首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Investigation of damping of gravity-capillary waves (GCWs) in the presence of turbulence is a classical hydrodynamic problem which has important geophysical applications, one of which is related with the problem of forming a radar and optical image of a ship wake on wavy water surface. In this work a new method for the laboratory study of surface wave damping in turbulized liquid is described and the results are presented. The damping of standing GCWs by turbulence on the water surface in a tank mounted on a vibration table is studied. GCWs and turbulence are excited using a two-frequency mode of vibration table oscillations. A high-frequency small amplitude signal is used for parametric GCW excitation; a low-frequency large amplitude signal is used for generating turbulence due to water flowing through a fixed perforated grid submerged into the tank. The coefficient of GCW damping is determined by measured threshold of parametric excitation of the waves; turbulence characteristics are determined by the PIV and PTV techniques. Dependences of GCW damping coefficients on their frequency at different turbulence intensities are obtained, estimates for turbulent viscosity are presented, and a comparison with empirical models proposed earlier is performed.  相似文献   

2.
The maximum likelihood estimator of source amplitude, bearing, and frequency for a moving towed line array of equispaced elements is discussed. A two-dimensional search in equivalent phase and frequency variables is found to yield the best estimates of the unknown parameters. Application to a physical experiment and comparison with the Cramer-Rao bound verify the unity of the approach  相似文献   

3.
From a designer viewpoint, a parametric array should not appear different from any other type of acoustic transducer and should be described by a limited set of design equations together with their range of validity. In this paper, these design equations are stated and discussed. They are used to optimize the acoustic parameters of an underwater communication system using parametric transduction and to evaluate its performance in terms of signal-to-noise ratio and data-rate limits as a function of transmission range. It turns out that, for a maximum data transmission rate at a given range, there is a set of optimum design parameters which is a function of the array size only. This means that, once given an operational range, the primary frequency, the electrical power, the maximum acoustic source level, and the directionality of the transducer can be deduced directly from the array diameter  相似文献   

4.
An overview of matched field methods in ocean acoustics   总被引:4,自引:0,他引:4  
A short historical overview of matched-field processing (MFP) is followed by background material in both ocean acoustics and array processing needed for MFP. Specific algorithms involving both quadratic and adaptive methods are then introduced. The results of mismatch studies and several algorithms designed to be relatively robust against mismatch are discussed. The use of simulated MFP for range, depth and bearing location is examined, using data from a towed array that has been tilted to produce an effective vertical aperture. Several experiments using MFP are reviewed. One successfully demonstrated MFP at megameter ranges; this has important consequences for experiments in global tomography. Some unique applications of MFP, including how it can exploit ocean inhomogeneities and make tomographic measurements of environmental parameters, are considered  相似文献   

5.
It is extremely difficult to determine shallow ocean bottom properties (such as sediment layer thicknesses, densities, and sound speeds). However, when acoustic propagation is affected by such environmental parameters, it becomes possible to use acoustic energy as a probe to estimate them. Matched-field processing (MFP) which relies on both field amplitude and phase can be used as a basis for the inversion of experimental data to estimate bottom properties. Recent inversion efforts applied to a data set collected in October 1993 in the Mediterranean Sea north of Elba produce major improvements in MFP power, i.e., in matching the measured field by means of a model using environmental parameters as inputs, even using the high-resolution minimum variance (MV) processor that is notoriously sensitive and usually results in very low values. The inversion method applied to this data set estimates water depth, sediment thickness, density, and a linear sound-speed profile for the first layer, density and a linear sound-speed profile for a second layer, constant sound speed for the underlying half space, array depth, and source range and depth. When the inversion technique allows for the array deformations in range as additional parameters (to be estimated within fractions of a wavelength, e.g., 0.1 m), the MFP MV peak value for the Med data at 100 Hz can increase from 0.48 (using improved estimates of environmental parameters and assuming a vertical line array) to 0.68 (using improved estimates of environmental parameters PLUS improved phone coordinates). The ideal maximum value would be 1.00 (which is achieved for the less sensitive Linear processor). However, many questions remain concerning the reliability of these inversion results and of inversion methods in general  相似文献   

6.
7.
A submerged acoustic source radiates narrowband Gaussian noise. Its signal propagates to a remote, large aperture vertical array over a multipath channel whose characteristics may or may not be fully known. The primary concern of this study is the accuracy of source depth estimates obtainable from the array output. Cramer-Rao bounds for the depth estimate are calculated. When the velocity profile is known exactly, the value of the bound is quite insensitive to the precise form of the velocity profile. A bound calculated from a constant velocity profile yields an excellent approximation for many situations likely to be encountered in practice. Introduction of an unknown parameter into the velocity profile has little effect on the Cramer-Rao bound for depth. However, a maximum likelihood estimator of depth working with an inaccurate value of the unknown parameter performs poorly. To obtain satisfactory performance, one must estimate the unknown parameters along with the source depth. Simulations demonstrate the success of this approach  相似文献   

8.
Conventional bearing estimation procedures employ planewave steering vectors as replicas of the true field and seek to resolve in angle by maximizing a power function representing the agreement between actual and replica fields. For vertical arrays in oceanic waveguides the received field depends on range and depth, and it is natural to replace the "look-direction" (theta) by a "look-position" (r, z). Thus an environmental model is constructed by specifying ocean depth, sound speed profile, bottom properties, etc., and a propagation model is employed to construct a replica of the field that would be received on the array for a particular source position. The usual estimators (e.g., Bartlett or maximum likelihood) are then used to gauge the agreement between actual and replica fields and the true source position is identified as that position where the agreement is best. The performance of this kind of matched-field processing is strongly affected by the environment. In particular, we demonstrate through simulations that for a deep-water Pacific environment dominated by waterborne paths, ambiguities or sidelobes are associated with convergence zones. In the absence of mismatch between replica and actual fields we find that a 16-element array performs extremely well in low-frequency regimes. Mismatch caused by uncertainties in phone positions, bottom parameters, ocean sound speed, surface and bottom roughness, etc., causes degradation in localization performance. The impact of some of these effects on conventional and maximum likelihood estimators is examined through simulation.  相似文献   

9.
This is the last of a series of three papers studying the theory of passive systems. The model assumes that i) the narrow-band signals are transmitted through a Rayleigh channel, ii) the observing array is geometrically linear, and iii) the source motion is deterministic. Ranging techniques based on synchronized measurements of the travel time delay are precluded by the incoherent phase model considered. The paper explores alternative methods that process the phase modulations induced on the signal by the extended geometry and relative dynamics. The present work applies maximum likelihood theory to design the receiver, being concerned with the global identifiability of all parameters defining the relative source/receiver geometry and dynamics. The emphasis is placed on the passive range global acquisition. In contradistinction with the previous papers, where the time stationarity (Part I) or the space homogeneity (Part II) lead to a one-dimensional processor, here the receiver involves processing over both domains. The paper considers the issues of space/time factorability and coupling arising in nonhomogeneous passive tracking. The cross coupling, resulting in more complex filters, improves the receiver acquisition capability. Resorting to Taylor's series type studies, the paper quantifies these improvements, as well as the receiver's mean square error performance, in terms of intuitively satisfying analytical expressions.  相似文献   

10.
A method for estimating the amplitude and time-delay parameters for signals that can be represented as a sum of a number of scaled and delayed replicas of a known signal in the presence of nonwhite Gaussian noise is presented. The method is based upon the principles of maximum likelihood (ML) estimation, but at certain key points simplifying assumptions are made that result in a computationally practical estimation scheme. The results are compared with other related results in the literature. Simulation results are presented which support the methods derived.  相似文献   

11.
The sensitivity of the suspended sediment flux is tested with respect to rapid changes in bed-level across the surf zone of a sandy beach. The suspended flux was computed using a fixed instrument array, but bed-level changes due to ripple migration caused the instrument elevations to be significantly changed during the course of the experiment. The nominal elevations of the instruments were adjusted during data processing (using the MOBS array) to maintain a fixed elevation with respect to bed-level changes. The resultant suspended sediment concentrations and fluxes were significantly different from the unadjusted data, and for the present data set O(35%) less when averaged over the tide. The maximum difference between adjusted and unadjusted fluxes may be O(260%). The results indicate that changes in bed-level, particularly those due to bedform migration, must be accounted for when processing OBS data if reliable estimates of suspended sediment transport are to be obtained in the field.  相似文献   

12.
An experiment was performed to measure sediment penetrating acoustic waves to test a model of acoustic propagation, which is based on Biot's theory. Independent geophysical measurements provided model input parameters. A parametric sound source was used to project a narrow beam pulse into a silty sand sediment at a shallow grazing angle. The sediment acoustic waves were measured by an array of buried sensors and processed to measure wave directions and speeds. Two acoustic waves were observed, corresponding to the fast and slow waves predicted by Biot's theory. Discrepancies between model predictions and measured acoustic waves were examined, deficiencies in the model identified, and strategies for improvement postulated. The permeability and bulk modulus of the solid frame were of particular interest  相似文献   

13.
Accurate knowledge of array shape is essential for carrying out full wavefield (matched-field) processing. Direct approaches to array element localization (AEL) include both nonacoustic (tilt-heading sensors) and acoustic (high-frequency, transponder-based navigation) methods. The low-frequency signature emitted from a distant source also can be used in an inversion approach to determine array shape. The focus of this paper is on a comparison of the array shape results from these three different methods using data from a 120-m aperture vertical array deployed during SWellEx-3 (Shallow Water evaluation cell Experiment 3). Located 2 m above the shallowest array element was a self-recording package equipped with depth, tilt, and direction-of-tilt sensors, thereby permitting AEL to be performed non-acoustically. Direct AEL also was performed acoustically by making use of transponder pings (in the vicinity of 12 kHz) received by high-frequency hydrophones spaced every 7.5 m along the vertical array. In addition to these direct approaches, AEL was carried out using an inversion technique where matched-field processing was performed on a multitone (50-200 Hz), acoustic source at various ranges and azimuths from the array. As shown, the time-evolving array shape estimates generated by all three AEL methods provide a consistent picture of array motion throughout the 6-h period analyzed  相似文献   

14.
在系统开展海洋区域地质调查的过程中,荷兰广泛使用了各种地球物理调查方法,并在方法选用、测线部署、资料处理和图件编制等方面有许多独到之处;对中荷两国的做法进行了系统的比较;对今后在我国海洋区域地质调查中如何开展地球物理调查工作提出了建议。  相似文献   

15.
A vertical transect with 4 km length was established for the macrofaunal survey on the Chokchon macrotidal flat in Kyeonggi Bay, Incheon, Korea, 1994. Tidal elevation (m) and sediment mean grain size (φ) were inversely predicted by the transfer functions from the faunal assemblages. Three methods: weighted average using optimum value (WA), tolerance weighted version of the weighted average (WAT ) and maximum likelihood calibration (MLC) were employed. Estimates of tidal elevation and mean grain size obtained by using the three different methods showed positively corresponding trends with the observations. The estimates of MLC were found to have the minimum value of sum of squares due to errors (SSE). When applied to the previous data (1990~1992), each of three inference models exhibited high predictive power. This result implied there are visible relationships between species composition and faunas’ critical environmental factors. Although a potential significance of the two major abiotic factors was re-affirmed, a weak tendency of biological interaction was detected from faunal distribution patterns across the flat. In comparison to the spatial and temporal patterns of the estimates, it was suggested that sediment characteristics were the primary factors regulating the distribution of macrofaunal assemblages, rather than tidal elevation, and the species composition may be sensitively determined by minute changes in substratum properties on a tidal flat.  相似文献   

16.
近岸带波高与周期分布的核密度估计   总被引:1,自引:0,他引:1       下载免费PDF全文
使用双变量核密度估计方法描述近岸带波高和周期联合概率密度分布与波高、周期边缘密度分布。结果表明,核密度估计方法比通常使用的参数模式能更好地显示出具有多峰的波要素统计结构,核密度估计的波周期带宽系数能反映波浪谱的某些信息,尤其以波周期带宽和谱宽参量具有良好的线性关系。  相似文献   

17.
海水中铜离子对氨基酸—粘土体系液—固界面作用的影响   总被引:2,自引:0,他引:2  
用E(%)-pH曲线法实验研究了海水中三元表面络合物的形成和构型。通过海水中金属铜离子对氨基酸—粘土界面作用的E(%)-pH曲线影响的研究,发现曲线具有“单向上移”的规律,表明甘氨酸、天冬氨酸—铜离子—高岭土三元体系在实验条件下主要形成(Ⅰ)型三元表面络合物即≡S—O—M—L。该系列论文另一部分已研究氨基酸对金属离子—粘土体系的影响,证明可形成(Ⅱ)型三元表面络合物即≡S—O—L—M。据此可以推测(Ⅰ)型和(Ⅱ)型在某一条件下可以转变构型,其中间构型可能即是Leckie等提出的环形三元表面络合物。  相似文献   

18.
采用Longuet-Higgins形式的方向分布函数作为已知谱,用模拟数据检验了作者是所提出的估计方法EEV合理性,并与扩展最大似然方法(EMLM)及Lygre等(1986)的最在熵方法(MEM)作了比较,在验证和比较中,使用纵摇-横摇浮标,星形阵形和CERC阵列作为复合阵列,计算表明,EEV优于EMLM和EME。最后将EEV和EMLM两种方法应用于仪器阵列的外海观测数据,得到了比较合理的海浪方向  相似文献   

19.
This paper applies a Bayesian formulation to range-dependent geoacoustic inverse problems. Two inversion methods, a hybrid optimization algorithm and a Bayesian sampling algorithm, are applied to some of the 2001 Inversion Techniques Workshop benchmark data. The hybrid inversion combines the local (gradient-based) method of downhill simplex with the global search method of simulated annealing in an adaptive algorithm. The Bayesian inversion algorithm uses a Gibbs sampler to estimate properties of the posterior probability density, such as mean and maximum a posteriori parameter estimates, marginal probability distributions, highest-probability density intervals, and the model covariance matrix. The methods are applied to noise-free and noisy benchmark data from shallow ocean environments with range-dependent geophysical and geometric properties. An under-parameterized approach is applied to determine the optimal model parameterization consistent with the resolving power of the acoustic data. The Bayesian inversion method provides a complete solution including quantitative uncertainty estimates and correlations, while the hybrid inversion method provides parameter estimates in a fraction of the computation time.  相似文献   

20.
The paper discusses an inversion method that allows the rapid determination of in situ geoacoustic properties of the ocean bottom without resorting to large acoustic receiving apertures, synthetic or real. The method is based on broad-band waterborne measurements and modeling of the waveguide impulse response between a controlled source and a single hydrophone. Results from Yellow Shark '94 experiments in Mediterranean shallow waters using single elements of a vertical array are reviewed, inversion of the bottom parameters is performed with an objective function that includes the processing gain of a model-based matched filter (MBMF) receiver relative to the conventional matched filter. The MBMF reference signals incorporate waveguide Green's functions for known geometry and water column acoustic model and hypothesized bottom geoacoustic models. The experimental inversion results demonstrated that, even for complex environmental conditions, a single transmission of a broad-band (200-800 Hz) coded signal received at a single depth and a few hundred forward modeling runs were sufficient to correctly resolve the bottom features. These included the sound speed profile, attenuation, density, and thickness of the top clay sediment layer, and sound speed and attenuation of the silty clay bottom. Exhaustive parameter search proved unequivocally the low-ambiguity and high-resolution properties of the MBMF-derived objective. The single-hydrophone results compare well with those obtained under identical conditions from matched-field processing of multitone pressure fields sampled on the vertical array. Both of these results agree with expectations from geophysical ground truth. The MBMF has been applied successfully to a field of advanced drifting acoustic buoys on the Western Sicilian shelf, demonstrating the general applicability of the inversion method presented  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号