首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 156 毫秒
1.
基于第六次国际耦合模式比较计划(CMIP6)的22个地球气候/系统模式模拟数据,分析了1961—2100年期间青藏高原年均地表气温在不同情景下的时空变化。结果表明,多模式集合平均的模拟结果优于大多数单个模式。由于共享社会经济路径(SSP)和辐射强迫的不同,在SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5四种情景下,2015—2100年间青藏高原年均地表气温的增温趋势分别为0.10 ℃·(10a)-1、0.29 ℃·(10a)-1、0.53 ℃·(10a)-1和0.69 ℃·(10a)-1,帕米尔高原、藏北高原中西部和巴颜喀拉山区为三个升温中心。相对于1995—2014年参考时段,到本世纪中期(2041—2060年),青藏高原区域年均地表气温将分别增加1.37 ℃、1.72 ℃、1.98 ℃和2.30 ℃,而到本世纪末期(2081—2100年),年均地表气温将分别增加1.42 ℃、2.65 ℃、4.28 ℃和5.38 ℃。与《巴黎协定》提出的到本世纪末全球平均气温升高不超过2 ℃目标相比,无论在哪种情景下,到本世纪中期时青藏高原年均地表气温相对于工业革命前均升高超过2 ℃,这会造成极大的气候生态环境问题。  相似文献   

2.
基于CMIP6气候模式的新疆积雪深度时空格局研究   总被引:1,自引:0,他引:1  
张庆杰  陶辉  苏布达  窦挺峰  姜彤 《冰川冻土》2021,43(5):1435-1445
积雪深度的变化对地表水热平衡起着至关重要的作用。选用了国际耦合模式比较计划第六阶段(CMIP6)中目前情景比较齐全的五个全球气候模式,通过对比新疆地区1979—2014年积雪深度长时间序列数据集,评估了气候模式在新疆地区模拟积雪深度的模拟能力,接着预估了未来不同SSPs-RCPs情景下新疆地区在2021—2040年(近期)、2041—2060年(中期)、2081—2100年(末期)相对于基准期(1995—2014年)的积雪深度变化。气温和降水对积雪深度变化有着重要的影响,因此还分析了新疆地区到21世纪末期气温和降水的变化趋势。结果表明:订正后的气候模式模拟的积雪深度数据与观测数据的相关系数均达到0.8以上,其中1月至3月与观测数据的结果更为吻合。气候模式基本上能够反映积雪深度年内变化的基本特征,气候模式模拟的积雪深度空间分布和观测数据具有相似的特征。气温和降水在未来不同情景下均会波动上升,其中气温的增幅相对比较明显,达0.43 ℃·(10a)-1,而降水的增幅为0.63 mm·(10a)-1,新疆未来的气候总体上呈现出变暖变湿的趋势。新疆地区的平均积雪深度在未来不同时期相对基准期均呈增加的趋势。SSP1-1.9情景下,21世纪近期、中期和末期北部大部分地区的积雪深度将会有所增加;SSP1-2.6情景下,北部阿尔泰山地区的积雪深度在21世纪近期有所减小,但中期和末期将会有所增加;SSP2-4.5情景下,21世纪不同时期东部地区的积雪深度将会有所增加,北部和中部大部分地区在不同时期积雪深度将会变小;SSP3-7.0情景下,21世纪不同时期北部和西南地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP4-3.4和SSP4-6.0情景下,21世纪不同时期西南昆仑山地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP5-8.5情景下,北部阿尔泰山地区和东部地区的积雪深度将普遍增加。  相似文献   

3.
在极地放大效应的影响下,北极气温以较全球平均更快的速度变暖,从而导致了北极冰冻圈系统的剧烈变化。河冰是北极冰冻圈系统的重要组成部分,是气候变化的敏感指示器,同时影响当地的生态、水文和多年冻土等。本研究利用Stefan方程,使用实测河冰厚度数据、CMIP6历史实验数据和四个未来情景(SSP126、SSP245、SSP370和SSP585)的1850—2100年近地表日气温数据,建立了阿拉斯加地区1850—2100年最大河冰厚度,并分析其时空变化特征。研究表明:阿拉斯加地区多年平均最大河冰厚度呈现南薄北厚的特点;在东西方向上,1850—2000年的平均最大冰厚呈现东薄西厚的特点,但未来100年在东西方向上无显著差异(P<0.05)。1850—2100年阿拉斯加地区最大河冰厚度整体上呈显著下降趋势。其中,1850—2014年下降速率为(-0.72±0.25) cm·(10a)-1(P<0.05);随着社会脆弱性的加剧和辐射强迫的增强,2015—2100年阿拉斯加地区河冰减薄的速度明显增大,在SSP126、SSP245、SSP370和SSP585情景下分别为(...  相似文献   

4.
气候系统模式是对历史和未来气候模拟最广泛有效的工具,但存在一定的不足和局限性,使其无法直接用以预估未来气候变化。本文采用基于分位数映射的日偏差校正(DBC)、多模式集合(MME)平均和基于皮尔逊r相关系数的加权集合(r-MME)平均方法,以1971—2000年为基准期,评估6种气候模式在和田河流域的适用性;运用r-MME方法对未来SSP1-2.6、SSP2-4.5和SSP5-8.5情景下各模式的偏差校正结果进行集合,分析未来近期(2021—2050年)、远期(2061—2090年)日最高、最低气温以及降水的时空演变特征。结果表明:基于DBC的r-MME融合方法能够综合考虑各模式的优势,可大幅提高气候模式模拟的精度,年均最高气温、最低气温和降水量与实测序列的相关系数分别达到0.918、0.821和0.878;3种情景下的气温和降水均呈现增加趋势,其中低强迫SSP1-2.6情景下的增幅最小,远期年最高气温、最低气温和降水的平均增量分别为2.830、2.523℃和46.412 mm,高强迫SSP5-8.5情景下的增幅最大,远期年最高气温、最低气温和降水的平均增量为5.697、6.452℃和9...  相似文献   

5.
CMIP5多模式集合对南亚印度河流域气候变化的模拟与预估   总被引:1,自引:0,他引:1  
利用印度河流域CRU、APHRODITE和CMIP5多模式逐月气温、降水格点数据集, 评估了CMIP5模式集合对印度河流域气候变化的模拟能力; 对多模式集合数据进行了偏差订正, 并对流域2046-2065年和2081-2100年气候变化进行了预估. 结果表明: 气候模式对流域年平均气温时间变化和空间分布特征有着较强的模拟能力, 时间空间相关系数均达到了0.01的显著性水平, 尤其对夏季气温的模拟要优于其他季节; 模式对降水的季节性波动也有着较好的模拟能力. 偏差订正后的预估结果表明, RCP2.6、4.5、8.5情景下, 相对于基准期(1986-2005年), 21世纪中期(2046-2065年)和末期(2081-2100年)整个流域年平均气温都有一定上升, 且流域上游增幅较大; 除RCP4.5情景下21世纪中期流域有弱减少趋势外, 年降水量都将有一定增长. 未来夏季持续升温将引起源区冰川的进一步消融, 春季降水对于中高海拔地区水资源的贡献将减弱; 流域北部高海拔区域冬季降水的增加有助冰川累积和上游水资源的增加, 东部高海拔区域冬季降水的减少会减少上游水资源. 两时期夏季降水都有一定的增长, 洪涝的发生风险加大; 流域暖事件和强降水事件也将可能增多.  相似文献   

6.
人类活动和气候变化严重改变了黄河水文情势和生态径流,分析未来气候变化对河流生态的影响对流域水资源管理和长期规划意义重大。本文对第六次国际耦合模式比较计划(CMIP6)的13个全球气候模式数据进行偏差订正,驱动水文模型进行径流模拟,应用流量历时曲线方法分析SSP1-2.6、SSP2-4.5、SSP5-8.5情景下2026年至21世纪末年、季节尺度的花园口生态径流变化。结果表明:订正能明显降低降水、气温模拟偏差;人类活动严重影响了1986-2010年花园口生态径流;2026-2100年年均气温和年降水量增加趋势显著,低排放情景增速慢,高排放情景增速快;气候变化可在一定程度上缓解水库调控、水土保持等人类活动对生态径流的负面影响,SSP5-8.5情景缓解程度最高,冬季缓解程度最高,夏、秋季最低。  相似文献   

7.
全球变暖下我国气候响应的研究对进一步预估我国未来气候变化相关风险及制定适应和减缓政策具有重要意义。利用第六次耦合模式比较计划中25个全球气候模式的模拟结果,评估比较了各种可靠性集合加权方案对中国区域气候的模拟性能,基于表现最好的可靠性集合平均方案预估了SSP2-4.5和SSP5-8.5情景下中国极端气候指数在全球增暖1.5和2.0℃下的未来变化。结果表明,改进的可靠性集合方案模拟中国气候指数表现最好,与观测的偏差最小。未来中国区域温度明显增加,极端温度的增幅强于平均温度,极端降水整体也增加,且SSP5-8.5情景下增幅略强于SSP2-4.5情景。SSP5-8.5情景下,中国区域平均温度、最高温和最低温在全球增暖1.5(2.0℃)下较1995—2014年分别增加了1.11、1.18和1.31℃(1.88、1.98和2.14℃),总降水和强降水分别增加了5.6%和14.4%(10.5%和25.7%)。中国北方和青藏高原部分区域为增温的大值区,中国西部为降水增加的大值区。额外0.5℃增暖对中国地区产生显著影响,几乎整个中国地区温度指数的增幅都将超过全球平均。极端降水也将进一步增加,SSP5-...  相似文献   

8.
大气0 ℃层高度是决定青藏高原冰冻圈消融状态的重要指标。基于ERA5再分析资料,分析了1979—2019年青藏高原夏季大气0 ℃层高度时空变化,发现青藏高原夏季大气0 ℃层高度介于4 423~5 972 m之间,以高原中南部(30°~32° N,83.5°~88.5° E)为高值中心,呈纬向分带状向四周逐渐降低。过去41 a青藏高原夏季大气0 ℃层高度总体呈持续上升趋势,高原北部上升趋势大于南部,祁连山地区上升趋势最为明显,为60 m?(10a)-1,而在高原西南部略呈下降趋势。平均而言,青藏高原夏季地面温度每升高1 ℃,大气0 ℃层高度升高122 m。利用CMIP6模式数据,预估在SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5四种社会共享路径情景下,2020—2100年期间青藏高原夏季大气0 ℃层高度都呈现升高趋势,但不同情景下升高趋势在空间上差别较大。相对于1979—2014年参考时段,在四种情景下,到2081—2100年青藏高原夏季平均大气0 ℃层高度将分别升高265 m、394 m、576 m 和729 m;相对应的是到2081—2100年,在高原上处于夏季大气0 ℃层高度以下的冰川面积分别为第二次冰川编目数据的79%、86%、94%和98%。仅从夏季大气0 ℃层高度变化角度看,在SSP5-8.5情景下,到本世纪末期,预估除帕米尔高原和昆仑山西北部地区外,青藏高原其他地区的冰川在夏季将不存在积累区。  相似文献   

9.
利用Climatic Research Unit (CRU)资料,系统评估了第六次国际耦合模式比较计划(Coupled Model Intercomparison Project Phase 6, CMIP6)17个全球气候模式及其集合平均对历史时期(1985—2014年)北半球及多年冻土区年降水量的模拟能力;分析了不同未来情景(SSP1-2.6、SSP2-4.5、SSP3-7.0、SSP5-8.5)下,北半球及多年冻土区未来年降水量的时空变化。结果表明:CMIP6模式对北半球及多年冻土区年降水的空间分布有较为合理的模拟能力,但相对于观测数据在北半球和多年冻土区分别有11%和42%的高估。未来北半球及多年冻土区的年降水量变化随着辐射强迫水平的升高而加快。在SSP5-8.5情景下增加速率最快,北半球和多年冻土区的年降水增加速率分别为13 mm·(10a)-1、20 mm·(10a)-1,相较于历史时期最后一年(2014年)年降水分别增加了134 mm、178 mm。北半球陆地平均年降水量始终高于多年冻土区,但多年冻土区增加速率要高于北半球。在S...  相似文献   

10.
基于21个CMIP5全球气候模式集合数据,耦合VIC模型,预估了未来30年(2011-2040年)RCP2.6、RCP4.5和RCP8.5 三个情景下长江上游区域积雪的时空变化。结果表明:与基准期1970-1999年相比,长江上游区域未来30年的多年平均气温和各月平均气温都将升高1~2℃,其中冬季和春季升温较大;平均年降水量将增加3%~4%,但秋、冬季降水有所减小。未来30年平均积雪深相对于基准期将减小37.8%左右,在积雪过程中达到最大积雪深的时间与基准期基本相同,而融雪开始的时间略有延后;从空间变化来看,冬季(1月份)长江上游区域大部分地区的积雪深都呈现减小趋势,部分地区积雪深减小超过了50%。  相似文献   

11.
黄河源区气温变化特征及预估分析   总被引:1,自引:0,他引:1  
利用黄河源区青海段9个代表性站点1961-2017年逐日气温资料和未来RCP4.5排放情景下的预估数据,分析和预估了黄河源区年平均、年平均最高、年平均最低和极端气温变化特征。结果表明:近57年来年平均最高、年平均、年平均最低气温均呈显著上升趋势且倾向率依次增大。年平均气温和年平均最高气温在1997年存在显著突变。通过分析1961-1997年、1998-2007年以及2008-2017年阶段性变化可知,年平均气温持续上升,年平均最高气温先上升后趋于稳定,而年平均最低气温升温速率在1998-2007年最大,2008-2017年升温速率较1998-2007年有所降低。暖昼日数持续增多,霜冻日数和冰封日数持续减少,冷夜日数在1998-2007年减少速率最低,近10年来减少速率增大。未来33年黄河源区年平均、年平均最高、年平均最低气温和极端暖事件均呈明显的增加趋势,极端冷事件呈减少趋势。对黄河源区过去和未来气温变化规律进行了探讨,将为该区域气温变化对策的制定与实施提供理论依据。  相似文献   

12.
黄河上游地区气候变化及其对黄河水资源的影响   总被引:34,自引:0,他引:34  
通过对1961年以来黄河上游地区气候变化的分析,发现黄河源区进入80年代中后期以后,年平均气温上升趋势非常明显,特别是1998年的年平均气温竟达到-2.1℃,是40年来年平均气温最高的一年;进入90年代,春季和夏季温度急剧回升.黄河上游地区年平均降水量及秋季降水量无明显的变化趋势,且其年际间的波动趋于缓和;冬季(12~2月)和春季(3~5月)降水量的变化趋势呈现出逐年增多的趋势;夏季(6~8月)降水量变化趋势却表现出显著的减少趋势.同时,分析了38年黄河上游径流量及其与流域降水、气温的关系,着重分析了干旱气候对黄河水资源的影响.结果表明,黄河上游地区水资源呈减少趋势,其减少趋势进入90年代后尤为明显.这一变化趋势与黄河上游地区夏季降水量变化趋势有着一致性,说明汛期降水量的减少是黄河上游流量减少的最直接的气候因子.  相似文献   

13.
气象驱动数据质量是影响流域水文过程模拟精度的一个重要因素。基于新疆额尔齐斯河流域及周边区域8个气象站记录的数据,对ERA-Interim再分析资料和中国区域地面气象要素驱动数据集(CMFD)在流域的适用性进行了评价,并对比了ERA-Interim和CMFD气象要素年均值在流域的空间分布。结果表明:ERA-Interim和CMFD记录气温、相对湿度、向下短波辐射和向下长波辐射数据与观测数据具有较高的一致性,但降水和风速数据与观测数据的一致性比较差。小时尺度上ERA-Interim记录的气温、相对湿度、降水量、向下短波辐射准确度略高于CMFD数据,而日尺度上CMFD记录的所有气象要素的准确度均高于ERA-Interim数据,结合Noah-MP模型的模拟结果,认为CMFD数据在新疆额尔齐斯河流域的适用性整体优于ERA-Interim数据。从两种驱动数据获取的流域气象要素空间分布来看,ERA-Interim和CMFD获取的年平均气温、风速、相对湿度、降水量、向下长波辐射在流域空间具有高度一致性,但向下短波辐射空间分布差别较大。  相似文献   

14.
分析了1961—2010年黄河源的水文气象要素的演变过程。由于丰水期(7月、 8月、 9月)降水减少而温度升高, 导致黄河源年径流及降水总体上呈非显著减少趋势, 且1990年代以来9月份秋季洪峰消失。以30年为一个时间窗口, 使用偏相关方法, 分别计算了黄河源丰水期的降水、 径流与WCI(西风指数)、 ENSO(厄尔尼诺-南方涛动)和IOD(印度洋偶极子)的偏相关关系并排除了ENSO、 IOD与WCI之间的共同作用, 发现WCI对黄河源丰水期径流影响要高于ENSO与IOD, WCI的增强可能是黄河源8月降水减少及9月洪峰消减的主要因素。  相似文献   

15.

A 22-member ensemble from CMIP6 is used to analyze the projected changes and seasonal behavior in surface air temperature over South America during the twenty-first century. In the future projections, CMIP6 models shown a high dependency to the socioeconomic pathway over each country of South America. The multimodel ensemble projects a continuous increase in the annual mean temperature over South America during the twenty-first century under the three future scenarios (SSP1-2.6, SSP2-4.5 and SSP5-8.5). Besides, it was possible to identify consistent positive trends across all the models, with values between 0.45 ± 0.05 and 2.05 ± 0.31 °C cy−1 under the historical experiment, however largest trends occurs for the projection periods (near, mid and far future), with values between − 0.87 ± 0.84 to 2.88 ± 0.60 °C cy−1 (SSP1-2.6), 1.41 ± 0.88 to 5.32 ± 0.81 °C cy−1 (SSP2-4.5) and 4.75 ± 0.58 to 8.76 ± 0.74 °C cy−1 (SSP5-8.5) with maximum values at Bolivia, Brasil, Paraguay and Venezuela whilst minimum values for Argentina and Uruguay, regardless of the SSP scenario used. From the seasonal behavior analysis was possible to identify maximum values between January and March whilst minimum between June and July, except in Brasil, Venezuela and Guyana–Surinam–French Guayana, with annual range decreasing as the latidude decreases. By the end of the twenty-first century the annual mean temperature over South america is projected to increase between 0.92–2.11 °C, 0.97–3.37 °C and 1.27–6.14 °C under SSP1-2.6, SSP2-4.5 and SSP5-8.5 projection scenarios respectively. This projected increase of temperature across the continent will produce negative repercussions in the social, economic and political spheres. The results obtained in this study provide insights about the CMIP6 performance over this region, which can be used to develop adaptation strategies and might be useful for the adaptation to the climate change.

  相似文献   

16.
With its amplification simultaneously emerging in cryospheric regions, especially in the Tibetan Plateau, global warming is undoubtedly occurring. In this study, we utilized 28 global climate models to assess model performance regarding surface air temperature over the Tibetan Plateau from 1961 to 2014, reported spatiotemporal variability in surface air temperature in the future under four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), and further quantified the timing of warming levels (1.5, 2, and 3 °C) in the region. The results show that the multimodel ensemble means depicted the spatiotemporal patterns of surface air temperature for the past decades well, although with differences across individual models. The projected surface air temperature, by 2099, would warm by 1.9, 3.2, 5.2, and 6.3 °C relative to the reference period (1981–2010), with increasing rates of 0.11, 0.31, 0.53, and 0.70 °C/decade under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios for the period 2015–2099, respectively. Compared with the preindustrial periods (1850–1900), the mean annual surface air temperature over the Tibetan Plateau has hit the 1.5 °C threshold and will break 2 °C in the next decade, but there is still a chance to limit the temperature below 3 °C in this century. Our study provides a new understanding of climate warming in high mountain areas and implies the urgent need to achieve carbon neutrality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号