首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
The first results of study of minerals and diamonds of diamond-bearing eclogites from kimberlites of the Yubileinaya pipe with a variable percent amount of clinopyroxene and garnet are presented. Samples with a garnet content from 30 to 90% of the xenolith volume are dominant among the round to oval xenoliths with diamonds. Five eclogite samples contain grains of accessory rutile, as well as corundum and kyanite. Some samples host two or more diamond crystals.  相似文献   

2.
Diamond formation from metasomatic fluids, rather than from igneous melts, remains controversial but is paramount to our understanding of diamonds' mantle origin(s). Physical and chemical properties of diamonds, their inclusions, and host eclogites from the Mir kimberlite, Yakutia, Russia form the basis for our evaluation of diamond origin. Mir eclogitic diamonds and their multiple inclusions show a definite break in time and temperature between the formation of the core zones and the rims of the diamonds. Extreme changes in chemistry for multiple diamond inclusions (DIs) between the cores and the rims cannot be accounted for by magmatic fractional crystallization. Evidence also exists for large temperature decreases (40° to 140°C) from the cores to the rims of some diamonds. The distinct changes in nitrogen contents and aggregation states from cores to rims of diamonds would appear to reflect different residence times for these portions of the diamonds in the mantle- i.e., formation of cores and rims at vastly different times (e.g., 2 Gy). Many of the mineral-chemical characteristics, including C and N isotopes and N aggregation states of the diamond, can best be explained by crystallization of the diamonds after formation of the eclogite host. This suggests that the formation of the eclogite and the nucleation and growth of some diamonds are not coeval and possibly not cogenetic.

Most diamondiferous eclogite xenoliths probably have never experienced a major magmatic episode (i.e., complete melt stage) after subduction of their crustal protoliths into the mantle. Carbon isotopes in diamond, sulfur isotopes from sulfide DIs, and oxygen isotopes from eclogite minerals all point to crustal protoliths for many eclogites.

All of the factors above, taken as a whole, indicate that many eclogitic diamonds are the result of petrogenesis by metasomatism over a prolonged period of time. Introduction of metasomatic fluids facilitates the precipitation of the diamonds, either in tolo or as rims on previously formed diamonds. Inasmuch as some eclogites are considered to be igneous in origine.g., Group-A eclogites of Taylor and Neal (1989)-it is entirely possible that these eclogites may contain truly igneous diamonds. However, even some of these diamonds may have later metasomatic overgrowths.  相似文献   

3.
We have performed dissections of two diamondiferous eclogites (UX-1 and U33/1) from the Udachnaya kimberlite, Yakutia in order to understand the nature of diamond formation and the relationship between the diamonds, their mineral inclusions, and host eclogite minerals. Diamonds were carefully recovered from each xenolith, based upon high-resolution X-ray tomography images and three-dimensional models. The nature and physical properties of minerals, in direct contact with diamonds, were investigated at the time of diamond extraction. Polished sections of the eclogites were made, containing the mould areas of the diamonds, to further investigate the chemical compositions of the host minerals and the phases that were in contact with diamonds. Major- and minor-element compositions of silicate and sulfide mineral inclusions in diamonds show variations among each other, and from those in the host eclogites. Oxygen isotope compositions of one garnet and five clinopyroxene inclusions in diamonds from another Udachnaya eclogite (U51) span the entire range recorded for eclogite xenoliths from Udachnaya. In addition, the reported compositions of almost all clinopyroxene inclusions in U51 diamonds exhibit positive Eu anomaly. This feature, together with the oxygen isotopic characteristics, is consistent with the well-established hypothesis of subduction origin for Udachnaya eclogite xenoliths. It is intuitive to expect that all eclogite xenoliths in a particular kimberlite should have common heritage, at least with respect to their included diamonds. However, the variation in the composition of multiple inclusions within diamonds, and among diamonds, from the same eclogite indicates the involvement of complex processes in diamond genesis, at least in the eclogite xenoliths from Yakutia that we have studied.  相似文献   

4.
Three-dimensional neutron and X-ray tomography reveals the textural and spatial relationship of diamonds and associated minerals in situ, in a unique suite of 17 diamondiferous eclogites. We emphasize the reporting of X-ray imaging on mantle xenoliths, which in combination with neutron imaging enables the clear identification of diamonds and interstitial metasomatic secondary minerals. In particular, neutrons are highly sensitive to hydrogen (H), allowing for the identification of OH- and H2O-bearing metasomatic minerals. The identification of metasomatic minerals allows for the delineation of distinct metasomatic pathways through the eclogite xenoliths. Diamonds are readily identified as the darkest greyscales due to their low attenuation, and are typically surrounded by secondary minerals, never in contact with primary minerals, and always confined within metasomatic pathways. The ubiquitous occurrence of diamonds in association with pathways suggests a potential genetic link. Both octahedral and dodecahedral diamonds are observed within individual xenoliths, suggesting multiple heterogeneous growth and dissolution processes at small scales. The distinct age dichotomy between eclogite xenoliths and metasomatic mineral assemblages implies that the observed textural relationship of diamonds and late-stage metasomatic pathways for this suite of 17 eclogites casts doubt on the theory that eclogitic diamonds formed billions of years ago. Diamonds are interpreted to have formed from multiple growth episodes, with the last of these episodes represented by the metasomatic assemblages observed in this study. This further indicates that eclogitic diamond inclusions may span large time scales from ancient ages (>2 Ga) all the way to the last growth event, perhaps even close to the time of kimberlite emplacement (~360 Ma), which has significant implications for age-dating of diamonds and the study of diamonds as a whole.  相似文献   

5.
Diamonds: time capsules from the Siberian Mantle   总被引:1,自引:0,他引:1  
Diamonds are thought to be “time capsules” from the Earth's mantle. However, by themselves, consisting of nearly pure carbon, diamonds provide little geochemical information about their conditions of formation and the nature of their mantle hosts. This obstacle to studying the origin of diamonds and their hosts can be overcome by using two main approaches that focus on studying: (1) the rocks that contain diamonds, i.e., diamondiferous xenoliths; and (2) mineral inclusions within the diamonds, the time capsule's little treasures, if you will. Diamondiferous xenoliths, their diamonds, and mineral inclusions within the diamonds are the subject of this review, focusing on studies of samples from the Yakutian kimberlites in the Siberian Platform.Studies of diamondiferous eclogite xenoliths significantly enhance our understanding of the complex petrogenesis of this important group of rocks and their diamonds. Such studies involve various geochemical and petrological investigations of these eclogites, including major and trace-element, radiogenic as well as stable isotopic analyses of whole rocks and minerals. The results from these studies have clearly established that the Group A-C eclogites originate from subduction of ancient oceanic crust. This theory is probably applicable worldwide.Within the last several years, our research group at Tennessee has undertaken the systematic dissection (pull apart) of diamondiferous eclogites from Siberia, consisting of the following steps: (1) high-resolution computed X-ray tomography of the xenoliths to produce 3D images that relate the minerals of the xenoliths to their diamonds; (2) detailed dissection of the entire xenolith to reveal the diamonds inside, followed by characterization of the setting of the diamonds within their enclosing minerals; and (3) extraction of diamonds from the xenolith for further investigation of the diamonds and their inclusions. In this last step, it is important that the nature and relative positions of the diamond inclusions are carefully noted in order to maximize the number of inclusions that can be exposed simultaneously on one polished surface. In this modus operandi, cathodoluminescence imaging, plus FTIR/N aggregation and C/N isotopic analyses are performed on polished diamond surfaces to reveal their internal growth zones and the spatial relationship of the mineral inclusions to these zones.Knowledge gained by such detailed, albeit work-intensive, studies continues to add immensely to the constantly evolving models of the origin of diamonds and their host rocks in the Earth's mantle, as well as to lithospheric stability models in cratonic areas. Multiple lines of evidence indicate the ultimate crustal origin for the majority of mantle eclogites. Similar pieces of evidence, particularly from δ13C in P-type diamonds and δ18O in peridotitic garnets lead to the suggestion that at least some of the mantle peridotites, including diamondiferous ones, as well as inclusions in P-type diamonds, may have had a crustal protolith as well.  相似文献   

6.
Diamonds from high- and low-MgO groups of eclogite xenoliths from the Jericho kimberlite, Slave Craton, Canada were analyzed for carbon isotope compositions and nitrogen contents. Diamonds extracted from the two groups show remarkably different nitrogen abundances and δ13C values. While diamonds from high-MgO eclogites have low nitrogen contents (5-82 ppm) and extremely low δ13C values clustering at ∼−40‰, diamonds from the low-MgO eclogites have high nitrogen contents (>1200 ppm) and δ13C values from −3.5‰ to −5.3‰.Coupled cathodoluminescence (CL) imaging and SIMS analysis of the Jericho diamonds provides insight into diamond growth processes. Diamonds from the high-MgO eclogites display little CL structure and generally have constant δ13C values and nitrogen contents. Some of these diamonds have secondary rims with increasing δ13C values from −40‰ to ∼−34‰, which suggests secondary diamond growth occurred from an oxidized growth medium. The extreme negative δ13C values of the high-MgO eclogite diamonds cannot be produced by Rayleigh isotopic fractionation of average mantle-derived carbon (−5‰) or carbon derived from typical organic matter (∼−25‰). However, excursions in δ13C values to −60‰ are known in the organic sedimentary record at ca. 2.7 and 2.0 Ga, such that diamonds from the high-MgO eclogites could have formed from similar organic matter brought into the Slave lithospheric mantle by subduction.SIMS analyses of a diamond from a low-MgO eclogite show an outer core with systematic rimwards increases in δ13C values coupled with decreases in nitrogen contents, and a rim with pronounced alternating growth zones. The coupled δ13C-nitrogen data suggest that the diamond precipitated during fractional crystallization from an oxidized fluid/melt from which nitrogen was progressively depleted during growth. Model calculations of the co-variation of δ13C-N yielded a partition coefficient (KN) value of 5, indicating that nitrogen is strongly compatible in diamond relative to the growth medium. δ13C values of diamond cores (−4‰) dictate the growth medium had higher δ13C values than primary mantle-derived carbon. Therefore, possible carbon sources for the low-MgO eclogite diamonds include oxidized mantle-derived (e.g. protokimberlite or carbonatite) fluids/melts that underwent some fractionation during migration or, devolatilized subducted carbonates.  相似文献   

7.
A unique xenolith of eclogite, 23×17×11 cm in size and 8 kg in weight, was found in the Udachnaya kimberlite pipe. One hundred twenty-four diamond crystals recovered from it were analyzed by a number of methods. The diamonds differ in morphology, internal structure, color, size, and composition of defects and impurities. The xenolith contains diamonds of octahedral and cubooctahedral habits. In cathodoluminescence, the octahedral crystals have a brightly glowing core with octahedral zones of growth and a weakly glowing rim. In the cores of these crystals the N impurity is mostly present in the B1 form (30 to 60%). At the same time, N in the rim is chiefly in the A form. The cubooctahedral crystals show a weak luminescence. The content of nitrogen and degree of its aggregation are close to those in the rim of octahedral crystals. The diversity of morphology and impurity composition of diamonds from the xenolith can be explained by their formation in two stages. At the first stage, the diamonds formed which became the cores of octahedra. After a long-time interruption, at the second stage of diamond formation crystals of cubooctahedral habit appeared and the octahedral crystals were overgrown. Wide variations in nitrogen contents in the xenolith crystals allowed their use to estimate the kinetics of aggregated nitrogen. The data obtained show that the aggregation of A centers into B1 centers in the diamonds is described by a kinetic reaction of an order of 1.5.  相似文献   

8.
Eclogitic (E-type) and related parageneses of natural diamonds are represented by suites of diamond inclusions and xenoliths of diamondiferous eclogites. Major-element data are presented for 32 coexisting minerals forming 19 bimineralic and trimineralic inclusions from diamonds, including omphacite-orthopyroxene (1 sample), garnet-omphacite (5 samples), garnet-coesite (5 samples), omphacite-coesite (2 samples), garnet-picroilmenite (2 samples), garnet-kyanite (1 sample), omphacite-phlogopite (2 samples), and garnel-omphacite-phlogopite (1 sample). Major-element variations of coexisting minerals are typical of corresponding eclogites. Omphacite with 5.02 wt% Na2O, inter-grown with orthopyroxene with Mg# 83.7, represents the first example of a diamondiferous websterite paragenesis including Na-clinopyroxene. This indicates a broader range in mineral compositions of E-type-related websteritepyroxenite-associated diamonds than known previously. This unique websterite-pyroxenitic mineral assemblage represents a transitional paragenesis between peridotitic or ultramafic (U-type) and E-type parageneses.

Bimineralic eclogites, ilmenite eclogites, coesite + corundum + kyanite eclogites, and grospydites occur not only as sets of inclusions in diamonds but, with a few exceptions (ilmenite and coesite eclogites), also as diamondiferous eclogite xenoliths. The coesite eclogite paragenesis is a significant inclusion suite in diamonds, and was detected in about 15 diamond occurrences worldwide. It represents from 15% to 22% of all E-type diamonds in several occurrences, and thus should not be considered as rare.  相似文献   

9.
Among Ti-bearing oxides, rutile is common in eclogitic (E-type) diamonds and diamondiferous eclogites of varied bulk chemistry, but rarely occurs in association with ultramafic (or peridotitic) (U-type) diamonds, especially in lherzolitic assemblages. Roughly 100 rutile samples associated with diamonds as inclusions (71 samples), intergrowths with polycrystalline diamond aggregates (20 samples), and extracted from diamondiferous eclogites (11 samples) were studied by electron micro-probe techniques for Fe, Al, Mg, Ca, Mn, Cr, Nb, and Zr contents. Rutiles included in diamonds from Yakutia and Venezuela dominate the study. Compositions of rutiles associated with diamond and/or coesite from crustal ultrahigh-pressure (UHP) metamorphic rocks from the Kokchetav massif, northern Kazakhstan, and the Dora Maira massif in the Italian Alps are presented for comparison.

Titanates of the LIMA (lindsleyite-mathiasite) series and perovskite are rare accessories in U-type diamonds. Ilmenite of a wide range of compositions, containing up to 80% geikielite, is closely associated with rutile in bimineralic intergrowths in a number of diamonds and diamondiferous eclogites. Diamond-associated rutiles contain up to 0.8 wt% Al2O3, 2.5 wt% Fe2O3, 1.4 wt% Nb2O5, 0.45 wt% ZrO2, and 2.3 wt% Cr2O3 (in the U type). The majority of rutiles, including diamond inclusions, are heterogeneous with widely varying Al, Fe, and Mg contents. These heterogeneities are mainly caused by the presence of sigmoidal oriented lamellae of ilmenite, picroilmenite (geikielite), and corundum; these are documented for the first time in diamond-associated rutiles and may represent exsolution from a UHP precursor. These features reflect the complex P-T and f(O2) history of the rutiles. The presence of complex titanates of the LIMA series and perovskite in diamond-bearing assemblages reflects the metasomatizing conditions of diamond formation.  相似文献   

10.
P. Peltonen  K. A. Kinnunen  H. Huhma 《Lithos》2002,63(3-4):151-164
Diamondiferous Group A eclogites constitute a minor portion of the mantle-derived xenoliths in the eastern Finland kimberlites. They have been derived from the depth interval 150–230 km where they are inferred to occur as thin layers or small pods within coarse-grained garnet peridotites. The chemical and isotopic composition of minerals suggest that they represent (Proterozoic?) mantle-derived melts or cumulates rather than subducted oceanic lithosphere. During magma ascent and emplacement of the kimberlites, the eclogite xenoliths were mechanically and chemically rounded judging from the types of surface markings. In addition, those octahedral crystal faces of diamonds that were partially exposed from the rounded eclogite xenolith became covered by trigons and overlain by microlamination due to their reaction with the kimberlite magma. The diamonds bear evidence of pervasive plastic deformation which is not, however, evident in the eclogite host. This suggests that annealing at ambient lithospheric temperatures has effectively recrystallised the silicates while the diamond has retained its lattice imperfections and thus still has the potential to yield information about ancient mantle deformation. One of our samples is estimated to contain approximately 90,000 ct/ton diamond implying that some diamonds occur within very high-grade pods or thin seams in the lithospheric mantle. To our knowledge, this is one of the most diamondiferous samples described.  相似文献   

11.
Diamonds from the Kankan area in Guinea formed over a large depth profile beginning within the cratonic mantle lithosphere and extending through the asthenosphere and transition zone into the lower mantle. The carbon isotopic composition, the concentration of nitrogen impurities and the nitrogen aggregation level of diamonds representing this entire depth range have been determined. Peridotitic and eclogitic diamonds of lithospheric origin from Kankan have carbon isotopic compositions ('13C: peridotitic -5.4 to -2.2‰; eclogitic -19.7 to -0.7‰) and nitrogen characteristics (N: peridotitic 17-648 atomic ppm; eclogitic 0-1,313 atomic ppm; aggregation from IaA to IaB) which are generally typical for diamonds of these two suites worldwide. Geothermobarometry of peridotitic and eclogitic inclusion parageneses (worldwide sources) indicates that both suites formed under very similar conditions within the cratonic lithosphere, which is not consistent with a derivation of diamonds with light carbon isotopic composition from subducted organic matter within subducting oceanic slabs. Diamonds containing majorite garnet inclusions fall to the isotopically heavy side ('13C: -3.1‰ to +0.9‰) of the worldwide diamond population. Nitrogen contents are low (0-126 atomic ppm) and one of the two nitrogen-bearing diamonds shows such a low level of nitrogen aggregation (30% B-centre) that it cannot have been exposed to ambient temperatures of the transition zone (̿,400 °C) for more than 0.2 Ma. This suggests rapid upward transport and formation of some Kankan diamonds pene-contemporaneous to Cretaceous kimberlite activity. Similar to these diamonds from the asthenosphere and the transition zone, lower mantle diamonds show a small shift towards isotopic heavy compositions (-6.6 to -0.5‰, mode at -3.5‰). As already observed for other mines, the nitrogen contents of lower mantle diamonds were below detection (using FTIRS). The mutual shift of sublithospheric diamonds towards isotopic heavier compositions suggests a common carbon source, which may have inherited an isotopic heavy composition from a component consisting of subducted carbonates.  相似文献   

12.
Z.V. Spetsius   《Lithos》2004,77(1-4):525-538
Highly aluminous xenoliths include kyanite-, corundum- and coesite-bearing eclogites, grospydites and alkremites. These xenoliths are present in different kimberlites of Yakutia but have most often been found in Udachnaya and other pipes of the central Daldyn–Alakitsky region. Kimberlites of this field also contain eclogite-like xenoliths with kyanite and corundum that originate in the lower crust or the lower crust–upper mantle transition zone. Petrographic study shows that two rock groups of different structure and chemistry can be distinguished among kyanite eclogites: fine- to medium-grained with mosaic structure and coarse-grained with cataclastic structure. Eclogites with mosaic structure are characterized by the occurrences of symplectite intergrowths of garnet with kyanite, clinopyroxene and coesite; only in this group do grospydites occur. In cataclastic eclogites, coarse-grained coesite occurs, corresponding in size to other rock-forming minerals. Highly aluminous xenoliths differ from bimineralic eclogites in their high content of Al2O3 and total alkali content. Coesite-bearing varieties are characterized by low MgO content and higher Na/K and Fe2+/Fe3+ ratios, as well as high contents of Na2O. Geochemical peculiarities of kyanite eclogites and other rocks are exhibited by a sloping chondrite-normalized distribution of rare earth elements (REE) in garnets and low Y/Zr ratio, in contrast to bimineralic rocks. Coesite is found in more than 20 kyanite eclogites and grospydites from Udachnaya. Grospydites with coesite from Zagadochnaya pipe are described. Three varieties of coesite in these rocks are distinguished: (a) subhedral grains with size of 1.0–3.0 mm; (b) inclusions in the rock-forming minerals; (c) sub-graphic intergrowths with garnet. The presence and preservation of coesite in eclogites indicate both high pressure of formation (more than 30 kbar) and set a number of constraints on the timing of xenolith cooling during entrainment and transport to the surface. Different ways of formation of the highly aluminous eclogites are discussed. Petrographic observations and geochemistry suggest that some highly aluminous rocks have formed as a result of crystallization of anorthosite rocks in abyssal conditions. δ18O-estimations and other petrologic evidence point out the possible origin of some of these xenoliths as the result of subduction of oceanic crust. Diamondiferous samples have been found in all varieties except alkremites. Usually these eclogites contain cubic or coated diamonds. However, two sample corundum-bearing eclogites with diamonds from the Udachnaya pipe contain octahedra that show evidence of resorption.  相似文献   

13.
Analyses of mineral inclusions, carbon isotopes, nitrogen contents and nitrogen aggregation states in 29 diamonds from two Buffalo Hills kimberlites in northern Alberta, Canada were conducted. From 25 inclusion bearing diamonds, the following paragenetic abundances were found: peridotitic (48%), eclogitic (32%), eclogitic/websteritic (8%), websteritic (4%), ultradeep? (4%) and unknown (4%). Diamonds containing mineral inclusions of ferropericlase, and mixed eclogitic-asthenospheric-websteritic and eclogitic-websteritic mineral associations suggests the possibility of diamond growth over a range of depths and in a variety of mantle environments (lithosphere, asthenosphere and possibly lower mantle).

Eclogitic diamonds have a broad range of C-isotopic composition (δ13C=−21‰ to −5‰). Peridotitic, websteritic and ultradeep diamonds have typical mantle C-isotope values (δ13C=−4.9‰ av.), except for two 13C-depleted peridotitic (δ13C=−11.8‰, −14.6‰) and one 13C-depleted websteritic diamond (δ13C=−11.9‰). Infrared spectra from 29 diamonds identified two diamond groups: 75% are nitrogen-free (Type II) or have fully aggregated nitrogen defects (Type IaB) with platelet degradation and low to moderate nitrogen contents (av. 330 ppm-N); 25% have lower nitrogen aggregation states and higher nitrogen contents (30% IaB; <1600 ppm-N).

The combined evidence suggests two generations of diamond growth. Type II and Type IaB diamonds with ultradeep, peridotitic, eclogitic and websteritic inclusions crystallised from eclogitic and peridotitic rocks while moving in a dynamic environment from the asthenosphere and possibly the lower mantle to the base of the lithosphere. Mechanisms for diamond movement through the mantle could be by mantle convection, or an ascending plume. The interaction of partial melts with eclogitic and peridotitic lithologies may have produced the intermediate websteritic inclusion compositions, and can explain diamonds of mixed parageneses, and the overlap in C-isotope values between parageneses. Strong deformation and extremely high nitrogen aggregation states in some diamonds may indicate high mantle storage temperatures and strain in the diamond growth environment. A second diamond group, with Type IaA–IaB nitrogen aggregation and peridotitic inclusions, crystallised at the base of the cratonic lithosphere. All diamonds were subsequently sampled by kimberlites and transported to the Earth's surface.  相似文献   


14.
Henry O.A. Meyer 《Earth》1977,13(3):251-281
The importance of ultramafic and eclogitic xenoliths in kimberlite as representing the rocks and minerals of the upper mantle has been widely perceived during the last decade. Studies of the petrology and mineral chemistry of these mantle fragments as well as of inclusions in diamond, have led to significant progress in our understanding of the mineralogy and chemistry of the upper mantle. For example, it is now known that textural differences in the ultramafic xenoliths (lherzolite, harzburgite, pyroxenite and websterite) are partially reflected in chemical differences. Thus xenoliths that display a ‘fluidal’ texture, indicative of intense deformation are less depleted in Ca, Al, Na, Fe and Ti than those xenoliths in which granular textures are predominant. It is believed this relative depletion may indicate the sheared (fluidal texture) xenoliths are representative of primary, undifferentiated mantle. This material on partial melting would produce ‘basaltic-type’ material, and leave a residuum whose chemistry and mineralogy is reflected by the granular xenoliths.Also present in kimberlite are large single phase xenoliths that may be either one single crystal (xenocryst, megacryst) or an aggregate of several crystals of the same mineral (discrete xenolith, or discrete nodule). These large single phase samples consist of similar minerals to those occurring in the ultramafic xenoliths but chemically they are distinct in being generally more Fe-rich. The relation between these xenocrysts to their counterparts in the ultramafic xenoliths is unknown. Also unknown, at the present time, is the exact relation between diamond and kimberlite. Evidence obtained from study of the mineral inclusions in diamond suggests that diamond forms in at least two chemically distinct environments in the mantle; one eclogitic, the other, ultramafic. Interestingly, this suggestion is true for diamonds from worldwide localities.The mineral-chemical results of studies on xenoliths and inclusions in diamond have been convincingly interpreted in the light of experimental studies. It is now possible based on several different geothermometers and barometers to determine relatively reasonable physical conditions for the final genesis of many of these mantle rocks. For the most part the final equilibration temperatures range between 1000 and 1400°C and pressure in the region 100–200 km. These conditions are consistent with an upper mantle origin. Future studies will undoubtedly attempt to more concisely, and accurately, define these conditions, as well as understand better the chemical and spatial relationship of the rock-types in the mantle.  相似文献   

15.
Petrochemistry of eclogites from the Koidu Kimberlite Complex,Sierra Leone   总被引:1,自引:0,他引:1  
Petrography, mineral and bulk chemistry of upper mantle-derived eclogites (garnet and clinopyroxene) from the Koidu Kimberlite Complex, Sierra Leone, are presented in the first comprehensive study of these xenoliths from West Africa. Although peridotite-suite xenoliths are generally more common in kimberlites, the upper mantle sample preserved in Pipe Number 1 at Koidu is exclusively eclogitic, making this the fifth locality in which eclogite is the sole polymineralic xenolith in kimberlite. Over 2000 xenoliths were collected, of which 47 are described in detail that include diamond, graphite, kyanite, corundum, quartz after coesite, and amphibole eclogites. Grossular-pyrope-almandine garnets are chromium-poor (<0.72 wt% Cr2O3) and fall into two distinct groups based on magnesium content. High-MgO garnets have an average composition of Pyr67Alm22Gross11, low-MgO garnets are grossular- and almandine-rich with an average composition of Gross34Pyr33Alm33. Clinopyroxenes are omphacitic with a range in jadeite contents from 7.7 to 70.1 mol%. Three eclogites contain zoned and mantled garnets with almandine-rich cores and pyrope-rich rims, and zoned clinopyroxenes with diopside-rich cores and jadeite-rich rims, and are among a very rare group of eclogites reported on a world-wide basis. The bulk compositions of eclogites have ranges comparable to that of basalts. High-MgO eclogites (16–20 wt% MgO) have close chemical affinities to picrites, whereas low-MgO eclogites (6–13 wt% MgO) are similar to alkali basalts. High-MgO eclogites contain high-MgO garnets and jadeiterich clinopyroxenes. Low-MgO eclogites contain low-MgO garnets, diopside and omphacite, and the group of primary accessory phases (diamond, graphite, quartz after coesite, kyanite, and corundum); grospydites are peraluminous. Estimated temperatures and pressures of equilibration of diamond-bearing eclogites, using the diamond-graphite stability curve and the Ellis and Green (1979) geothermometer, are 1031°–1363° C at 45–50 kb.K D values of Fe-Mg in garnet and clinopyroxene range from 2.3 to 12.2. Diamonds in eclogites are green, yellow, and clear, and range from cube to octahedral morphologies; the entire spectrum in color and morphology is present in a single metasomatized eclogite with zoned garnet and clinopyroxene. Ages estimated from Sm-Nd mineral isochrons range from 92–247 Ma. Nd values range from +4.05 to 5.23. Values of specific gravity range from 3.06–3.60 g/cc, with calculated seismic Vp of 7.4–8.7 km/s. Petrographie, mineral, and bulk chemical data demonstrate an overall close similarity between the Koidu xenolith suite and upper mantle eclogites from other districts in Africa, Siberia and the United States. At least two origins are implied byP-T, bulk chemistry and mineral compositions: low-MgO eclogites, with diamond and other accessory minerals, are considered to have formed from melts trapped and metamorphically equilibrated in the lithosphere; high-MgO eclogites are picritic and are the products of large degrees of partial melting, with equilibration in the asthenosphere. Fluid or diluted melt metasomatism is pervasive and contributed here and elsewhere to the LIL and refractory silicate incompatible element signature in kimberlites and lamproites, and to secondary diamond growth.  相似文献   

16.
A xenolith of eclogite from the kimberlite pipe Udachnaya–East, Yakutia Grt+Cpx+Ky + S + Coe/Qtz + Dia + Gr has been studied. Graphite inclusions in diamond have been studied in detail by Confocal Raman (CR) mapping. The graphite inclusion in diamond has a highly ordered structure and is characterized by a substantial shift in the band (about 1580 cm–1) by 7 cm–1, indicating a significant residual strain in the inclusion. According to the results of FTIR spectroscopic studies of diamond crystals, a high degree of nitrogen aggregation has been detected: it is present mainly in form A, which means an “ancient” age of the diamonds. In the xenolith studied, the diamond formation occurred about 1 Byr, long before their transport by the kimberlite melt, and the conditions of the final equilibrium were temperatures of 1020 ± 40°C at 4.7 GPa. Thus, these graphite inclusions found in a diamond are the first evidence of crystallization of metastable graphite in a diamond stability field. They were formed in rocks of the upper mantle significantly below (≥20 km) the graphite-diamond equilibrium line.  相似文献   

17.
Mineral inclusions in diamonds from the Sputnik kimberlite pipe, Yakutia   总被引:9,自引:0,他引:9  
The Sputnik kimberlite pipe is a small “satellite” of the larger Mir pipe in central Yakutia (Sakha), Russia. Study of 38 large diamonds (0.7-4.9 carats) showed that nine contain inclusions of the eclogitic paragenesis, while the remainder contain inclusions of the peridotitic paragenesis, or of uncertain paragenesis. The peridotitic inclusion suite comprises olivine, enstatite, Cr-diopside, chromite, Cr-pyrope garnet (both lherzolitic and harzburgitic), ilmenite, Ni-rich sulfide and a Ti-Cr-Fe-Mg-Sr-K phase of the lindsleyite-mathiasite (LIMA) series. The eclogitic inclusion suite comprises omphacite, garnet, Ni-poor sulfide, phlogopite and rutile. Peridotitic ilmenite inclusions have high Mg, Cr and Ni contents and high Nb/Zr ratios; they may be related to metasomatic ilmenites known from peridotite xenoliths in kimberlite. Eclogitic phlogopite is intergrown with omphacite, coexists with garnet, and has an unusually high TiO2 content. Comparison with inclusions in diamonds from Mir shows general similarities, but differences in details of trace-element patterns. Large compositional variations among inclusions of one phase (olivine, garnet, chromite) within single diamonds indicate that the chemical environment of diamond crystallisation changed rapidly relative to diamond growth rates in many cases. P-T conditions of formation were calculated from multiphase inclusions and from trace element geothermobarometry of single inclusions. The geotherm at the time of diamond formation was near a 35 mW/m2 conductive model; that is indistinguishable from the Paleozoic geotherm derived by studies of xenoliths and concentrate minerals from Mir. A range of Ni temperatures between garnet inclusions in single diamonds from both Mir and Sputnik suggests that many of the diamonds grew during thermal events affecting a relatively narrow depth range of the lithosphere, within the diamond stability field. The minor differences between inclusions in Mir and Sputnik may reflect lateral heterogeneity in the upper mantle.  相似文献   

18.
连东洋  杨经绥  刘飞  吴魏伟 《地球科学》2019,44(10):3409-3453
金刚石由于其独特的物理化学性质,在经济生产与科学研究中均具有重要价值.金刚石形成于地球大于150 km的深度范围内,是人类可以获得的来自地球深部地幔乃至核幔边界的最直接的样品,因此可以为研究地球深部物质组成和物理化学条件提供重要的素材.金刚石由碳元素组成,还含有微量的杂质元素(如氮、硼、氢、氧等),其中氮和硼元素对于划分金刚石的晶体结构类型发挥着重要的作用.根据金刚石的产出类型,金刚石可以划分为幔源型、超高压变质型、陨石相关型以及蛇绿岩型金刚石.全球约百分之一的幔源型金刚石含有包裹体,对这些包裹体的研究显示,金刚石主要来源于地球150~200 km深度的岩石圈地幔.这些含有包裹体的金刚石中,仅有1%的金刚石来自于地球深部的软流圈、地幔过渡带、下地幔、甚至核幔边界.我国的金刚石产出类型多样,但是,目前仅山东蒙阴、辽宁复县的金伯利岩矿床以及湖南沅水的砂矿具有经济价值.蛇绿岩型金刚石是近年来金刚石研究领域取得的重要进展,该类型金刚石分布在全球多个造山带不同时代、不同构造属性的蛇绿岩地幔橄榄岩和铬铁矿中,被认为是一种新的金刚石的产出类型.相对于其他国家和地区的金刚石的研究,我国的金刚石领域的研究程度相对较低,缺乏对金刚石结构、化学组成以及包裹体组成的系统研究,制约了对我国金刚石成因的认识,限制了我国的金刚石的找矿工作.因此,亟需结合先进的分析手段对我国的金刚石及其围岩做进一步的研究,以期揭示金刚石的形成过程,为金刚石的找矿提供理论基础.   相似文献   

19.
Diamond from metaultramafic rocks of the Mesoarchean (2.96–3.0 Ga) Olondo greenstone belt, located in the western Aldan–Stanovoy shield, has been studied. Diamonds occur in lenses of olivine–serpentine–talc rocks within metaultramafic rocks of intrusive habit, whose composition corresponds to peridotite komatiites. All diamonds from the metaultramafic rocks are crystal fragments 0.3 to 0.5 mm in size. Morphological examination has revealed laminar octahedra, their transitional forms to dodecahedroids, crystals with polycentric faces, and spinel twins. The crystals vary in photoluminescence color: dark blue, green, yellow, red, or albescent. Characteristic absorption bands in crystals point to nitrogen impurities in the form of A and B1 defects and tabular B2 defects. The crystals studied belong to the IaA/B type, common among natural diamonds. The overall nitrogen content varies from < 100 to 3800 ppm. The relative content of nitrogen in B1 centers varies from 0 to 94%, pointing to long stay in the mantle. The carbon isotope ratio in the diamonds, 13C = ? 26‰, is indicative of involvement of subducted crust matter in diamond formation in the Archean.  相似文献   

20.
A xenolith of bimineralic eclogite from the Udachnaya kimberlite pipe provides a snapshot of interaction between mantle rocks and diamond-forming fluids/melts. The major-element composition of the eclogite is similar to that of N-MORB and/or oceanic gabbros, but its trace-element pattern shows the effects of mantle metasomatism, which resulted in diamond formation. The diamonds are clustered in alteration veins that crosscut primary garnet and clinopyroxene. The diamonds contain microinclusions of a fluid/melt dominated by carbonate and KCl. Compared to the worldwide dataset, the microinclusions in these diamonds fall in middle of the range between saline fluids and low-Mg carbonatitic melts. The fluid/melt acted as a metasomatic agent that percolated through ancient eclogitic rocks stored in the mantle. This interaction is consistent with calculated partition coefficients between the rock-forming minerals and diamond-forming fluid/melt, which are similar to experimentally-determined values. Some differences between the calculated and experimental values may be due to the low contents of water and silicates in the chloride-carbonate melt observed in this study, and in particular its high contents of K and LILE. The lack of nitrogen aggregation in the diamonds implies that the diamond-forming metasomatism took place shortly before the eruption of the kimberlite, and that the microinclusions thus represent saline carbonate-rich fluids circulating in the basement of lithospheric mantle (150–170 km depth).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号