首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— The isotopic abundances of Ni in 17 metallic spheroids from Meteor Crater, Arizona, were determined by inductively coupled plasma mass spectrometry (ICP-MS). Sixteen spheroids have normal isotopic abundances. A 17th shows a marginally detectable mass fractionation of 0.40 ± 0.14 %/AMU in favor of the heavier isotopes. The general absence of mass fractionation indicates that open system evaporation caused little loss of Ni. Variable activities of the cosmogenic radionuclides 10Be and 26Al were measured by accelerator mass spectrometry in separate suites of spheroids. Activities of 26Al in most samples and of 10Be in metal cores separated from spheroids indicate that they either (1) come from greater depths in the parent meteoroid than do hand specimens, or (2) lost Al and Be during the process of spheroid formation. One individual spheroid has 10Be and 26Al activities comparable to those of bulk specimens. This result suggests that spheroid formation may occasionally include material from the outermost meter or so of the impactor. Relatively high activities of 10Be, ~3 dpm/kg, in the siliceous shells of Canyon Diablo spheroids very likely have a meteoric origin.  相似文献   

2.
We have studied the synthesis of26Al during combined hydrogen and helium-burning processes in high temperature and density conditions. The possible sites for these processes are believed to be the neutron star surfaces where the density ranges from =104–107 g cm–3 and temperature range from 108–8×108 K. The screening effect which leads to an enhancement of nuclear reaction rates is taken into account whenever necessary. A detailed calculation of the abundances of26Al and27Al isotopes is presented here. Finite amounts of26Al is found to be produced atT=2×108 K and =108 g cm–3 due to these combined reactions. This situation is likely to be realized during the -ray burst events on neutron star surface. The amount of material processed in the burst sources is very little compared to the amount of material processed in Novae or Supernovae. Thus it is suggested that rather than contributing to the overall amount of26Al, -ray bursts are likely to contribute more significantly to the inhomogeneity of26Al distribution in interstellar medium.  相似文献   

3.
The nucleus26Al(1/2 = 7.4 × 105 yr) has long been considered as a possible heat source during the formation of the solar system. Recent experimental work has found no evidence for26Al at the time of final solidification of the meteorites. Due to the short half-life these measurements do not rule out the possibility that26Al was a significant heat source a few million years prior to final solidification. For26Al to be an effective heat source in the early solar system it is necessary for the ratio26Al/Si to be 2×10–7 at the time of a solidification. The nucleosynthetic yields of26Al by silicon burning, carbon burning, and spallation are discussed. It is shown that26Al can be synthesized in carbon and/or silicon-burning supernovae. However, time scales in the early solar system make it more likely that26Al, if present in planets, was synthesized by a proton irradiation in the early solar system. An integrated proton flux >4×1018 cm–2 is shown to be necessary in order for26Al to be a significant heat source. No conclusive evidence has been observed for an irradiation of this magnitude. Therefore, unless such evidence is found, it should be assumed that26Alwas not involved in the formation of the solar system. In addition, the production of26Al in cosmic rays is discussed and it is shown that either resolution of the Al isotopes in the cosmic rays or accurate measurements of the variation with energy of the cosmic ray abundance ratios Al/Si and Mg/Si can be used to determine the age of the cosmic rays, C.R.. Current abundance data are extremely uncertain; however, the trend tends toward values of C.R. 106 yr.Supported in part by the National Science Foundation [GP-19887, GP-28027, GP-27304].  相似文献   

4.
High‐precision bulk aluminum‐magnesium isotope measurements of calcium‐aluminum‐rich inclusions (CAIs) from CV carbonaceous chondrites in several laboratories define a bulk 26Al‐26Mg isochron with an inferred initial 26Al/27Al ratio of approximately 5.25 × 10?5, named the canonical ratio. Nonigneous CV CAIs yield well‐defined internal 26Al‐26Mg isochrons consistent with the canonical value. These observations indicate that the canonical 26Al/27Al ratio records initial Al/Mg fractionation by evaporation and condensation in the CV CAI‐forming region. The internal isochrons of igneous CV CAIs show a range of inferred initial 26Al/27Al ratios, (4.2–5.2) × 10?5, indicating that CAI melting continued for at least 0.2 Ma after formation of their precursors. A similar range of initial 26Al/27Al ratios is also obtained from the internal isochrons of many CAIs (igneous and nonigneous) in other groups of carbonaceous chondrites. Some CAIs and refractory grains (corundum and hibonite) from unmetamorphosed or weakly metamorphosed chondrites, including CVs, are significantly depleted in 26Al. At least some of these refractory objects may have formed prior to injection of 26Al into the protosolar molecular cloud and its subsequent homogenization in the protoplanetary disk. Bulk aluminum and magnesium‐isotope measurements of various types of chondrites plot along the bulk CV CAI isochron, suggesting homogeneous distribution of 26Al and magnesium isotopes in the protoplanetary disk after an epoch of CAI formation. The inferred initial 26Al/27Al ratios of chondrules indicate that most chondrules formed 1–3 Ma after CAIs with the canonical 26Al/27Al ratio.  相似文献   

5.
An 87-gram sample of the Haverö ureilite has been analyzed by non-destructive gamma-ray spectrometry. The results of the measurements, in dpm/kg at time of fall, are: 22Na, 71 ± 3; 26Al, 43 ± 3; 46Sc, 3.4 ± 2.1; 54Mn, 35 ± 6; 60Co, 0.7, 2*** limit. Haverö has 77 ± 14% of the 26Al activity calculated for its chemical composition. When averaged with previously-reported analyses of Goalpara and Novo Urei, ureilites as a class have 74 ± 7% of their expected 26Al activity. The depletion in 26Al could be the coincidental result of identical “shielding” effects in three meteorites of apparently very different preatmospheric sizes. Alternatively, ureilites may have been exposed to a lower cosmic-ray flux than that experienced by most chondrites, probably the result of characteristically different orbits  相似文献   

6.
We investigate the production of26Al during hydrogen burning and its ejection by massive single and binary stars. Effects of convection and rotation are studied. We discuss the importance of RSGs, LBVs and WR stars to the total Galactic26Al production, and the detection probability of the26Al decay in individual objects as P Cygni, Velorum and Carinae.  相似文献   

7.
We review recent results on O‐ and Mg‐isotope compositions of refractory grains (corundum, hibonite) and calcium, aluminum‐rich inclusions (CAIs) from unequilibrated ordinary and carbonaceous chondrites. We show that these refractory objects originated in the presence of nebular gas enriched in 16O to varying degrees relative to the standard mean ocean water value: the Δ17OSMOW value ranges from approximately ?16‰ to ?35‰, and recorded heterogeneous distribution of 26Al in their formation region: the inferred (26Al/27Al)0 ranges from approximately 6.5 × 10?5 to <2 × 10?6. There is no correlation between O‐ and Mg‐isotope compositions of the refractory objects: 26Al‐rich and 26Al‐poor refractory objects have similar O‐isotope compositions. We suggest that 26Al was injected into the 26Al‐poor collapsing protosolar molecular cloud core, possibly by a wind from a neighboring massive star, and was later homogenized in the protoplanetary disk by radial mixing, possibly at the canonical value of 26Al/27Al ratio (approximately 5 × 10?5). The 26Al‐rich and 26Al‐poor refractory grains and inclusions represent different generations of refractory objects, which formed prior to and during the injection and homogenization of 26Al. Thus, the duration of formation of refractory grains and CAIs cannot be inferred from their 26Al‐26Mg systematics, and the canonical (26Al/27Al)0 does not represent the initial abundance of 26Al in the solar system; instead, it may or may not represent the average abundance of 26Al in the fully formed disk. The latter depends on the formation time of CAIs with the canonical 26Al/27Al ratio relative to the timing of complete delivery of stellar 26Al to the solar system, and the degree of its subsequent homogenization in the disk. The injection of material containing 26Al resulted in no observable changes in O‐isotope composition of the solar system. Instead, the variations in O‐isotope compositions between individual CAIs indicate that O‐isotope composition of the CAI‐forming region varied, because of coexisting of 16O‐rich and 16O‐poor nebular reservoirs (gaseous and/or solid) at the birth of the solar system, or because of rapid changes in the O‐isotope compositions of these reservoirs with time, e.g., due to CO self‐shielding in the disk.  相似文献   

8.
There is variability in the Mg isotopic composition that is a reflection of the widespread heterogeneity in the isotopic composition of the elements in the solar system at approximately 100 ppm. Measurements on a single calcium‐aluminum‐rich inclusion (CAI) gave a good correlation of 26Mg/24Mg with 27Al/24Mg, yielding an isochron corresponding to an initial (26Al/27Al)o = (5.27 ± 0.18) × 10?5 and an initial (26Mg/24Mg)o = ?0.127 ± 0.032‰ relative to the standard. This isochron is parallel to that obtained by Jacobsen et al. (2008) , but is distinctively offset. This demonstrates that there are different initial Mg isotopic compositions in different samples with the same 26Al/27Al. No inference about uniformity/heterogeneity of 26Al/27Al on a macro scale can be based on the initial (26Mg/24Mg)o values. Different values of 26Al/27Al for samples representing the same point in time would prove heterogeneity of 26Al/27Al. The important issue is whether the bulk solar inventory of 26Al/27Al was approximately 5 × 10?5 at some point in the early solar system. We discuss ultra refractory phases of solar type oxygen isotope composition with 26Al/27Al from approximately 5 × 10?5 to below 0.2 × 10?5. We argue that the real issues are: intrinsic heterogeneity in the parent cloud; mechanism and timing for the later production of 16O‐poor material; and the relationship to earlier formed 16O‐rich material in the disk. 26Al‐free refractories can be produced at a later time by late infall, if there is an adequate heat source, or from original heterogeneities in the placental molecular cloud from which the solar system formed.  相似文献   

9.
Zinner and Göpel ( 1992 , 2002 ) found clear evidence for the former presence of 26Al in the H4 chondrites Ste. Marguerite and Forest Vale. They assumed that the 26Al‐26Mg systematics of these chondrites date “metamorphic cooling of the H4 parent body.” Plagioclase in these chondrites can have very high Al/Mg ratios and low Mg concentrations, making these ion probe analyses susceptible to ratio bias, which is inversely proportional to the number of counts of the denominator isotope (Ogliore et al. 2011 ). Zinner and Göpel ( 2002 ) used the mean of the ratios to calculate the isotope ratios, which exacerbates this problem. We analyzed the Al/Mg ratios and Mg isotopic compositions of plagioclase grains in thin sections of Ste. Marguerite, Forest Vale, Beaver Creek, and Sena to evaluate the possible influence of ratio bias on the published initial 26Al/27Al ratios for these meteorites. We calculated the isotope ratios using total counts, a less biased method of calculating isotope ratios. The results from our analyses are consistent with those from Zinner and Göpel ( 2002 ), indicating that ratio bias does not significantly affect 26Al‐26Mg results for plagioclase in these chondrites. Ste. Marguerite has a clear isochron with an initial 26Al/27Al ratio indicating that it cooled to below 450 °C 5.2 ± 0.2 Myr after CAIs. The isochrons for Forest Vale and Beaver Creek also show clear evidence that 26Al was alive when they cooled, but the initial 26Al/27Al ratios are not well constrained. Sena does not show evidence that 26Al was alive when it cooled to below the Al‐Mg closure temperature. Given that metallographic cooling rates for Ste. Marguerite, Forest Vale, and Beaver Creek are atypical (>5000 °C/Myr at 500 °C) compared with most H4s, including Sena, which have cooling rates of 10–50 °C/Myr at 500 °C (Scott et al. 2014 ), we conclude that the Al‐Mg systematics for Ste. Marguerite, Forest Vale, and Beaver Creek are the result of impact excavation of these chondrites and cooling at the surface of the parent body, instead of undisturbed cooling at depth in the H chondrite parent body, like many have assumed.  相似文献   

10.
Abstract Using the X‐ray flare observations of low‐mass protostars, we developed numerical simulations of thermal processing and irradiation of protoCAIs in the magnetic reconnection ring within the X‐wind formulation. Observed X‐ray flare luminosities have been used to model various simulation flare characteristics. Several approximations have been made regarding the thermal evolution that involve condensation, evaporation, and coagulation of protoCAIs. Ensembles of refractory cores with ferromagnesian mantles were evolved for irradiation production of the short‐lived nuclides 7Be, 10Be, 41Ca, 36Cl, 26Al, and 53Mn. Three distinct grain‐size distributions of protoCAIs with refractory cores in the ranges of 32μ m‐20 mm, 125 μ m‐16 mm, and 500 μ m‐13 mm were thermally evolved for irradiation. The latter two size distributions were found to result in the accumulation of protoCAIs in the reconnection ring during an X‐wind cycle, and hence can account for the total inventory of 26Al in the early solar system. The canonical value of ?5 × 10‐5 for 26Al/27 Al can be inferred from the impulsive flare simulations by a suitable choice of simulation parameters. However, in most of the remaining simulations, the irradiation of protoCAIs by superflare(s) with Lx > 1032 ergs s‐1 subsequent to their thermal processing in the reconnection ring would be required to explain the experimental abundances of the short‐lived nuclides. These superflares have never been reliably observed in young stellar objects. If they are real, they would be extremely rare. The paucity of these superflares could impose stringent constraints on the validity of the X‐wind irradiation scenario as the source of the short‐lived nuclides.  相似文献   

11.
The nonlinear pseudo-radial mode of oscillation of a rotating magnetic star is studied. It is shown that for a general rotational field, the coupling between magnetic field and rotation tends to reduce the average rotational energy parameterT. This result in a lowering of the maximum pulsation amplitudeq max, which depends on strength of rotation and magnetic field. The configuration tends, therefore, to a new equilibrium state at lower value ofq max. The analytic solution of the pulsation equation for the case ofy=5/3 in the presence of rotation and magnetic field has also been derived in the Appendix.  相似文献   

12.
Abstract– We model the heating of a primordial planetesimal by decay of the short‐lived radionuclides 26Al and 60Fe to determine (1) the time scale on which melting will occur, (2) the minimum size of a body that will produce silicate melt and differentiate, (3) the migration rate of molten material within the interior, and (4) the thermal consequences of the transport of 26Al in partial melt. Our models incorporate results from previous studies of planetary differentiation and are constrained by petrologic (i.e., grain‐size distributions), isotopic (e.g., 207Pb‐206Pb and 182Hf‐182W ages), and mineralogical properties of differentiated achondrites. We show that formation of a basaltic crust via melt percolation was limited by the formation time of the body, matrix grain size, and viscosity of the melt. We show that low viscosity (<1 Pa · s) silicate melt can buoyantly migrate on a time scale comparable to the mean life of 26Al. The equilibrium partitioning of Al into silicate partial melt and the migration of that melt acts to dampen internal temperatures. However, subsequent heating from the decay of 60Fe generated melt fractions in excess of 50%, thus completing differentiation for bodies that accreted within 2 Myr of CAI formation (i.e., the onset of isotopic decay). Migration and concentration of 26Al into a crust results in remelting of that crust for accretion times less than 2 Myr and for bodies >100 km in size. Differentiation would be most likely for planetesimals larger than 20 km in diameter that accreted within approximately 2.7 Myr of CAI formation.  相似文献   

13.
Abstract— We performed a systematic high‐precision secondary ion mass spectrometry 26Al‐26Mg isotopic study for 11 ferromagnesian chondrules from the highly unequilibrated ordinary chondrite Bishunpur (LL3.1). The chondrules are porphyritic and contain various amounts of olivine and pyroxene and interstitial plagioclase and/or glass. The chemical compositions of the chondrules vary from FeO‐poor to FeO‐rich. Eight chondrules show resolvable 26Mg excesses with a maximum δ26Mg of ?1% in two chondrules. The initial 26Al/27Al ratios inferred for these chondrules range between (2.28 ± 0.73) × 10?5 to (0.45 ± 0.21) × 10?5. Assuming a homogeneous distribution of Al isotopes in the early solar system, this range corresponds to ages relative to CAIs between 0.7 ± 0.2 Ma and 2.4+0.7?0.4 Ma. The inferred total span of the chondrule formation ages is at least 1 Ma, which is too long to form chondrules by the X‐wind. The initial 26Al/27Al ratios of the chondrules are found to correlate with the proportion of olivine to pyroxene suggesting that olivine‐rich chondrules formed earlier than pyroxene‐rich chondrules. Though we do not have a completely satisfactory explanation of this correlation we tentatively interpret it as a result of evaporative loss of Si from earlier generations of chondrules followed by addition of Si to the precursors of later generation chondrules.  相似文献   

14.
We present a computer model calculation for the racemization of a possible excess of amino acids in the icy fraction of comet nuclei bring about by ionizing radiation released during the decay of26Al,40K,235U,238U and232Th. The model takes into account a total of 110 chemical reactions, of which 91 are needed to explain the radiation chemical processing of the major constituents of comet nuclei (Navarro-Gonzálezet al., 1992) and 19 are necessary to simulate the radiolysis of glycine/alanine mixtures in aqueous solutions (Navarro-Gonzálezet al., 1994 and 1996). It is predicted that an enantiomeric excess of alanine would not be destroyed by radioracemization during the decay of embedded radionuclides. Nevertheless, this enantiomeric excess could be attenuated by the formation of racemic amino acids in the interior of comet nuclei as a result of the radiation-induced polymerization of HCN.  相似文献   

15.
Abstract— The presence of several short-lived (now extinct) radionuclides in the early solar system demands that they were synthesized and added to preexisting solar system materials shortly (on a time scale on the order of the relevant radionuclide lifetime) before formation of solar system solids. For diverse reasons, it is often suggested that the solar system distributions of these radionuclides were radically heterogeneous, perhaps because of the late addition. Much attention has been given to the astrophysical circumstances that might govern the synthesis and distribution of these short-lived radionuclides, but comparatively little attention has been devoted to the distribution of cosynthesized isotopes. The focus of this paper is a systematic, quantitative evaluation of the collateral consequences in stable and long-lived isotopes that might be expected if short-lived radionuclides, in particular 26Al or 53Mn, were injected at their canonical levels and inhomogeneously distributed in the early solar system. We mix model massive star yields of Meyer et al. (1995) and Woosley and Weaver (1995) into a reservoir of cosmic composition, as tabulated by Anders and Grevesse (1989). To mitigate the effects of systematic deviations that may be present in these mixtures due to uncertainties in model stellar yields, we follow Timmes and Clayton (1996) and also mix into a “renormalized” proxy solar system composition computed from a galactic chemical evolution model based primarily on the stellar yields of Woosley and Weaver (1995). The results are very unfavorable to the likelihood of heterogeneously distributed 26Al derived from supernova ejecta. If a massive star is invoked to account for 26Al, its ejecta must have been rather uniformly distributed, as inferred from the lack of measured collateral anomalies in several elements, notably Ca, Cr, and Ni. Conversely, if 26Al were indeed radically heterogeneously distributed, some other nucleosynthetic source more efficient at producing 26Al is required. In principle, a similar statement applies to 53Mn, but the situation is more complicated. The inferred anomalies at 53Cr will depend not only on how much 53Mn is added by a heterogeneous component, but also more sensitively on the contributions to the associated stable nuclides, 53Cr, 52Cr, and 50Cr. Consideration of predicted collateral anomalies provides no direct support for heterogeneously distributed supernova-derived 53Mn, but the required quantity of supernova contribution, and thus also the collateral anomalies, are much less for 53Mn than for 26Al. With allowance for model calculation uncertainties, it could be argued that anomalies collateral to heterogeneous 53Mn might be small enough to have evaded detection.  相似文献   

16.
Abstract– Hibonite‐bearing Ca,Al‐rich inclusions (CAIs) usually occur in CM and CH chondrites and possess petrographic and isotopic characteristics distinctive from other typical CAIs. Despite their highly refractory nature, most hibonite‐bearing CAIs have little or no 26Mg excess (the decay product of 26Al), but do show wide variations of Ca and Ti isotopic anomalies. A few spinel‐hibonite spherules preserve evidence of live 26Al with an inferred 26Al/27Al close to the canonical value. The bimodal distribution of 26Al abundances in hibonite‐bearing CAIs has inspired several interpretations regarding the origin of short‐lived nuclides and the evolution of the solar nebula. Herein we show that hibonite‐bearing CAIs from Ningqiang, an ungrouped carbonaceous chondrite, also provide evidence for a bimodal distribution of 26Al. Two hibonite aggregates and two hibonite‐pyroxene spherules show no 26Mg excesses, corresponding to inferred 26Al/27Al < 8 × 10?6. Two hibonite‐melilite spherules are indistinguishable from each other in terms of chemistry and mineralogy but have different Mg isotopic compositions. Hibonite and melilite in one of them display positive 26Mg excesses (up to 25‰) that are correlated with Al/Mg with an inferred 26Al/27Al of (5.5 ± 0.6) × 10?5. The other one contains normal Mg isotopes with an inferred 26Al/27Al < 3.4 × 10?6. Hibonite in a hibonite‐spinel fragment displays large 26Mg excesses (up to 38‰) that correlate with Al/Mg, with an inferred 26Al/27Al of (4.5 ± 0.8) × 10?5. Prolonged formation duration and thermal alteration of hibonite‐bearing CAIs seem to be inconsistent with petrological and isotopic observations of Ningqiang. Our results support the theory of formation of 26Al‐free/poor hibonite‐bearing CAIs prior to the injection of 26Al into the solar nebula from a nearby stellar source.  相似文献   

17.
Abstract— A compilation of over 1500 Mg-isotopic analyses of Al-rich material from primitive solar system matter (meteorites) shows clearly that 26Al existed live in the early Solar System. Excesses of 26Mg observed in refractory inclusions are not the result of mixing of “fossil” interstellar 26Mg with normal solar system Mg. Some material was present that contained little or no 26Al, but it was a minor component of solar system matter in the region where CV3 and CO3 carbonaceous chondrites accreted and probably was a minor component in the accretion regions of CM chondrites as well. Data for other chondrite groups are too scanty to make similar statements. The implied long individual nebular histories of CAIs and the apparent gap of one or more million years between the start of CAI formation and the start of chondrule formation require the action of some nebular mechanism that prevented the CAIs from drifting into the Sun. Deciding whether 26Al was or was not the agent of heating that caused melting in the achondrite parent bodies hinges less on its widespread abundance in the nebula than it does on the timing of planetesimal accretion relative to the formation of the CAIs.  相似文献   

18.
Abstract— We measured 36Cl‐36S and 26Al‐26Mg systematics and O isotopes of secondary phases in a moderately altered type B2 CAI (CAI#2) from the Allende CV3 chondrite. CAI#2 has two distinct alteration domains: the anorthite‐grossular (An‐Grs) domain that mostly consists of anorthite and grossular, and the Na‐rich domain that mostly consists of sodalite, anorthite, and Fe‐bearing phases. Large 36S excesses (up to ~400‰) corresponding to an initial 36Cl/35Cl ratio of (1.4 ± 0.3) × 10?6 were observed in sodalite of the Na‐rich domain, but no resolvable 26Mg excesses were observed in anorthite and sodalite of the Na‐rich domain (the initial 26Al/27Al ratio < 4.4 × 10?7). If we assume that the 36Cl‐36S and the 26Al‐26Mg systematics were closed simultaneously, the 36Cl/35Cl ratio would have to be on the order of ~10?2 when CAIs were formed. In contrast to sodalite in Na‐rich domain, significant 26Mg excesses (up to ~35‰) corresponding to an initial 26Al/27Al ratio of (1.2 ± 0.2) × 10?5 were identified in anorthite of the An‐Grs domain. The 26Al‐26Mg systematics of secondary phases in CAI#2 suggest that CAIs experienced multiple alteration events. Some of the alteration processes occurred while 36Cl (half‐life is 0.3 Myr) and 26Al (half‐life is 0.72 Myr) were still alive, whereas others took place much later. Assuming that 26Al was homogeneously distributed in the solar nebula, our study implies that alteration of CAIs occurred as early as within 1.5 Myr of CAI formation and as late as 5.7 Myr after.  相似文献   

19.
Abstract– We report Mg‐Al and Ca‐Ti isotopic data for meteoritic nanodiamonds separated from the Allende CV3 and Murchison CM2 meteorites. The goal of this study was to search for excesses in 26Mg and 44Ca, which can be attributed to the in situ decay of radioactive and now extinct 26Al and 44Ti, respectively. Previous work on presolar SiC and graphite had shown that 26Al/27Al and 44Ti/48Ti ratios in presolar grains can be used to discriminate between different types of stellar sources. Aluminum and Ti concentrations are low in the meteoritic nanodiamonds of this study. Murchison nanodiamonds have higher Al and Ti concentrations than the Allende nanodiamonds. This can be attributed to contamination and the presence of presolar SiC in the Murchison nanodiamond samples. 26Mg/24Mg and 44Ca/40Ca ratios are close to normal in Allende nanodiamonds with upper limits on the initial 26Al/27Al and 44Ti/48Ti ratios of approximately 1 × 10?3. These ratios are factors of 10–1000 and, respectively, 1–1000 lower than those of presolar SiC and graphite grains from supernovae. The 26Al/27Al and 44Ti/48Ti data for nanodiamonds are compatible with an asymptotic giant branch star or solar system origin, but not with a supernova origin of a major fraction of meteoritic nanodiamonds. The latter possibility cannot be excluded, though, as the diamond separates may contain significant amounts of contaminating Al and Ti, which would lower the inferred 26Al/27Al and 44Ti/48Ti ratios considerably.  相似文献   

20.
Abstract– We report measurements of cosmogenic nuclides in up to 11 bulk samples from various depths in Norton County. The activities of 36Cl, 41Ca, 26Al, and 10Be were measured by accelerator mass spectrometry; the concentrations of the stable isotopes of He, Ne, Ar, and Sm were measured by electron and thermal ionization mass spectrometry, respectively. Production rates for the nuclides were modeled using the LAHET and the Monte Carlo N‐Particle codes. Assuming a one‐stage irradiation of a meteoroid with a pre‐atmospheric radius of approximately 50 cm, the model satisfactorily reproduces the depth profiles of 10Be, 26Al, and 53Mn (<6%) but overestimates the 41Ca concentrations by about 20%. 3He, 21Ne, and 26Al data give a one‐stage cosmic‐ray exposure (CRE) age of 115 Ma. Argon‐36 released at intermediate temperatures, 36Arn, is attributed to production by thermal neutrons. From the values of 36Arn, an assumed average Cl concentration of 4 ppm, and a CRE age of 115 Ma, we estimate thermal neutron fluences of 1–4 × 1016 neutrons cm?2. We infer comparable values from ε149Sm and ε150Sm. Values calculated from 41Ca and a CRE age of 115 Ma, 0.2–1.4 × 1016 neutrons cm?2, are lower by a factor of approximately 2.5, indicating that nearly half of the 149Sm captures occurred earlier. One possible irradiation history places the center of proto‐Norton County at a depth of 88 cm in a large body for 140 Ma prior to its liberation as a meteoroid with a radius of 50 cm and further CRE for 100 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号