitude regions of the northern hemisphere, where the impact of climate change on extreme events is becoming more noticeable. Northeast China is located in a high latitude region and is sensitive to climate change. Extreme minimum temperatures causing cold damage during the warm season is a major type of agro-meteorological disaster in Northeast China, which causes serious reductions in crop yield. In this paper, we analyzed the temporal and spatial trends in the frequency of extreme minimum temperatures during the warm season (from May to September) during 1956–2005 in Northeast China. Abrupt climatic changes were identified using the Mann–Kendall test. The results show that the frequency of extreme minimum temperature days during the warm season in Northeast China decreases significantly from 1956 to 2005 with a background of climate warming. The highest number of extreme minimum temperature days occurred in the 1970s and 1980s, and there was an abrupt climatic change in 1993. The spatial analysis identified that the north and southeast of the region experienced a larger decrease in the number of extreme low temperature days than the west and south of the region. Rice, sorghum, corn, and soybeans are most vulnerable to cold damage. In severe low temperature years, the average crop yield was reduced by 15.2% in Northeast China.  相似文献   

17.
Complex interactions between the land surface and atmosphere and the exchange of water and energy have a significant impact on climate. The Tibetan Plateau is the highest plateau in the world and is known as “Earth’s third pole”. Because of its unique natural geographical and climatic characteristics, it directly affects China’s climate, as well as the world’s climate, through its thermal and dynamic roles. In this study, the BCCCSM1.1 model for the simulation results of CMIP5 is used to analyze the variation of the land surface processes of the Tibetan Plateau and the possible linkages with temperature change. The analysis showed that, from 1850 to 2005, as temperature increases, the model shows surface downward short-wave radiation, upward short-wave radiation, and net radiation to decrease, and long-wave radiation to increase. Meanwhile, latent heat flux increases, whereas sensible heat flux decreases. Except for sensible heat flux, the correlation coefficients of land surface fluxes with surface air temperature are all significant at the 99 % significance level. The model results indicate rising temperature to cause the ablation of ice (or snow) cover and increasing leaf area index, with reduced snowfall, together with a series of other changes, resulting in increasing upward and downward long-wave radiation and changes in soil moisture, evaporation, latent heat flux, and water vapor in the air. However, rising temperature also reduces the difference between the surface and air temperature and the surface albedo, which lead to further reductions of downward and upward short-wave radiation. The surface air temperature in winter increases by 0.93 °C/100 years, whereas the change is at a minimum (0.66 °C/100 years) during the summer. Downward short-wave and net radiation demonstrate the largest decline in the summer, whereas upward short-wave radiation demonstrates its largest decline during the spring. Downward short-wave radiation is predominantly affected by air humidity, followed by the impact of total cloud fraction. The average downward short-wave and net radiation attain their maxima in May, whereas for upward short-wave radiation the maximum is in March. The model predicts surface temperature to increase under all the different representative concentration pathway (RCP) scenarios, with the rise under RCP8.5 reaching 5.1 °C/100 years. Long-wave radiation increases under the different emission scenarios, while downward short-wave radiation increases under the low- and medium-emission concentration pathways, but decreases under RCP8.5. Upward short-wave radiation reduces under the various emission scenarios, and the marginal growth decreases as the emission concentration increases.  相似文献   

18.
In this study, the regional variations of climate extremes and its possible impact on rice yield in Jiangsu province, southeast China were investigated. A total of 18 climate extremes indices (CEI) of rice-growing period (May–October) based on the daily climate records and rice yield data at 52 stations during 1961–2012 were calculated and analyzed. The main findings were as follows: (1) due to the remarked regional differences of climate extremes, Jiangsu could be divided into six climatic subregions: westernmost, northwest, north, southwest, south, and southeast corner; (2) trends of 18 indices in the six subregions using Mann–Kendall test indicated that Jiangsu was dominated by an obvious wetting and warming tendency, especially in the southern area; (3) correlation analysis between rice yield and CEI using first-difference and climate-induced yield method showed that the negative influences of precipitation extremes were more notable compared to temperature extremes; (4) P95 [precipitation due to very wet days (> 95th percentile)] should be selected as a key meteorological disasters indicator affecting rice yield in the northwest, north, southwest, and south Jiangsu; (5) the increase of P95 since 1990s was detected in most of Jiangsu, which would bring huge risks to rice growing.  相似文献   

19.
预估喀斯特生态脆弱区的未来气候变化对于区域资源的合理开发利用及生态环境保护具有重要参考价值,而目前应用降尺度方法模拟喀斯特地区的未来气候情景仍存在较大的探讨空间。本文依据珠江流域红柳江区13个气象站1961-2001年的实测日气温、日降水量资料和全球大气NCEP再分析资料,采用SDSM模型预测流域在HadCM3模式SRES A2和B2两种排放情景下未来年份气温和降水的变化趋势。结果表明:(1)SDSM模型可以较为准确地模拟研究区的气温和降水变化,确定性系数分别可达99%和65%左右;(2)A2、B2两种情景下,21世纪气温和降水均表现出明显的上升趋势,且随时间推移增幅逐渐增大。截至21世纪末,A2、B2两种情景下的年平均气温变化分别为+3.39 ℃和+2.49 ℃,日均降水将分别增加117.30 %和80.90 %;(3)未来的气温上升以秋季和春季变化最为明显,降水则表现为夏季降水增幅最大。分析成果可为喀斯特区的气候变化影响评价与应对决策提供数据基础和理论依据。   相似文献   

20.
We assessed the potential impact of climate change on the yield of rainfed rice in the lower Mekong Basin and evaluated some adaptation options, using a crop growth simulation model. Future climate projections are based on IPCC SRES A2 and B2 scenarios as simulated by ECHAM4 global climate model downscaled for the Mekong Basin using the PRECIS system. We divided the basin into 14 agro-climatic zones and selected a sub-catchment within each zone for the model and assessed the impact for the period of 2010–2030 and 2030–2050. In general, the results suggest that yield of rainfed rice may increase significantly in the upper part of the basin in Laos and Thailand and may decrease in the lower part of the basin in Cambodia and Vietnam. The increase is higher during 2030–2050 compared to the period of 2010–2030 for A2 scenario. For B2 scenario, yield increase is higher during 2010–2030. The impact is mainly due to the change in rainfall and CO2 concentration in the atmosphere. We have tested widely used adaptation options such as changing planting date, supplementary irrigation, and reduction in fertility stress and found that negative impact on yield can be offset and net increase in yield can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号