首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
大别山碧溪岭地区超高压变质岩构造分析   总被引:7,自引:1,他引:7  
大比例尺 (1∶10 0 0 0 )构造制图及构造分析表明 ,碧溪岭地区超高压变质岩石含有丰富的构造演化历史记录。同碰撞或挤压组构只保留于榴辉岩及其它超高压变质岩透镜体内部 ,表现为高角度网络状超高压剪切带与弱应变透镜体域规律组合格式。前者由面理或糜棱岩化榴辉岩组成 ,后者由块状榴辉岩及石榴橄榄岩组成。碰撞期后伸展构造表现为区域性的假单斜状 ,内部呈低缓角度的网络状强应变带及所环绕的透镜状弱应变域组合格式 ,强应变带的岩石为由榴辉岩退变成的角闪岩相高压片麻岩及部分熔融形成的含榴花岗岩 ,透镜状弱应变域的岩石为弱角闪相改造的榴辉岩及石榴橄榄岩。不同尺度上同碰撞或挤压组构及碰撞期后伸展组构所显示的这种残斑基质流变学结构样式 ,虽然与先期原岩成分、结构、流变学的不均一性有关 ,但主要是多期递进应变分解作用的结果 ,支持榴辉岩“原地”成因模式。依据构造学证据和可利用的岩石学及同位素年代学资料 ,分析了超高压变质岩石的形成及折返过程 ,指出碧溪岭地区超高压变质岩石是在 2 45~ 2 10Ma形成的 ,碰撞期后伸展作用主要发生在 2 0 0~ 170Ma。在超高压变质岩石向地壳表层折返过程中 ,张扭作用可能有重要功能 ,不支持碧溪岭地区遭受过多期超高压变质作用的推论。  相似文献   

2.
INTRODUCTIONOverthelasttwodecadesconsiderableadvanceshavebeenmadetowardsrecognizingandunderstandingthetectonicsignificanceofd...  相似文献   

3.
High‐ to ultrahigh‐pressure (HP‐UHP) metamorphic rocks that resulted from deep continental subduction and subsequent exhumation in the Sulu orogenic belt, China, have experienced multiphase deformation and metamorphic overprint during its long journey to the mantle and return to the surface. HP‐UHP shear zones are strain‐localized weak zones on which the UHP slab is transported over long distances. HP‐UHP shear zones are well exposed along a 200‐km belt in the Sulu UHP metamorphic belt. The shear zones lie structurally below the UHP rocks and above the non‐UHP rocks, suggesting the early exhumation of the UHP rocks by thrusting. The large area distribution, HP‐UHP nature, high strain and structural association of the shear zones with the UHP rocks suggest that the shear zones are probably a regional detachment developed during the early stage of exhumation of the UHP rocks. Kinematic indicators suggest top‐to‐the N–NW motion of the UHP slab during the exhumation, which, combined with isotope signature in Mesozoic igneous rocks, leads us to the interpretation that the subduction polarity is the North China plate down to the south rather than the Yangtze plate down to the north in the Sulu region.  相似文献   

4.
Recent petrological studies on high‐pressure (HP)–ultrahigh‐pressure (UHP) metamorphic rocks in the Moldanubian Zone, mainly utilizing compositional zoning and solid phase inclusions in garnet from a variety of lithologies, have established a prograde history involving subduction and subsequent granulite facies metamorphism during the Variscan Orogeny. Two temporally separate metamorphic events are developed rather than a single P–T loop for the HP–UHP metamorphism and amphibolite–granulite facies overprint in the Moldanubian Zone. Here further evidence is presented that the granulite facies metamorphism occurred after the HP–UHP rocks had been exhumed to different levels of the middle or upper crust. A medium‐temperature eclogite that is part of a series of tectonic blocks and lenses within migmatites contains a well‐preserved eclogite facies assemblage with omphacite and prograde zoned garnet. Omphacite is partly replaced by a symplectite of diopside + plagioclase + amphibole. Garnet and omphacite equilibria and pseudosection calculations indicate that the HP metamorphism occurred at relatively low temperature conditions of ~600 °C at 2.0–2.2 GPa. The striking feature of the rocks is the presence of garnet porphyroblasts with veins filled by a granulite facies assemblage of olivine, spinel and Ca‐rich plagioclase. These minerals occur as a symplectite forming symmetric zones, a central zone rich in olivine that is separated from the host garnet by two marginal zones consisting of plagioclase with small amounts of spinel. Mineral textures in the veins show that they were first filled mostly by calcic amphibole, which was later transformed into granulite facies assemblages. The olivine‐spinel equilibria and pseudosection calculations indicate temperatures of ~850–900 °C at pressure below 0.7 GPa. The preservation of eclogite facies assemblages implies that the granulite facies overprint was a short‐lived process. The new results point to a geodynamic model where HP–UHP rocks are exhumed to amphibolite facies conditions with subsequent granulite facies heating by mantle‐derived magma in the middle and upper crust.  相似文献   

5.
The metamorphic complex of the Western Gneiss Region (WGR), Norway, constitutes the root of the Caledonian mountain belt and experienced temperatures of 700–800 °C and pressures in excess of 20 kbar during peak metamorphism. Mafic bodies surrounded by strongly banded felsic gneisses commonly exhibit variable reequilibration to granulite and eclogite facies conditions and locally preserve igneous minerals and textures. The Kråkeneset gabbro, located on the island of Vågsøy in the mixed HP/UHP zone of the western WGR, display evidence for extensive metastability through the entire prograde and retrograde P, T histories. Eclogite constitutes less than a few percent of the total volume of the body and high-pressure assemblages typically form thin coronas around magmatic phases or occur along localized zones of brittle deformation and fluid infiltration. The gabbro displays pseudotachylyte vein networks that define subparallel brittle fault zones, <50 cm wide, transecting the gabbro body. The pseudotachylytes contain μm- to mm-scale amoeboid and dendrite-like textures of garnet and plagioclase with inclusions of the eclogite facies minerals orthopyroxene, omphacite, amphibole, and dolomite, suggesting rapid disequilibrium growth of minerals during high-pressure conditions. Textural and petrological evidence from pseudotachylytes and corona structures show that the growth of these unusual textures occurred shortly after pseudotachylyte crystallization by a process of rapid solid-state alteration of a microcrystalline pseudotachylyte matrix. The pseudotachylyte-lined fault zones are in close spatial association with numerous amphibole±carbonate-filled hydrofractures with conspicuous fracture-parallel alteration zones defined by hydrous eclogite facies assemblages. These eclogite facies hydrofractures testify to the existence of high fluid pressures and to fluid infiltration following brittle failure during high-grade metamorphic conditions. Geothermobarometric estimates (ca. T=650–700 °C, P=20 kbar) and petrological data imply that hydrofracturing, pseudotachylyte crystallization, and the subsequent pseudotachylyte alteration process must have occurred during high-pressure metamorphism. Our observations are suggestive of a deep-crustal earthquake scenario where a high-pressurized fluid phase plays a double role by causing both seismic failure through the embrittlement effect and facilitating eclogitization of the metastable anhydrous gabbro. Metamorphic reaction along hydrofractures and fault planes led to the development of eclogite facies foliation fabrics and illustrate the rheological change from brittle to plastic behavior associated with the gabbro to eclogite transition. The formation of weak deep-crustal shear zones following brittle failure represents an arrested initiation of the physical breakup and metamorphic reequilibration of the Kråkeneset gabbro during its residence deep in the former Caledonian collision zone.  相似文献   

6.
Quantitative analysis of the structural evolution of jadeite‐quartzite, a rare ultra‐high pressure (UHP) rock type from the Dabie Mountains of eastern China, sheds light on the formation and evolution of UHP orogenic belts worldwide. Geological mapping of the Shuanghe area, where jadeite‐quartzites crop out, was carried out to determine the spatial relationships between different UHP rocks within this orogen. The deformation mechanisms of jadeite‐quartzite, geodynamical parameters (stress, strain, strain rate), and microstructure including lattice preferred orientation (LPO) were determined from six jadeite‐quartzite samples from the Shuanghe area. LPOs of clinopyroxene (jadeite and omphacite), garnet, rutile and quartz from these jadeite‐quartzite samples are compared with those of three eclogites preserving different degrees of deformation from the Shuanghe area. Microstructural LPOs of jadeite, omphacite, garnet, rutile and quartz were determined using electron backscattered diffraction (EBSD) analysis. Quartz fabrics were largely recrystallized during late, low‐grade stages of deformation, whereas garnet shows no strong LPO patterns. Rutile fabrics show a weak LS fabric along [001]. Jadeite and omphacite show the strongest eclogite facies LPO patterns, suggesting that they may provide important information about mantle deformation patterns and control the rheology of deeply subducted continental crust. Microstructural data show that the jadeite LPO patterns are similar to those of omphacite and vary between L‐ and S‐types, which correlate with prolate and oblate grain shape fabrics (SPO); quartz LPOs are monoclinic. Microstructural analysis using TEM shows that the dominant slip systems of jadeite in one sample are (100)[001], (110)[001] and (1 1 0)1/2[110], while in another sample, no dislocations are observed. Abundant dislocations in quartz were accommodated by the dominant slip system (0001)[110], indicating basal glide and represents regional shearing during the exhumation process. This suggests that dislocation creep is the dominant fundamental deformation mechanism in jadeite under UHP conditions. The protoliths of jadeite‐quartzite, metasedimentary rocks from the northern passive continental margin of the Yangtze craton, experienced the same deep subduction and were deformed under similar rheological conditions as other UHP eclogite, marble and paragneiss. Experimental UHP deformation of quartzo‐feldspathic gneiss with a chemical composition similar to the bulk continental crust has shown that the formation of a jadeite–stishovite rock is associated with a density increase of the host rock similar to the eclogite conversion from basaltic protoliths. The resulting rock can be denser than the surrounding mantle pyrolite up to depths of 660 km (24 GPa). Thus, processes of deep continental subduction may be better‐understood through understanding the rheology and mechanical behaviour of jadeite. Jadeite‐quartzites such as those from the Shuanghe may be exhumed remnants of deeply‐subducted slabs of continental crust, other parts of which subducted past the ‘depth of no return’, and remain in the deep mantle.  相似文献   

7.
Ultra high-pressure (UHP) eclogites from Sulu region (China) represent mafic components of the continental crust, which were first subducted to mantle depths greater than 100 km and then exhumed to the earth's surface. Detailed investigation of microstructures, chemical compositions, petrofabrics and seismic properties of the UHP eclogites can provide important information on the operating deformation mechanisms and rheology of subducted continental crust and on the origin of seismic reflections within the upper mantle. We present here results from field, optical and TEM observations, electron back-scattered diffraction (EBSD) measurements and numerical computations of the seismic properties of UHP eclogites collected from fresh surface outcrops at the drill site (Maobei, Donghai County, Jiangsu Province) of the Chinese Continental Scientific Drilling Program (CCSD). Two types of eclogites have been distinguished: Type-1 (coarse-grained) eclogites deformed by recovery-accommodated dislocation creep at the peak metamorphic conditions, and Type-2 (fine-grained) eclogites which are composed of reworked Type-1 materials during recrystallization-accommodated dislocation creep in shear zones which were active during the exhumation of the UHP metamorphic rocks. Both garnet and omphacite in these eclogites deformed plastically and the flow strength contrast between these two constituent minerals is apparently much less than an order of magnitude under the UHP metamorphic conditions. Plasticity of eclogites under UHP conditions can effectively facilitate channeled flow along the interplate shear zone. The preservation of the relict crustal materials within the continental lithosphere may produce regionally extensive, strong, seismic reflections in the upper mantle. This may explain the origin of mantle reflections observed in many areas of the world.  相似文献   

8.
大别—苏鲁区UHP变质岩构造学及流变学演化   总被引:1,自引:0,他引:1  
在大别—苏鲁区的30个关键位置,对UHP/HP变质岩进行详细构造解析、大比例尺(1∶10000)制图并在区域尺度上进行观察和对比,以便揭示它们的构造几何学、变形条件和流变学演化。初步的研究结果指出,广泛出露的UHP/HP榴辉岩相岩石形成一个巨大的UHP/HP变质带,提供了一个观察中朝与扬子克拉通之间三叠纪大陆深俯冲-碰撞带过程的窗口。观察的显微构造及组构指出,UHP/HP变质带内岩石变形机制,无论是在榴辉岩相阶段还是在榴辉岩相后阶段,都是以塑性流变为主,其力学行为和组构特征都受组成矿物的强度、强度差等流变学特征,以及变形物理环境如压力、温度、应变速率、差异应力和流体含量等的制约。在俯冲/碰撞带内的变形分解作用于岩石圈不同层次及不同的构造阶段都曾发生,而且,在不同尺度上,应变局部化形成具高应变的剪切带网络,且一般显示典型的布丁-基质或碎斑-基质构造及流变学型式。根据构造、岩石、变质作用及地质年代学资料,借助于岩石圈流变学基本原理,提出一个大别—苏鲁区UHP/HP变质岩石流变学演化的工作模式,它涉及早期扬子与中朝克拉通间三叠纪(~250~230Ma)大陆深俯冲/碰撞、UHP/HP变质岩形成,相继深埋岩石的多期折返。特别强调UHP/HP岩石向地壳表层的折返,主要是构造过程,地面侵蚀作用是次要的。  相似文献   

9.
T. Reinecke 《Lithos》1998,42(3-4):147-189
Pelagic metasediments and MORB-type metabasalts of the former Tethyan oceanic crust at Cignana, Valtournanche, Italy, experienced UHP metamorphism and subsequent exhumation during the Early to Late Tertiary. Maximum PT conditions attained during UHP metamorphism were 600–630 °C, 2.7–2.9 GPa, which resulted in the formation of coesite-glaucophane-eclogites in the basaltic layer and of garnet-dolomite-aragonite-lawsonite-coesite-phengite-bearing calc-schists and garnet-phengite-coesite-schists with variable amounts of epidote, talc, dolomite, Na-pyroxene and Na-amphibole in the overlying metasediments. During subduction the rocks followed a prograde HP/UHP path which in correspondance with the Jurassic age of the Tethyan crust reflects the thermal influence of relatively old and cold lithosphere and of low to moderate shear heating. Inflections on the prograde metamorphic path may correspond to thermal effects that arise from a decrease in shear heating due to brittle-plastic transition in the quartz-aragonite-dominated rocks, induced convection in the asthenospheric mantle wedge and/or heat consumption by endothermic reactions over a restricted PT segment during subduction. After detachment from the downgoing slab some 50–70 Ma before present, the Cignana crustal slice was first exhumed to ca. 60 km and concomitantly cooled to ca. 550 °C, tracing back the UHP/HP prograde path displaced by 50–80 °C to higher temperatures. Exhumation at this stage is likely to have occurred in the Benioff zone, while the subduction of cool lithosphere was going on. Subsequently, the rocks were near-isothermally exhumed to ca. 30 km, followed by concomitant decompression and cooling to surface conditions (at < 500 °C, < 1 GPa). During this last stage the UHPM slice arrived at its present tectonic position with respect to the overlying greenschist-facies Combin zone. In contrast to the well-preserved HP/UHPM record of the coesite-glaucophane eclogites, the HP/UHP assemblages of the metasediments have been largely obliterated during exhumation. Relics from which the metamorphic evolution of the rocks during prograde HP metamorphism and the UHP stage can be retrieved are restricted to rigid low-diffusion minerals like garnet, dolomite, tourmaline and apatite.  相似文献   

10.
The Southern Marginal Zone of the late Archean Limpopo Belt of southern Africa is an example of a high‐grade gneiss terrane in which both upper and lower crustal deformational processes can be studied. This marginal zone consists of large thrust sheets of complexly folded low‐strain gneisses, bound by an imbricate system of kilometre‐wide deep crustal shear zones characterized by the presence of high‐strain gneisses (‘primary straight gneisses’). These shear zones developed during the decompression stage of this high‐grade terrane. Low‐ and high‐strain gneisses both contain similar reaction textures that formed under different kinematic conditions during decompression. Evidence for the early M1/D1 metamorphic phase (> 2690 Ma) is rarely preserved in low‐strain gneisses as a uniform orientation of relict Al‐rich orthopyroxene in the matrix and quartz and plagioclase inclusions in the cores of early (M1) Mg‐rich garnet porphyroblasts. This rare fabric formed at > 820 °C and > 7.5 kbar. The retrograde M2/D2 metamorphic fabric (2630–2670 Ma) is well developed in high‐strain gneisses from deep crustal shear zones and is microscopically recognized by the presence of reaction textures that formed synkinematically during shear deformation: M2 sigmoid‐shaped reaction textures with oriented cordierite–orthopyroxene symplectites formed after the early M1 Mg‐rich garnet porphyroblasts, and syn‐decompression M2 pencil‐shaped garnet with oriented inclusions of sillimanite and quartz formed after cordierite under conditions of near‐isobaric cooling at 750–630 °C and 6–5 kbar. The symplectites and pencil‐shaped garnet are oriented parallel to the shear fabric and in the stretching direction. Low‐strain gneisses from thrust sheets show similar M2 decompression cooling and near‐isobaric cooling reaction textures that formed within the same PT range, but under low‐strain conditions, as shown by their pseudo‐idioblastic shapes that reflect the contours of completely replaced M1 garnet and randomly oriented cordierite–orthopyroxene symplectites. The presence of similar reaction textures reflecting low‐strain conditions in gneisses from thrust sheets and high‐strain conditions in primary straight gneisses suggests that most of the strain during decompression was partitioned into the bounding shear zones. A younger M3/D3 mylonitic fabric (< 2637 Ma) in unhydrated mylonites is characterized by brittle deformation of garnet porphyroclasts and ductile deformation of the quartz–plagioclase–biotite matrix developed at < 600 °C, as the result of post‐decompression shearing under epidote–amphibolite facies conditions.  相似文献   

11.
Reaction and deformation microfabrics provide key information to understand the thermodynamic and kinetic controls of tectono‐metamorphic processes, however, they are usually analysed in two dimensions, omitting important information regarding the third spatial dimension. We applied synchrotron‐based X‐ray microtomography to document the evolution of a pristine olivine gabbro into a deformed omphacite–garnet eclogite in four dimensions, where the 4th dimension is represented by the degree of strain. In the investigated samples, which cover a strain gradient into a shear zone from the Western Gneiss Region (Norway), we focused on the spatial transformation of garnet coronas into elongated garnet clusters with increasing strain. The microtomographic data allowed quantification of garnet volume, shape and spatial arrangement evolution with increasing strain. The microtomographic observations were combined with light microscope and backscatter electron images as well as electron microprobe (EMPA) and electron backscatter diffraction (EBSD) analysis to correlate mineral composition and orientation data with the X‐ray absorption signal of the same mineral grains. With increasing deformation, the garnet volume almost triples. In the low‐strain domain, garnet grains form a well interconnected large garnet aggregate that develops throughout the entire sample. We also observed that garnet coronas in the gabbros never completely encapsulate olivine grains. In the most highly deformed eclogites, the oblate shapes of garnet clusters reflect a deformational origin of the microfabrics. We interpret the aligned garnet aggregates to direct synkinematic fluid flow, and consequently influence the transport of dissolved chemical components. EBSD analyses reveal that garnet shows a near‐random crystal preferred orientation that testifies no evidence for crystal plasticity. There is, however evidence for minor fracturing, neo‐nucleation and overgrowth. Microprobe chemical analysis revealed that garnet compositions progressively equilibrate to eclogite facies, becoming more almandine‐rich. We interpret these observations as pointing to a mechanical disintegration of the garnet coronas during strain localization, and their rearrangement into individual garnet clusters through a combination of garnet coalescence and overgrowth while the rock was deforming.  相似文献   

12.
超高压变质岩的折返过程是陆陆碰撞边界演化的关键问题。南倾的花凉亭-弥陀剪切带位于南大别低温-超高压变质 带和中大别中温-超高压变质带之间,矿物拉伸线理倾伏向为SE,逆冲和走滑分量大致相等。电子背散射衍射分析表明: 花凉亭-弥陀剪切带大多数样品的石英组构记录了上盘向NW的剪切变形,反映了中大别超高压变质岩向SE的快速折返, 而部分样品的石英具有上盘向SE的剪切指向,与早白垩世花岗岩穹隆发育导致的区域伸展有关。对前人的岩石学和年代学 成果进行总结,发现大别山进变质和超高压变质峰期/退变质的锆石U-Pb年龄从南往北逐渐变新,南大别和中大别在215~ 225 Ma同时经历了高压榴辉岩相退变质作用,在191~195 Ma经历了绿片岩相变质作用。超高压变质岩的白云母和黑云母的 40Ar/39Ar年龄靠近郯庐断裂时偏年轻,可能受到郯庐断裂活动的影响。南大别和中大别变质峰期温压的等值线与花凉亭-弥 陀剪切带的走向斜交,反映了超高压变质岩的斜向折返。因此,南大别低温-超高压变质带在~236 Ma最先开始折返,之后 中大别和北大别依次发生快速折返,具有不同折返速率和折返角度的构造岩片通过韧性剪切带调节相对运动。  相似文献   

13.
赵中岩  方爱民 《岩石学报》2005,21(4):1109-1116
超高压变质岩是大陆深俯冲作用的产物。超高压变质岩在深俯冲和快速折返过程中,经历了长距离地构造搬运和构造力的作用。其构造变形主要集中在韧性剪切带中,并发生强烈地塑性流变。研究超高压变质构造岩的显微构造及其变形机制对于深入了解大陆壳岩石在深俯冲过程中的流变学行为有十分重要的意义,山东仰口的超高压韧性剪切带中榴辉岩质和花岗质糜棱岩记录了超高压变形的历史。在超高压条件下的稳定矿物绿辉石、多硅白云母、兰晶石和钾长石具有不规则波状消光、亚晶界、核幔构造和动态重结晶等显微构造特征,TEM 研究揭示了大量的位错构造,表明位错蠕变是其主要的变形机制。在花岗质糜棱岩中,金红石在刚性矿物的压力影中沉积,细粒的石榴石条带平行片理延伸,都说明超高压变形过程中有流体存在,流体助力的物质扩散迁移是又一个重要的变形机制。依据现有的流变学定律估算的流变应力应该在几十兆帕以上。  相似文献   

14.
Abstract Metre-scale amphibolite boudins in the Cheyenne Belt of south-eastern Wyoming are cut and deformed by shear zones which preserve a full strain transition across 7 cm, from relatively undeformed amphibolite with a relict igneous texture to mylonitic amphibolite with an L-S tectonic fabric. The strain transition is marked by the progressive rotation of amphibole + plagioclase aggregates into parallelism with the shear-zone boundary. An increase in strain magnitude is indicated by development of the tectonic fabric and progressive reduction of amphibole and plagioclase grain size as a result of cataclasis. Bulk chemistry of five samples across a single strain transition shows no significant or systematic variation in major element chemistry except for a minor loss of SiO2, which indicates that the shear zone was a system essentially closed to non-volatile components during metamorphism and deformation. Amphibolites throughout the shear zone consist of amphibole and plagioclase with only minor amounts of quartz, chlorite, epidote, titanite and ilmenite. Within the relatively undeformed amphibolite, amphibole and plagioclase have wide compositional ranges in single thin sections. Amphibole compositions vary from actinolitic hornblende to magnesio-hornblende with increases in Al, Fe, Na and K contents and decreases in Si and Mg that can be modelled as progress along tschermakite, edenite and FeMg-1 exchange vectors from tremolite. Plagioclase ranges from An60 in cores to An30 within grain-boundary domains. With increasing strain magnitude, local variation of amphibole composition decreases as amphibole becomes predominantly magnesio-hornblende. Plagioclase composition range also decreases, although grain-boundary domains still have higher albite content. These petrological data indicate that shear-zone metamorphism was controlled by the magnitude of strain during synmetamorphic deformation. SEM and microprobe imaging indicate that chemical reactions occurred by a dissolution and reprecipitation process during or after cataclastic deformation. This suggests that grain-boundary formation was an important process in the petrological evolution of the shear zone, possibly by providing zones for fluid ingress to facilitate metamorphic reactions. These results highlight the necessity for conducting detailed microstructural evaluation of rocks in order to interpret petrological, isotopic and geochronological data.  相似文献   

15.
通过CCSD-MH、卫星孔的岩性-构造剖面和苏鲁造山带中榴辉岩-超镁铁质岩的产出、深俯冲/折返过程的岩石的塑性流变特征和变形序次的分析、俯冲-折返过程中流体作用及变质化学地球动力学对流变学行为的制约,以及韧性剪切作用形成的折返年代学时限,提出苏鲁超高压变质地体为面型深俯冲/折返杂岩带组成的穹形挤出推覆岩片、叠置在扬子陆块之上; 根据岩石变形微构造及组构的分析,重塑超高压变质岩石深俯冲阶段、折返早期、折返主期和折返后期的塑性流变;提出深俯冲的物质沿板块汇聚边界的多层隧道呈多重/分片样式“挤出”的折返模式,并认为在折返初期开始(230~220Ma)和折返主期(220~200Ma)形成的透入性韧性剪切是俯冲岩片挤出的重要机制;提出郯庐走滑断裂的形成对苏鲁高压/超高压变质地体演化的影响。  相似文献   

16.
以超高压矿物组合的各种后成合晶及冠状体等卸载不平衡结构为参考标志,将含柯石英的超高压榴辉岩的交形序列分成两个部分。后成合晶及冠状体发育之前的变形为早期变形,是在大陆深俯冲和碰撞条件下发育的超高压变质变形组构。后成合晶及冠状体发育之后的变形为晚期变形,是在超高压岩石折返剥露过程中,主要是在角闪岩相甚至绿片岩相条件下发育的。构造上江苏省北部东海县碱场合柯石英榴辉岩体,分为块状榴辉岩和面理化榴辉岩两种类型,分别代表超高压变质岩早期变形的两个构造阶段或世代(D1、D2)。详细描述了它们的矿物组合、中小尺度及显微尺度下的组构特征,讨论了两者的几何关系和区域构造意义,强调指出,只有含柯石英榴辉岩的早期变形组构,才能记录和反映斜向大陆深俯冲及碰撞的动力学过程。  相似文献   

17.
The inherited localization model for shear zone development suggests that ductile deformation in the middle and lower continental crust is localized on mechanical anisotropies, like fractures, referred to as shear zone brittle precursors. In the Neves area (Western Tauern Window, Eastern Alps), although the structural control of these brittle precursors on ductile strain localization is well established, the relative timing of the brittle deformation and associated localized fluid flow with respect to ductile deformation remains in most cases a matter of debate. The present petrological study, carried out on a brittle precursor of a shear zone affecting the Neves metagranodiorite, aims to determine whether brittle and ductile deformations are concomitant and therefore relate to the same tectonic event. The brittle precursor consists of a 100–500 µm wide recrystallized zone with a host mineral‐controlled stable mineral assemblage composed of plagioclase–garnet–quartz–biotite–zoisite±white mica±pyrite. Plagioclase and garnet preserve an internal compositional zoning interpreted as the fingerprint of Alpine metamorphism and fluid–rock interactions concomitant with the brittle deformation. Phase equilibrium modelling of this garnet‐bearing brittle precursor shows that metamorphic garnet and plagioclase both nucleated at 0.6 ± 0.05 GPa, 500 ± 20°C and then grew along a prograde path to 0.75 ± 0.05 GPa, 530 ± 20°C. These amphibolite facies conditions are similar to those inferred from ductile shear zones from the same area, suggesting that both brittle and ductile deformation were active in the ductile realm above 500°C for a depth range between 17 and 21 km. We speculate that the Neves area fulfils most of the required conditions to have hosted slow earthquakes during Alpine continental collision, that is, coupled frictional and viscous deformation under high‐fluid pressure conditions ~450°C. Further investigation of this potential geological record is required to demonstrate that slow earthquakes may not be restricted to subduction zones but are also very likely to occur in modern continental collision settings.  相似文献   

18.
《China Geology》2021,4(1):111-125
High/ultrahigh-pressure (HP/UHP) metamorphic complexes, such as eclogite and blueschist, are generally regarded as significant signature of paleo-subduction zones and paleo-suture zones. Glaucophane eclogites have been recently identified within the Lancang Group characterized by accretionary mélange in the Changning-Menglian suture zone, at Bangbing in the Shuangjiang area of southeastern Tibetan Plateau. The authors report the result of petrological, mineralogical and metamorphism investigations of these rocks, and discuss their tectonic implications. The eclogites are located within the Suyi blueschist belt and occur as tectonic lenses in coarse-grained garnet muscovite schists. The major mineral assemblage of the eclogites includes garnet, omphacite, glaucophane, phengite, clinozoisite and rutile. Eclogitic garnet contains numerous inclusions, such as omphacite, glaucophane, rutile, and quartz with radial cracks around. Glaucophane and clinozoisite in the matrix have apparent optical and compositional zonation. Four stages of metamorphic evolution can be determined: The prograde blueschist facies (M1), the peak eclogite facies (M2), the decompression blueschist facies (M3) and retrograde greenschist facies (M4). Using the Grt-Omp-Phn geothermobarometer, a peak eclogite facies metamorphic P-T condition of 3000–3270 MPa and 617–658°C was determined, which is typical of low-temperature ultrahigh-pressure metamorphism. The comparison of the geological characteristics of the Bangbing glaucophane eclogites and the Mengku lawsonite-bearing retrograde eclogites indicates that two suites of eclogites may have formed from significantly different depths or localities to create the tectonic mélange in a subduction channel during subduction of the Triassic Changning-Menglian Ocean. The discovery of the Bangbing glaucophane eclogites may represent a new oceanic HP/UHP metamorphic belt in the Changning-Menglian suture zone.©2021 China Geology Editorial Office.  相似文献   

19.
Detailed three-dimensional structural studies indicate that the Bixiling area,Dabie massif,central Chian shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze0Sino-Korean continental collision.New1:10000 scale structural mapping,combined with detailed petrological analysis in this area,has enabled us to accurately distinguish structures related to the Trias-sic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit.The collisional or compressional structures include the massive eclogite with a weak foliation,foliated eclogite or UHP ductile shear zones,as well as upper amphibolite facies shear zones,whereas the post-collisional deformation is characterized by a regionally,flat-lying foliation con-taining stretching lineations and common reclined folds .The former is present exclusively in the eclogite lenses and their margins,representing orogenic thickening or syn-collisional events,while the latter was best occurred on variable scales under amphibolite facies conditions,showing sub-vertical,extreme short-ening and ductile thinning of the metamorphic rock stack.The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common.It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was,at least partly,responsible for exhumation of the UHP metamorphic rocks in the Dabie massif.A new tec-tionic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif.The Bixiling area thus provides a window,from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed.Regional studies in the Dabie Mountains have confirmed this interpretation.  相似文献   

20.
俯冲隧道是俯冲板片与上覆板块之间的剪切带,也是高压—超高压变质岩折返和深部流/熔体活动的通道。大别山超高压变质岩分布广泛,变形程度差异很大,是研究大陆俯冲隧道中岩石变质- 变形过程的理想地区。本文系统总结了前人对中大别双河地区超高压变质岩的岩石学和年代学研究成果,在双河地区开展了地质填图、应变分析和三维构造重建。通过将超高压变质岩的变形特征与P- T- t轨迹结合,识别出超高压变质岩折返过程中的三期韧性变形。在双河北部发现了一个上盘向NW剪切的千米尺度的榴辉岩相鞘褶皱,枢纽向SE倾伏,倾伏角约20°,与榴辉岩、片岩和长英质片麻岩的拉伸线理平行,表明超高压变质岩初始折返阶段的流体活动使榴辉岩的强度显著降低,榴辉岩与围岩一起发生韧性变形。该期变形被角闪岩相退变质阶段上盘向NW的剪切叠加,此时应变集中于片麻岩、片岩、大理岩等非能干层,强度较高的榴辉岩成为构造透镜体。而绿片岩相变质阶段上盘向SE方向的剪切与早白垩世北大别花岗片麻岩穹隆的形成有关。对双河南部弱变形花岗片麻岩的锆石U- Pb定年揭示了757±14 Ma的原岩年龄和 240~216 Ma的变质年龄,与双河北部含柯石英强变形花岗片麻岩类似,暗示其也经历了三叠纪超高压变质作用及随后的角闪岩相退变质作用。通过计算长英质片麻岩的有效黏度,发现无水碱长花岗片麻岩的有效黏度高于黑云斜长片麻岩,折返阶段的流体活动使超高压变质岩的强度显著降低,当局部的流体活动不足以弱化碱长花岗岩体时,应变集中于黑云斜长片麻岩。因此,大陆俯冲隧道中的应变分布受矿物组成、流体活动和岩体规模的共同影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号