首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于第六次国际耦合模式比较计划(CMIP6)的22个地球气候/系统模式模拟数据,分析了1961—2100年期间青藏高原年均地表气温在不同情景下的时空变化。结果表明,多模式集合平均的模拟结果优于大多数单个模式。由于共享社会经济路径(SSP)和辐射强迫的不同,在SSP1-2.6、SSP2-4.5、SSP3-7.0和SSP5-8.5四种情景下,2015—2100年间青藏高原年均地表气温的增温趋势分别为0.10 ℃·(10a)-1、0.29 ℃·(10a)-1、0.53 ℃·(10a)-1和0.69 ℃·(10a)-1,帕米尔高原、藏北高原中西部和巴颜喀拉山区为三个升温中心。相对于1995—2014年参考时段,到本世纪中期(2041—2060年),青藏高原区域年均地表气温将分别增加1.37 ℃、1.72 ℃、1.98 ℃和2.30 ℃,而到本世纪末期(2081—2100年),年均地表气温将分别增加1.42 ℃、2.65 ℃、4.28 ℃和5.38 ℃。与《巴黎协定》提出的到本世纪末全球平均气温升高不超过2 ℃目标相比,无论在哪种情景下,到本世纪中期时青藏高原年均地表气温相对于工业革命前均升高超过2 ℃,这会造成极大的气候生态环境问题。  相似文献   

2.
天山乌鲁木齐河源1号冰川对夏季0 ℃层高度变化的响应   总被引:4,自引:1,他引:3  
张广兴  孙淑芳  赵玲  马玉芬 《冰川冻土》2009,31(6):1057-1062
采用1971-2000年乌鲁木齐河源1号冰川周围4个探空站逐日0 ℃层高度探测资料, 用距离倒数的加权平均得到1号冰川的夏季0 ℃层高度, 并与1号冰川观测资料进行对比, 定性与定量分析了30 a来夏季0 ℃层平均高度变化和冰川观测量的变化趋势及之间的关系. 结果表明: 1971-2000年的30 a里1号冰川夏季0 ℃层高度呈增高趋势, 1990年代呈陡升趋势, 与1号冰川的零平衡海拔高度、消融区面积、 纯物质消融量和融水径流深4个量具有很好的一致性, 为正相关;而与积累区面积、纯积累量、纯物质平衡总量、纯物质平衡值4个量反位相同步变化, 为负相关, 说明天山乌鲁木齐河源1号冰川对自由大气夏季0 ℃层高度具有非常好的响应. 随着全球变暖加剧, 天山山区对流层中下层均显著变暖, 夏季0 ℃层高度升高, 天山乌鲁木齐河源1号冰川消融加快. 1990年代夏季0 ℃层高度陡升, 进而1号冰川出现了最大的物质负平衡.  相似文献   

3.
基于全球开放冰川模型(OGGM),结合第六次气候模式比较计划(CMIP6),在5种气候模式(BCC-CSM2-MR、CESM2、CESM2-WACCM、FGOALS-f3-L、NorESM2-MM)模拟的3种气候情景(SSP1-2.6、SSP2-4.5、SSP5-8.5)下,系统分析了萨吾尔山冰川2020—2100年间面积和储量的变化。结果显示,3种气候情景下,萨吾尔山冰川面积和储量都呈现退缩趋势,其中SSP5-8.5气候情景下的冰川面积和储量损失最大,对应面积和储量变化为-0.154 km2·a-1和-5.11×106 m3·a-1,其次是SSP2-4.5,对应面积和储量变化为-0.150 km2·a-1和-5.05×106 m3·a-1,SSP1-2.6气候情景下面积和储量损失最小,面积和储量变化为-0.139 km2·a-1和-4.93×106  相似文献   

4.
利用第六次国际耦合模式比较计划(CMIP6)提供的5个气候模式,并结合基于地面气象站的CN05.1气象资料,评估了CMIP6模式对黄河上游地区1961—2014年气温变化的模拟能力。基于7个共享社会经济路径及代表性浓度路径(SSP-RCP)组合情景,结合多模式集合平均预估了2015—2100年黄河上游地区年均气温和季平均气温的时空变化规律。结果表明:多模式集合平均能较好地模拟黄河上游地区历史平均气温的空间分布格局与年变化。7个未来情景一致表明,2015—2100年黄河上游地区年平均气温呈现波动上升趋势[0.03~0.82 ℃?(10a)-1]。其中,低辐射强迫情景下(SSP1-1.9、SSP1-2.6及SSP4-3.4)气温先呈现增加趋势,21世纪中期到达增幅峰值,之后增温呈现放缓趋势;而中、高辐射强迫情景下(SSP2-4.5、SSP3-7.0、SSP4-6.0及SSP5-8.5)气温表现为持续上升态势。空间上,未来气温增幅显著的区域位于黄河上游西部地区;时间上,呈现夏季增温快,春季增温慢。四季增温的空间分布呈现出一致特征,表现为西部增温强于东部,北部增温强于南部。研究结果可为黄河流域水资源管理及气候变化的适应性研究提供科学依据。  相似文献   

5.
利用GLEAM V3.3a实际蒸散发资料,评估了中国科学院地球系统模式(CAS-ESM2)对青藏高原蒸散发的模拟性能,并给出了模式对未来气候变化情景下高原蒸散发变化的预估.结果 表明:CAS-ESM2可以较好地模拟出青藏高原蒸散发的空间分布与季节循环特征,以及1981-2014年蒸散发的增加趋势,但趋势的幅值相对观测偏弱.未来预估试验结果显示,4种不同未来共享社会经济路径(SSPs)情景下青藏高原蒸散发均普遍增加,其中SSP585情景下的增加最为显著,且喜马拉雅山脉地区蒸散发的增加量值最大.相较于1995-2014年历史时期,年均蒸散发在2041-2060年增加46.3~65.8 mm,增幅为13.4%~19.0%;2081-2100年,年均蒸散发增加75.7~151.1 mm,增幅为21.7%~43.6%.影响蒸散发未来变化的因素具有区域性差异,高原中部和南部受气温变化影响更大,而柴达木盆地、羌塘高原中部受降水变化影响更大.  相似文献   

6.
CMIP5多模式集合对南亚印度河流域气候变化的模拟与预估   总被引:1,自引:0,他引:1  
利用印度河流域CRU、APHRODITE和CMIP5多模式逐月气温、降水格点数据集, 评估了CMIP5模式集合对印度河流域气候变化的模拟能力; 对多模式集合数据进行了偏差订正, 并对流域2046-2065年和2081-2100年气候变化进行了预估. 结果表明: 气候模式对流域年平均气温时间变化和空间分布特征有着较强的模拟能力, 时间空间相关系数均达到了0.01的显著性水平, 尤其对夏季气温的模拟要优于其他季节; 模式对降水的季节性波动也有着较好的模拟能力. 偏差订正后的预估结果表明, RCP2.6、4.5、8.5情景下, 相对于基准期(1986-2005年), 21世纪中期(2046-2065年)和末期(2081-2100年)整个流域年平均气温都有一定上升, 且流域上游增幅较大; 除RCP4.5情景下21世纪中期流域有弱减少趋势外, 年降水量都将有一定增长. 未来夏季持续升温将引起源区冰川的进一步消融, 春季降水对于中高海拔地区水资源的贡献将减弱; 流域北部高海拔区域冬季降水的增加有助冰川累积和上游水资源的增加, 东部高海拔区域冬季降水的减少会减少上游水资源. 两时期夏季降水都有一定的增长, 洪涝的发生风险加大; 流域暖事件和强降水事件也将可能增多.  相似文献   

7.
全球变暖下我国气候响应的研究对进一步预估我国未来气候变化相关风险及制定适应和减缓政策具有重要意义。利用第六次耦合模式比较计划中25个全球气候模式的模拟结果,评估比较了各种可靠性集合加权方案对中国区域气候的模拟性能,基于表现最好的可靠性集合平均方案预估了SSP2-4.5和SSP5-8.5情景下中国极端气候指数在全球增暖1.5和2.0℃下的未来变化。结果表明,改进的可靠性集合方案模拟中国气候指数表现最好,与观测的偏差最小。未来中国区域温度明显增加,极端温度的增幅强于平均温度,极端降水整体也增加,且SSP5-8.5情景下增幅略强于SSP2-4.5情景。SSP5-8.5情景下,中国区域平均温度、最高温和最低温在全球增暖1.5(2.0℃)下较1995—2014年分别增加了1.11、1.18和1.31℃(1.88、1.98和2.14℃),总降水和强降水分别增加了5.6%和14.4%(10.5%和25.7%)。中国北方和青藏高原部分区域为增温的大值区,中国西部为降水增加的大值区。额外0.5℃增暖对中国地区产生显著影响,几乎整个中国地区温度指数的增幅都将超过全球平均。极端降水也将进一步增加,SSP5-...  相似文献   

8.
天山区域地形多变,景观异质性强,水文过程极其复杂,全球变化对该地区水安全带来新的挑战和更大不确定性。亟需通过流域水文模型系统定量模拟和预估天山典型流域水文过程,以更好地支撑区域发展。本研究基于改进的FLEXG-Δh模型,定量模拟了天山4个典型流域的历史径流过程,并预估了流域内2 282条冰川物质平衡和面积的未来变化,进一步通过情景模拟分析了各海拔高程带径流等水文多要素的响应机制。研究发现:(1)FLEXG-Δh模型对历史径流过程具有较高模拟精度,率定期平均Kling-Gupta效率系数(IKGE)为0.75,检验期平均IKGE为0.60。(2)随海拔上升,径流量和蒸发量呈现先增后减趋势,最大值分别出现在海拔4 000 m和2 000 m,并分别受冰川覆盖和植被分布影响。(3)未来到2100年,低于4 500 m海拔的冰川消融明显。在SSP1-RCP2.6和SSP5-RCP8.5情景下,研究区内分别有145和222条冰川完全消融,冰川总体积分别减少1.81×104 km...  相似文献   

9.
基于CMIP6气候模式的新疆积雪深度时空格局研究   总被引:1,自引:0,他引:1  
张庆杰  陶辉  苏布达  窦挺峰  姜彤 《冰川冻土》2021,43(5):1435-1445
积雪深度的变化对地表水热平衡起着至关重要的作用。选用了国际耦合模式比较计划第六阶段(CMIP6)中目前情景比较齐全的五个全球气候模式,通过对比新疆地区1979—2014年积雪深度长时间序列数据集,评估了气候模式在新疆地区模拟积雪深度的模拟能力,接着预估了未来不同SSPs-RCPs情景下新疆地区在2021—2040年(近期)、2041—2060年(中期)、2081—2100年(末期)相对于基准期(1995—2014年)的积雪深度变化。气温和降水对积雪深度变化有着重要的影响,因此还分析了新疆地区到21世纪末期气温和降水的变化趋势。结果表明:订正后的气候模式模拟的积雪深度数据与观测数据的相关系数均达到0.8以上,其中1月至3月与观测数据的结果更为吻合。气候模式基本上能够反映积雪深度年内变化的基本特征,气候模式模拟的积雪深度空间分布和观测数据具有相似的特征。气温和降水在未来不同情景下均会波动上升,其中气温的增幅相对比较明显,达0.43 ℃·(10a)-1,而降水的增幅为0.63 mm·(10a)-1,新疆未来的气候总体上呈现出变暖变湿的趋势。新疆地区的平均积雪深度在未来不同时期相对基准期均呈增加的趋势。SSP1-1.9情景下,21世纪近期、中期和末期北部大部分地区的积雪深度将会有所增加;SSP1-2.6情景下,北部阿尔泰山地区的积雪深度在21世纪近期有所减小,但中期和末期将会有所增加;SSP2-4.5情景下,21世纪不同时期东部地区的积雪深度将会有所增加,北部和中部大部分地区在不同时期积雪深度将会变小;SSP3-7.0情景下,21世纪不同时期北部和西南地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP4-3.4和SSP4-6.0情景下,21世纪不同时期西南昆仑山地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP5-8.5情景下,北部阿尔泰山地区和东部地区的积雪深度将普遍增加。  相似文献   

10.
羌塘高原东部冰川发育的水汽来源探讨   总被引:1,自引:1,他引:0  
选取4座地处青藏高原腹地羌塘高原东部的雪山,其中山脊线呈南北走向者,东坡冰川较西坡更为发育;山脊线呈东西走向者,南坡冰川面积大于北坡.雪山各朝向冰川面积的统计数值也表现为:南向及东南向冰川最为发育.统计坐落于羌塘高原的11座雪山的平均雪线,其高度变化表现为:纬线方向上,88°E以西的同纬度雪山的雪线高度基本相同,88°E以东雪线高度快速下降;经线方向上,雪线从南到北先略微升高后又降低.这些地形学信息表明,羌塘高原东部地区冰川发育的水汽来源于东南方向,即西南季风穿过横断山脉为羌塘高原东部冰川的发育提供降水.  相似文献   

11.
通过对2013年春季在青藏高原昆仑山求勉雷克塔格冰川上取得的冰川表面温度资料的分析,研究了该冰川表面温度空间变化特征及其影响因素.结果表明:该冰川表面(粒雪)温度在晴天时较多云或阴雪天时偏低,这可能与晴天时冰川表面吸收的部分热量用于粒雪消融而不是粒雪层升温有关;晴天时该冰川表面温度随海拔的升高而降低,其递减率值为0.58℃·(100m)-1,较自由大气的气温递减率值略偏低;晴天时,冰川表层粒雪层厚度对其表面温度具有重要的影响,二者之间呈显著的正相关关系,并且粒雪层厚度每增加10cm,其冰川表面温度会升高约0.46℃.结合青藏高原其他冰川表面温度的观测结果,揭示出当冰川表面存在消融时其表面温度日变化幅度较小,一般只有几度.  相似文献   

12.
气候系统模式是对历史和未来气候模拟最广泛有效的工具,但存在一定的不足和局限性,使其无法直接用以预估未来气候变化。本文采用基于分位数映射的日偏差校正(DBC)、多模式集合(MME)平均和基于皮尔逊r相关系数的加权集合(r-MME)平均方法,以1971—2000年为基准期,评估6种气候模式在和田河流域的适用性;运用r-MME方法对未来SSP1-2.6、SSP2-4.5和SSP5-8.5情景下各模式的偏差校正结果进行集合,分析未来近期(2021—2050年)、远期(2061—2090年)日最高、最低气温以及降水的时空演变特征。结果表明:基于DBC的r-MME融合方法能够综合考虑各模式的优势,可大幅提高气候模式模拟的精度,年均最高气温、最低气温和降水量与实测序列的相关系数分别达到0.918、0.821和0.878;3种情景下的气温和降水均呈现增加趋势,其中低强迫SSP1-2.6情景下的增幅最小,远期年最高气温、最低气温和降水的平均增量分别为2.830、2.523℃和46.412 mm,高强迫SSP5-8.5情景下的增幅最大,远期年最高气温、最低气温和降水的平均增量为5.697、6.452℃和9...  相似文献   

13.
张越  许向科  孙雅晴 《冰川冻土》2022,44(4):1248-1259
末次冰盛期(LGM)时全球大范围降温,青藏高原冰川大规模扩张,重建LGM时期古冰川规模对认识高原冰川水资源演化及古气候条件有重要的科学意义。根据青藏高原东南巴松措流域及派山谷两地的冰川地貌及其10Be暴露年代数据,本文应用冰川纵剖面模型定量重建了两地冰川在LGM时期的范围、冰储量和平衡线高度(ELA)等参数,并通过冰川气候模型恢复了LGM时的气候条件。结果表明:巴松措流域LGM时期的冰川面积约为982.3 km2,是现代冰川面积的4.5倍,冰储量约为274.4 km3;派山谷无现代冰川分布,LGM时期的冰川面积达5.76 km2,冰储量约为0.51 km3;LGM时期两冰川的平衡线高度分别为4 460~4 547 m和3 569~3 694 m,与现代冰川相比分别降低了535 m和1 034~1 184 m。在降水减少60%的情况下,考虑LGM以来的构造剥蚀对平衡线高度变化的影响,LGM时期巴松措流域和派山谷冰川的夏季平均气温分别比现在低约2.96~4.89 ℃和5.09~6.99 ℃。  相似文献   

14.
青藏高原现代冰川变化是对气候变化的响应, 对区域水资源评估有着重要的理论意义和现实意义.采用GIS分析方法, 利用三期卫星遥感数据研究青藏高原中部念青唐古拉山西段冰川在2个时间段(1977-2001和2001-2010)的时空分布和变化, 并对比分析其在南坡和北坡变化速率趋势以及在不同海拔高度的变化特征.研究发现: (1)2010年念青唐古拉山西段冰川面积为571.81±16.01 km2, 主要分布在5 500~6 200 m的高山区; (2)1977-2010年念青唐古拉山西段冰川退缩明显, 总面积减少22.42%±2.90%;(3)相比于1977-2001年时间段, 近十年来该区冰川退缩速率呈明显加剧趋势; (4)与前一个时段相比, 低于5 700 m海拔区域, 各海拔段的冰川年均面积退缩速率呈减缓趋势; 而在5 700~7 000 m海拔区域, 则呈加剧趋势; (5)北坡冰川退缩率(23.6%±2.88%)高于南坡(21.97%±2.90%), 且南北坡2001-2010年年均冰川面积减少最大的海拔段比1977-2001年都升高了200 m, 研究区冰川的持续退缩有向高海拔转移的趋势; (6)南坡拉萨河流域内的冰川年均减少面积最大的海拔段比北坡高100 m左右.气温升高是影响近十年以来研究区的冰川退缩加剧的根本原因, 将对区域水文和生态环境产生重大的影响.   相似文献   

15.
新疆叶尔羌河冰川湖突发洪水对气候变化的响应   总被引:3,自引:0,他引:3  
利用1961—2008年的气象-水文资料,探讨了气候变化与叶尔羌河流域冰川湖突发洪水的关系.采用非参数Wilcoxon统计检验和Kendall的τ关联检验分析温度、降水变化与洪峰流量量变化的关联性和一致性;用Mann-Kendall法对气温、降水和洪峰流量4000 m3.s-1突发性洪水的0℃层高度进行突变检验和趋势分析.结果表明:流域气温在1995年发生突变,且对冰川湖突发洪水发生起主导作用;降水突变不明显,对冰川湖突发洪水发生只起促进作用.自1880年以来,冰川湖突发洪水发生频率增加,与流域气温变化一致.1994年以来气温呈直线上升,洪水频率也呈显著增加趋势;冰川湖突发洪水发生频率与降水变化关系不明显;突发性洪水发生与其前8 d的0℃层高度显著上升密切相关.  相似文献   

16.
人类活动和气候变化严重改变了黄河水文情势和生态径流,分析未来气候变化对河流生态的影响对流域水资源管理和长期规划意义重大。本文对第六次国际耦合模式比较计划(CMIP6)的13个全球气候模式数据进行偏差订正,驱动水文模型进行径流模拟,应用流量历时曲线方法分析SSP1-2.6、SSP2-4.5、SSP5-8.5情景下2026年至21世纪末年、季节尺度的花园口生态径流变化。结果表明:订正能明显降低降水、气温模拟偏差;人类活动严重影响了1986-2010年花园口生态径流;2026-2100年年均气温和年降水量增加趋势显著,低排放情景增速慢,高排放情景增速快;气候变化可在一定程度上缓解水库调控、水土保持等人类活动对生态径流的负面影响,SSP5-8.5情景缓解程度最高,冬季缓解程度最高,夏、秋季最低。  相似文献   

17.
以北江飞来峡水库上游为研究对象,构建了网格分辨率为0.25°×0.25°的VIC(Variable Infiltration Capacity)水文模型,应用CMIP5多模式输出的降尺度结果与VIC模型耦合,对RCP2.6、RCP4.5和RCP8.5情景下未来时期(2020-2050年)飞来峡水库的入库洪水进行预估,并根据IPCC第5次评估报告处理和表达不确定性的方法来描述预估结论的可信度。结果表明,2020-2050年飞来峡水库年最大洪峰流量和年最大7日、15日洪量在RCP2.6情景下"大约可能"呈增加趋势,在RCP4.5和RCP8.5情景下"较为可能"呈增加趋势,水库防洪安全风险增大。与历史时期(1970-2000年)相比,未来水库极端入库洪水增加的可能性从大到小依次为RCP4.5、RCP2.6和RCP8.5情景,其中设计洪水100年、50年和20年一遇的洪峰流量在3种排放情景下均呈上升趋势,100年、50年和20年一遇的最大7日、15日洪量在RCP4.5情景下以上升为主,而在RCP2.6和RCP8.5情景下则主要呈减少态势。  相似文献   

18.
冰川作为固体水库以“削峰填谷”的形式显著调节径流丰枯变化,冰川的水文调节功能对于中国西北干旱区至关重要。使用现有VIC-CAS模型模拟得到中国西部寒区2014—2100年径流预估数据,从趋势和波动变化相结合的视角,基于径流变差系数法,构建了冰川水文调节指数(GlacierR),分析了9个寒区流域冰川径流变化的稳定性,详细剖析了历史时期(1971—2010年)和未来到21世纪末这些流域冰川水文调节功能的强弱变化。结果表明:历史时期及RCP2.6和RCP4.5情景下,除长江流域外,青藏高原其余流域的冰川径流减小时间节点为2020s,西北内陆河流域则为2010s。历史时期及RCP2.6和RCP4.5情景下至21世纪末,尽管西部寒区大部分流域的冰川径流呈减少趋势,但波动幅度减小或无明显变化,冰川径流稳定性增强或无变化。总体上,西北内陆河流域的冰川水文调节功能较高,青藏高原流域的冰川水文调节功能较低。RCP2.6和RCP4.5情景下,至21世纪末,西部寒区各流域冰川水文调节功能均呈现减弱趋势,西北内陆河流域减弱更加显著,如RCP4.5情景下,木扎提河冰川水文调节功能降幅达25.4%,而青藏高原各流域的冰川水文调节功能一直处于较低水平。从年代际变化来看,1970s—2010s是寒区流域冰川水文调节功能较强的时期,1980s和2000s两个时段冰川水文调节功能尤强;RCP2.6和RCP4.5情景下,未来到21世纪末,冰川调节功能明显减弱。减弱的时间节点不同,最早为1970s,最晚为2020s。  相似文献   

19.
2050年前气候变暖冰川萎缩对水资源影响情景预估   总被引:42,自引:34,他引:42  
施雅风 《冰川冻土》2001,23(4):333-341
根据有不确定性的综合预测 ,到 2 0 5 0年左右青藏高原温度可比 2 0世纪末升高 2 .5℃左右 ,其导致冰川强烈消融的夏季升温为 1.4℃ ,将使平衡线上升 10 0m以上 .冰舌区消融冰量超过积累区冰运动来的冰量 ,冰川出现变薄后退 ,初期以变薄为主融水量增加 ,后期冰川面积大幅度减少 ,融水量衰退 ,至冰川消亡而停止 .考虑冰川大小 ,冰川类型响应气候变暖的敏感性有重大差别 ,应用新编中国冰川目录的统计数据 ,选择若干区域 ,预估 2 0 5 0年前冰川萎缩对水资源影响情景 .祁连山北麓河西地区 ,天山北麓准噶尔盆地南缘 ,天山南麓吐鲁番 哈密盆地的多数出山河流的冰川 ,以面积小于 2km2 者占绝对优势 ,对气候变暖最为敏感 ,衰退迅速 ,本世纪初期出现融水量高峰 ,中期融水量减少 ,对每条河流的影响以 10 6~ 10 7m3 ·a-1计 .少数流域如疏勒河、玛纳斯河等 ,冰川融水量占河川径流 1/ 3以上 ,有若干 5~ 30km2 左右中等规模冰川存在 ,预期至本世纪中期才出现融水高峰 ,融水增加值以 10 8m3 ·a-1计 .塔里木盆地周围高山冰川总面积达 2 2 0 0 9km2 ,有面积超过 10 0km2 、冰舌为厚表覆盖的大冰川 2 2条 ,退缩缓慢 ,冰川融水量在叶尔羌河、玉龙喀什河与阿克苏河等占 5 0 %~ 80 % .现在塔里木河干流主要靠天山西南部  相似文献   

20.
青藏高原气候变化的若干事实及其年际振荡的成因探讨   总被引:1,自引:0,他引:1  
利用1961-2012年青藏高原88个气象台站逐月气温、降水以及温室气体等气候系统监测资料和CMIP5输出的未来气候变化情景数据,分析了近52年来青藏高原气候变化暖湿化的若干事实,揭示了其年际振荡与温室气体、高原加热场、高原季风、AO等气候系统因子的关系,预测了未来20~40年青藏高原可能的气候变化趋势。研究表明:近52年来青藏高原在总体保持气候变暖的趋势下自2006年以来出现了某些增暖趋于缓和的迹象,较全球变化滞后了8年左右;降水量的增加在青藏高原具有明显的普遍性和显著性,气候变湿较变暖具有一定的滞后性,降水量变化的5年短周期日趋不显著,而12年、25年较长周期逐渐明显且仍呈增多趋势。由于温室气体、气溶胶持续增加、高原夏季风趋强、ENSO事件和太阳辐射减少,青藏高原气候持续增暖但有所缓和;春季高原加热场增强、高原夏季风爆发提前且保持强劲,使得高原春、夏季和年降水量增加,而秋、冬季AO相对稳定少动,东亚大槽强度无明显变化,高原冬季风变化不甚显著,导致了高原秋、冬季降水量无明显变化。未来20~40年青藏高原仍有可能继续保持气温升高、降水增加趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号