首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The Sardinia-Corsica batholith was structured in the late stage of the Hercynian orogenesis. The granitoids intrude mainly metamorphic complexes grading from zeolite up to amphibolite facies. The batholith is heterogeneous consisting of complexes with different affinity, chemical composition, age and degree of deformation. The present paper reports major-and trace-element data for selected samples coming only from Sardinian outcrops.

The rocks range from gabbro-diorite to tonalite, monzogranite and leucogranite. The two latter lithologies are the most abundant, gabbrodiorites and tonalites occurring in minor amounts and mainly in northern-central Sardinia. Over 75% of the granitoids contain microgranular enclaves of magmatic origin. The age of the rocks falls in the interval between 307 and 281 Ma. Sr isotope initial ratios are high, ranging between 0.7083 and 0.7107.

REE, Rb, Sr, Ba, Zr, Th, Ta, Hf, Co and Sc abundances were determined on selected samples. All elements follow three types of trends vs. CaO, which is used as differentiation index. Two trends show positive and negative correlations while the third one shows a bell-shaped pattern. LREE have different degrees of enrichment (La = 20−120× ch) and HREE show variable fractionation with prevailing (Tb/Yb)n<1. The two peraluminous samples have very different geochemical characteristics.

From the geochemical point of view all the rocks coming from the Sardinian segment of the batholith display a typical calc-alkaline chemical character showing the imprint of both “normal and mature” continental arc geodynamic environments.

Geochemical trends suggest some petrogenetic constraints. The complete sequence of differentiation can be neither the product of crystal/liquid fractionation processes starting from a single basic parent magma nor the product of an AFC process. On the contrary, a two-stage model can be proposed. In the first stage a mafic melt of subcrustal origin interacted with monzogranitic magmas derived from 25–35% degree of melting of a crustal biotite amphibolitic source. Such a mixing process acted together with a crystal/liquid fractionation process to give tonalites and granodiorites. In the second stage lesser degrees of melting of the same crustal source could give the late-stage leucogranitic masses.

A possible scenario, able to take into account field and geochemical data, can be suggested for the genesis of this suite and we propose it as a working model for future investigations.  相似文献   


2.
The production rate of 38Ar in meteorites—P(38)—has been determined, as a function of the sample's chemical composition, from 81Kr-Kr exposure ages of four eucrite falls. The cosmogenic 78Kr/83Kr ratio is used to estimate the shielding dependence of P(38).

From the “true” 38Ar exposure ages and the apparent 81Kr-Kr exposure ages of nine Antarctic eucrite finds, terrestrial ages are calculated. They range from about 3 × 105 a (Pecora Escarpment 82502) to very recent falls (Thiel Mountains 82502). Polymict eucrites from the Allan Hills (A78132, A79017 and A81009) have within the limits of error the same exposure age (15.2 × 106 a) and the same terrestrial age (1.1 × 105 a). This is taken as strong evidence that these meteorites are fragments of the same fall. A similar case are the Elephant Moraine polymict eucrites A79005, A79006 and 82600 with an exposure age of 26 × 106 a and a terrestrial age of 1.8 × 105 a. EETA79004 may be different from this group because its exposure age and terrestrial age are 21 × 106 a and 2.5 × 105 a, respectively.

The distribution of terrestrial ages of Allan Hills meteorites is discussed. Meteorites from this blue ice field have two sources: Directly deposited falls and meteorites transported to the Allan Hills inside the moving Antarctic ice sheet. During the surface residence time meteorites decompose due to weathering processes. The weathering “half-life” is about 1.6 × 105 a. From the different age distributions of Allan Hills and Yamato meteorites, it is concluded that meteorite concentrations of different Antarctic ice fields need different explanations.  相似文献   


3.
A suite of spinel peridotite xenoliths from the Shavaryn-Tsaram volcano, Tariat Depression (central Mongolia) represents (for major elements) fertile to moderately depleted subcontinental lithosphere. Part of the variation of moderately incompatible trace elements is ascribed to small-scale mineralogical heterogeneities caused by processes like metamorphic differentiation accompanying partial melting or by mechanical segregation. Several bulk lherzolites show a high relative enrichment of the LREE over HREE which can be traced to a grain boundary phase genetically linked to, but not directly representing, the host basanitoid. In Nd and Sr isotopic composition the anhydrous peridotites cover the field of oceanic basalts (143Nd/144Nd = 0.5128-0.5133, 87Sr/86Sr = 0.7020-0.7039). In contrast, a phlogopite peridotite has a high 87Sr/86Sr and also a less radiogenic 143Nd/144Nd. The majority of “dry” lherzolites have Nd and Sr “bulk earth” model ages around 2 Ga. They may be interpreted as dating a small-degree (< ˜5%) melting event which would not have severely affected the major element chemistry of the xenoliths. The ˜2 Ga model ages may indicate a genetic relation between the lithospheric mantle and the stabilization of the continental crust in Mongolia at that time. Alternatively, if the peridotites are unrelated to the overlying crust, they may be pieces of a young asthenospheric diapir. Coexisting ortho-and clinopyroxenes are in Nd isotopic equilibrium for Iherzolites having equilibrated at temperatures around 950°C at mantle pressures. Disequilibrium melting models of mantle rocks are not supported by our data because for medium to coarse-grained mantle spinel peridotite the Rb-Sr and Sm-Nd isotopic systems close with respect to diffusional exchange at temperatures around 900°C, as indicated by recently published diffusion experiment results and supported by our data.  相似文献   

4.
Three types of fluid inclusions have been identified in olivine porphyroclasts in the spinel harzburgite and lherzolite xenoliths from Tenerife: pure CO2 (Type A); carbonate-rich CO2–SO2 mixtures (Type B); and polyphase inclusions dominated by silicate glass±fluid±sp±silicate±sulfide±carbonate (Type C). Type A inclusions commonly exhibit a “coating” (a few microns thick) consisting of an aggregate of a platy, hydrous Mg–Fe–Si phase, most likely talc, together with very small amounts of halite, dolomite and other phases. Larger crystals (e.g. (Na,K)Cl, dolomite, spinel, sulfide and phlogopite) may be found on either side of the “coating”, towards the wall of the host mineral or towards the inclusion center. These different fluids were formed through the immiscible separations and fluid–wall-rock reactions from a common, volatile-rich, siliceous, alkaline carbonatite melt infiltrating the upper mantle beneath the Tenerife. First, the original siliceous carbonatite melt is separated from a mixed CO2–H2O–NaCl fluid and a silicate/silicocarbonatite melt (preserved in Type A inclusions). The reaction of the carbonaceous silicate melt with the wall-rock minerals gave rise to large poikilitic orthopyroxene and clinopyroxene grains, and smaller neoblasts. During the metasomatic processes, the consumption of the silicate part of the melt produced carbonate-enriched Type B CO2–SO2 fluids which were trapped in exsolved orthopyroxene porphyroclasts. At the later stages, the interstitial silicate/silicocarbonatite fluids were trapped as Type C inclusions. At a temperature above 650 °C, the mixed CO2–H2O–NaCl fluid inside the Type A inclusions were separated into CO2-rich fluid and H2O–NaCl brine. At T<650 °C, the residual silicate melt reacted with the host olivine, forming a reaction rim or “coating” along the inclusion walls consisting of talc (or possibly serpentine) together with minute crystals of NaCl, KCl, carbonates and sulfides, leaving a residual CO2 fluid. The homogenization temperatures of +2 to +25 °C obtained from the Type A CO2 inclusions reflect the densities of the residual CO2 after its reactions with the olivine host, and are unrelated to the initial fluid density or the external pressure at the time of trapping. The latter are restricted by the estimated crystallization temperatures of 1000–1200 °C, and the spinel lherzolite phase assemblage of the xenolith, which is 0.7–1.7 GPa.  相似文献   

5.
This paper describes the application and characteristics of a new net for crack statistics. The net, here called transmission net or “u-net” (“Übertragungsnetz”, “Ü-Netz”) is used in combination with a transmission table or “u-table” (“Übertragungstabelle”, “Ü-Tabelle”). Its purpose is to obtain a sphere of crack locations from a series of cracks, having been measured according to strike and inclination.

The “u-net” is composed of a grid subdivided into degrees or degree-grid (“Gradnetz”) and an equal-area-grid (“flächengleiches Netz”). Having replaced the direction σ of strike by its normal δ, the cracks are registered into the meshes of the degree-grid and are there counted. Then they are transmitted into the equal-area-grid according to the percent values of the u-table. From the pattern of frequency numbers (“Häufigkeitszahlen”) in the equal-area-grid the sphere of crack locations is obtained.

Particular specifications regulate the procedure for special measure values, i.e., those of the integral multiples of 5°, especially the angles of inclination τ = 0° and τ = 90° (see 1.4). With greater inaccuracies in measurements, one changes, by means of a given table (see Table V), to a degree-grid of 10°. With very small inaccuracies, on the other hand, the procedure may be simplified, the degree-grid becoming unnecessary (see 1.5). The meshes near the centre, being too long, may be avoided by an additional circle (“Zusatzkreis”—see 1.3).

The “u-net” was constructed in such a way that the spheres of crack locations report the real frequency distribution at all times, free from systematic errors. This is achieved by the method that all calculations follow the principle of area equality or area proportionality on the hemisphere (see 2.1). The procedure using the “u-net” can be adapted to differential accuracies of measuring. It is especially suitable for large numbers of cracks; it is simple in calculation and may easily be programmed for digital computers. Thus the “u-net” is advantageous for all applications in which a large number of cracks has to be dealt with. Such applications are very frequent in rock mechanics, in engineering geology for the purpose of foundation of large hydraulic buildings (dams, caverns), in petrography, tectonics and in geophysical investigations such as the determination of crack structures with a view to explaining micromagnetic occurrences, for instance. Furthermore, the “u-net” is applicable not only to crack statistics but also to other similar statistical methods, e.g., to the statistics of cristal axes or to geographic frequency analyses.  相似文献   


6.
This paper reports the integrated application of petrographic and Sm–Nd isotopic analyses for studying the provenance of the Neoproterozoic Maricá Formation, southern Brazil. This unit encompasses sedimentary rocks of fluvial and marine affiliations. In the lower fluvial succession, sandstones plot in the “craton interior” and “transitional continental” fields of the QFL diagram. Chemical weathering probably caused the decrease of the 147Sm/144Nd ratios to 0.0826 and 0.0960, consequently lowering originally > 2.0 Ga TDM ages to 1.76 and 1.81 Ga. 143Nd/144Nd ratios are also low (0.511521 to 0.511633), corresponding to negative εNd present-day values (− 21.8 and − 19.6). In the intermediate marine succession, sandstones plot in the “dissected arc” field, reflecting the input of andesitic clasts. Siltstones and shales reveal low 143Nd/144Nd ratios (0.511429 to 0.511710), εNd values of − 18.1 and − 23.6, and TDM ages of 2.16 and 2.37 Ga. Sandstones of the upper fluvial succession have “dissected arc” and “recycled orogen” provenance. 143Nd/144Nd isotopic ratios are also relatively low, from 0.511487 to 0.511560, corresponding to εNd values of − 22.4 and − 21.0 and TDM of 2.07 Ga. A uniform granite–gneissic basement block of Paleoproterozoic age, with subordinate volcanic rocks, is suggested as the main sediment source of the Maricá Formation.  相似文献   

7.
8.
Mineral chemistry, textures and geochemistry of syenite autoliths from Kilombe volcano indicate that they crystallized in the upper parts of a magma chamber from peralkaline trachytic magmas that compositionally straddle the alkali feldspar join in the “residuum system” (ne = 0–1.03; qz = 0–0.77). Mineral reaction and/or overgrowth processes were responsible for the replacement of (i) Mg–hedenbergite by aegirine–augite, Ca–aegirine and/or aegirine, (ii) fayalite by amphiboles, and (iii) magnetite by aenigmatite. Ti–magnetite in silica-saturated syenites generally shows ilmenite exsolution, partly promoted by circulating fluids.

By contrast, the Fe–Ti oxides in the silica-undersaturated (sodalite-bearing) syenites show no signs of deuteric alteration. These syenites were ejected shortly after completion of crystallization. Ilmenite–magnetite equilibria indicate fO2 between − 19.5 and − 23.1 log units (T 679–578 °C), slightly below the FMQ buffer. The subsequent crystallization of aenigmatite and Na-rich pyroxenes suggests an increase in the oxidation state of the late-magmatic liquids and implies the influence of post-magmatic fluids.

Irrespective of silica saturation, the syenites can be divided into (1) “normal” syenites, characterized by Ce/Ce ratios between 0.83 and 0.99 and (2) Ce-anomalous syenites, showing distinct negative Ce-anomalies (Ce/Ce 0.77–0.24). “Normal” silica-saturated syenites evolved towards pantelleritic trachyte. The Ce-anomalous syenites are relatively depleted in Zr, Hf, Th, Nb and Ta but, with the exception of Ce, are significantly enriched in REE.

The silica-saturated syenites contain REE–fluorcarbonates (synchysite-bastnaesite series) with negative Ce-anomalies (Ce/Ce 0.4–0.8, mean 0.6), corroded monazite group minerals with LREE-rich patches, and hydrated, Fe- and P-rich phyllosilicates. Each of these is inferred to be of non-magmatic origin. Fractures in feldspars and pyroxenes contain Pb-, REE- and Mn-rich cryptocrystalline or amorphous material. The monazite minerals are characterized by the most prominent negative Ce-anomalies (Ce/Cemean = 0.5), and in the most altered and Ca-rich areas (depleted in REE), Ce/Ce is less than 0.2.

It is inferred that carbonatitic fluids rich in F, Na and lanthanides but depleted in Ce by fractional crystallization of cerian pyrochlore, percolated into the subvolcanic system and interacted with the syenites at the thermal boundary layers of the magma chamber, during and shortly after their crystallization.

Chevkinite–(Ce), pyrochlore, monazite and synchysite-bastnaesite, occurring as accessory minerals, have been found for the first time at Kilombe together with eudialyte, nacareniobsite–(Ce) and thorite. These latter represent new mineral occurrences in Kenya.  相似文献   


9.
Analysis and simulation of magma mixing processes in 3D   总被引:2,自引:0,他引:2  
D. Perugini  G. Poli  G. D. Gatta 《Lithos》2002,65(3-4):313-330
Magma mixing structures from the lava flow of Lesbos (Greece) are analyzed in three dimensions using a technique that, starting from the serial sections of rock cubes, allows the reconstruction of the spatial distribution of magmas inside rocks. Two main kinds of coexisting structures are observed: (i) “active regions” (AR) in which magmas mix intimately generating wide contact surfaces and (ii) “coherent regions” (CR) of more mafic magma that have a globular shape and do not show large deformations. The intensity of mingling is quantified by calculating both the interfacial area (IA) between interacting magmas and the fractal dimension of the reconstructed structures. Results show that the fractal dimension is linearly correlated with the logarithm of interfacial area allowing discrimination among different intensities of mingling.

The process of mingling of magmas is simulated using a three-dimensional chaotic dynamical system consisting of stretching and folding processes. The intensity of mingling is measured by calculating the interfacial area between interacting magmas and the fractal dimension, as for natural magma mixing structures. Results suggest that, as in the natural case, the fractal dimension is linearly correlated with the logarithm of the interfacial area allowing to conclude that magma mixing can be regarded as a chaotic process.

Since chemical exchange and physical dispersion of one magma inside another by stretching and folding are closely related, we performed coupled numerical simulations of chaotic advection and chemical diffusion in three dimensions. Our analysis reveals the occurrence in the same system of “active mixing regions” and “coherent regions” analogous to those observed in nature. We will show that the dynamic processes are able to generate magmas with wide spatial heterogeneity related to the occurrence of magmatic enclaves inside host rocks in both plutonic and volcanic environments.  相似文献   


10.
The shallow level pluton of Bressanone is a Late Hercynian multiple intrusion into the South Alpine basement of the Eastern Alps. Most of this complex is composed of anatectic granodiorites and granites intruded in separate stocks 282 ± 14 Ma ago; gabbros and leucogranites occur in smaller quantities. The chronological intrusion sequence is: layered gabbro, granodiorites and granites, two-mica cordierite leucogranite and fayalite leucogranites.

The granodiorites and granites may contain hornblende or garnet. The hornblende and garnet rocks differ both in chemistry and (87Sr/86Sr)i ratio, and may be identified as “I-type” and “S-type”, respectively, according to the Chappell-White classification.

Textural and chemical patterns show that the granites may be linked to the granodiorites by cumulate-like processes. The granodiorite → granite transition, attributed to filter pressing, expresses an increase in the liquid/xenolith ratio in a magma where the liquid fraction was a minimum melt and the solid fraction was restitic material.  相似文献   


11.
M. Langer 《Engineering Geology》1993,34(3-4):159-167
The problem of waste disposal in Germany has been solved by using a combination of above-ground and underground disposal. Site selection criteria and precise criteria for the performance assessment of various types of waste disposal are available. In view of long-term safety of disposal, it is necessary to include geological and hydrogeological viewpoints in addition to purely engineering viewpoints.

In particular, the geotechnical site-specific safety assessment is described, as defined by the government in “Technical Regulations on Wastes” (TA-Abfall) in the section “Underground Disposal”. This safety assessment must cover the entire system comprising waste, cavern/mine and surrounding rock. For this purpose geo-mechanical models have to be developed.

According to the multi-barrier principle, the geological setting must be able to contribute significantly to isolation of the waste over longer periods. The assessment of the integrity of the geological barrier can only be performed by making calculations with validated geomechanical models.

Various engineering geological data are required for the selection of a site, for the design and construction of a repository, and for a safety analysis for the post-operational phase. These data can only be attained by the execution of a comprehensive site-specific geomechanical exploration and investigation program. The planning and design of an underground repository in rock salt layers are described, as an example for the various steps of this type of safety assessment.  相似文献   


12.
David R. Nelson 《Lithos》1992,28(3-6):403-420
The potassic igneous rock suite (with molar K2O/Na2O > 1) can be divided into an “orogenic” subgroup that occur in subduction-related tectonic settings and an “anorogenic” sub-group that are confined to stable continental settings. Representatives of both sub-groups possess trace element and isotopic features consistent with the contamination of their magma sources by incompatible element rich and isotopically evolved “metasomatic” components. It is argued here that these metasomatic components are principally derived from subducted lithosphere, including subducted sediments. Most examples of orogenic potassic magmatism (e.g. Italian potassic rocks, Spanish lamproites, Sunda arc leucitites) have trace-element and Sr, Nd and Pb isotopic characteristics consistent with the contamination of their mantle sources by a component derived from marine sediments. Anorogenic sub-group potassic magmas have generally similar incompatible trace element and Sr and Nd isotopic characteristics to those of orogenic potassic magmas, but many examples have unusual Pb isotopic compositions with unradiogenic 206Pb/204Pb. Modern marine sediments characteristically have low U/Pb ratios and the unradiogenic 206Pb/204Pb of anorogenic potassic magmas may have evolved during long-term storage of subducted sediments (or components derived from them) within the subcontinental lithosphere. These unusual Pb isotopic compositions require substantial time periods (> 1 Ga) to have elapsed between the fractionation events lowering the U/Pb ratio (i.e. erosion and sedimentation at the Earth's surface) and subsequent potassic magmatism and it is therefore not surprising that most examples of anorogenic potassic magmatism are not associated with recent subduction processes. Although the eruption of potassic magmas is commonly related to rifting or hotspot activity, these processes do not necessarily play an important role in the genesis of the unusual sources from which potassic magmas are derived.  相似文献   

13.
Suspended matter (SM) from the Nyong basin (Cameroon, Africa), a tropical watershed, was collected by tangential flow ultrafiltration to separate particulate (>0.45 μm) and colloidal (<0.45 μm; >20 kDa) fractions. In this basin, two distinctive systems in a selected small catchment (Nsimi–Zoétélé) of the Nyong river basin have been considered: (i) colourless water (groundwater and spring) with a low suspended load (<3 mg/l) and a low total organic carbon content (TOC<1 mg/l) and (ii) coloured water (Mengong brook and Nyong river), which is organic rich (TOC>10 mg/l) and contains higher amounts of SM (10–20 mg/l) than the colourless water. Freeze-dried samples of SM have been analysed by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), electron paramagnetic resonance spectroscopy (EPR), and visible diffuse reflectance spectroscopy (DRS).

Colourless water mainly contains mineral phases, such as poorly ordered kaolinite, plus quartz and goethite in the particulate fraction, and euhedral kaolinite plus amorphous iron oxyhydroxides in the colloidal fraction. In contrast, the SM in coloured water is mainly organic in nature. The mineral phases in the particulate fraction are similar to those from clear water, but with additional phytoliths and diatom frustules composed of biogenic opal. In the colloidal fraction, complexation of Fe3+ and Mn2+ with organic matter is evidenced by EPR, together with significant occurrence of Fe oxyhydroxides associated with organic matter.

The sites of Al, Si, Fe, Mn in colloidal fractions derived from spectroscopic analyses are discussed with reference to chemical analyses performed by inductively coupled plasma mass spectrometry. Most of the observed solid phases or species correspond to those expected from published thermodynamic calculations for the same hydrosystem, except the colloidal iron oxyhydroxides in the coloured water. The presence of such iron phases is emphasised since they are expected to have large sorption capacities for numerous trace elements.

The crystal chemistry of SM is used to discuss the origin of the mineral particles transported from the soil to the main rivers in terms of mechanical and chemical erosion processes.  相似文献   


14.
“Lower-crustal suite” xenoliths occur in “on-craton” and “off-craton” kimberlites located across the south-western margin of the Kaapvaal craton, southern Africa.

Rock types include mafic granulite (plagioclase-bearing assemblages), eclogite (plagioclase-absent assemblages with omphacitic clinopyroxene) and garnet pyroxenite (“orthopyroxene-bearing eclogite”). The mafic granulites are subdivided into three groups: garnet granulites (cpx + grt + plag + qtz); two pyroxene garnet granulites (cpx + opx + grt + plag); kyanite granulites (cpx + grt + ky + plag + qtz). Reaction microstructures preserved in many of the granulite xenoliths involve the breakdown of plagioclase by a combination of reactions: (1) cpx + plag → grt + qtz; (2) plag → grt + ky + qtz; (3) plag → cpx (jd-rich) + qtz. Compositional zoning in minerals associated with these reactions records the continuous transition from granulite facies mineral assemblages and pressure (P) — temperature (T) conditions to those of eclogite facies.

Two distinct P-T arrays are produced: (1) “off-craton” granulites away from the craton margin define a trend from 680 °C, 7.5 kbar to 850 °C, 12 kbar; (2) granulite xenoliths from kimberlites near the craton margin and “on-craton” granulites produce a trend with similar geothermal gradient but displaced to lower T by ˜ 100 °C. Both P-T fields define higher geothermal gradients than the model steady state conductive continental geotherm (40 mWm2) and are not consistent with the paleogeotherm constructed from mantle-derived garnet peridotite xenoliths.

A model involving intrusion of basic magmas around the crust/mantle boundary followed by isobaric cooling is proposed to explain the thermal history of the lower crust beneath the craton margin. The model is consistent with the thermal evolution of the exposed Namaqua-Natal mobile belt low-pressure granulites and the addition of material from the mantle during the Namaqua thermal event (c. 1150 Ma). The xenolith P-T arrays are not interpreted as representing paleogeotherms at the time of entrainment in the host kimberlite. They most likely record P-T conditions “frozen-in” during various stages of the tectonic juxtaposition of the Namaqua Mobile Belt with the Kaapvaal craton.  相似文献   


15.
Construction of the Chhibro—Khodri Tunnel of the Yamuna Hydroelectric Scheme near Dehradun in the lower Himalayan region has been delayed by over six years due to problems associated with highly squeezing rock masses encountered unexpectedly in recurring faulted zones.

Attempts to measure tectonic slip along a fault zone running across the tunnel have been reviewed. The suitability of a “flexible lining” provided in this zone has been evaluated in view of the region being seismically active.

A tunnel instrumentation programme was implemented to evolve a flexible support system capable of reducing rock loads to manageable levels in highly squeezing rock conditions. Use of “loose” backfill with steel-arch supports has shown promise in this direction.

Observed support pressures have been compared with the estimated values for evaluating the empirical and theoretical approaches of rock-load assessment in the squeezing rock conditions. The elasto-plastic theory has yielded reliable estimates of rock pressures.  相似文献   


16.
U. Kramm  L. N. Kogarko 《Lithos》1994,32(3-4):225-242
Nd and Sr compositions of the highly evolved agpaitic nepheline syenites and associated ijolites and carbonatites from the Khibina and the Lovozero alkaline centres define three magma sources. Isotopes of the voluminous nepheline syenites and ijolites of Khibina intrusions III, IV, V, VI and VII as well as of nepheline syenites of Lovozero lie on the Kola Carbonatite Mixing Line which is close to the “mantle array” defined by the components “bulk earth” and “prema” on a Sr---Nd plot. The Khibina carbonatites and associated silicate rocks of intrusion VIII, which have more radiogenic Sr, did not evolve from the same parent magma as the nepheline syenites.

Isotopic constraints exclude a pre-enrichment of Rb, Sr, Sm and Nd in the lithospheric mantle below Kola over more than 10 Ma prior to the crystallization of the magmas. A formation of the melts involving major participation of the Precambrian crust of the Baltic Shield is also excluded.

The lack of significant Eu anomalies in the Lovozero nepheline syenites gives evidence that the agpaitic magmas in the Kola region did not form from basaltic liquids by fractional crystallization of plagioclase or anorthoclase at crustal levels. A formation from nephelinite or nepheline benmoreite magmas at mantle pressures is more likely, possibly by dynamic flow crystallization.

Enrichment factors suggest that large-ion lithophile and high field-strength elements as Ta, La, Nb and Zr, which are highly concentrated in the agpaites, were scavenged from mantle volumes of some 100,000 km3. An enrichment of these elements prior to magma formation may have been performed by volatile transfer.

The well-defined whole-rock isochrons of the Khibina III–VII and the Lovozero agpaites of c. 370 Ma date the magma separation for the different intrusion, if these melts are cogenetic and formed by fractional crystallization in a Khibina and a Lovozero magma chamber. If, however, Rb and Sr were collected by a process of volatile transfer, and the initial Sr isotopic compositions of the two distinguished agpaite suites are, therefore, averages of the sampled mantle volumes, the Rb---Sr whole-rock isochron ages of c. 370 Ma would date this process of element collection. The concordance of the whole-rock ages with the mineral ages of Khibina and Lovozero samples is then further evidence for the short period between magma genesis, intrusion and crystallization.  相似文献   


17.
Buraczynski, J., 1988. Lithological, mineralogical and geochemical characteristics of loess in the Rhinegraben. Eng. Geol., 25: 201–208.

Lithological properties of loesses have considerable practical significance. Together with the origin of the material and the genetic–facial variability they are characterised by granulometry, chemical and mineral composition and textural features. In particular, the clay fraction and carbonate content point to the fraction and carbonate content point to the geotecnical properties of loesses.  相似文献   


18.
Miyake, N. and Denda, A., 1993. Utilization of underground spaces in urban areas: Urban geo-grid plan. In: M. Langer, K. Hoshino and K. Aoki (Editors). Engineering Geology in the Utilization of Underground Space.Eng. Geol., 35: 175–181.

The Urban Geo-grid Plan aims for a systematic and better coexistence of above-ground and underground areas through the utilization of underground space presently not in use, without interfering with existing urban functions. There would be “base points” supporting regional functions which are laid out in a grid connected by “lines”. Base points would consist of “grid points” and “grid stations”, which serve as control centers for grid points, the grid points and grid stations being interconnected by tunnels to form an “underground network”. Normally, a base point would be used for multiple purposes to supplement regional functions which are inadequate, as well as urban functions, and in emergencies, such as earthquake disasters, it would demonstrate information and evacuations functions.  相似文献   


19.
Spectacular shallow-level migmatization of ferrogabbroic rocks occurs in a metamorphic contact aureole of a gabbroic pluton of the Tierra Mala massif (TM) on Fuerteventura (Canary Islands). In order to improve our knowledge of the low pressure melting behavior of gabbroic rocks and to constrain the conditions of migmatization of the TM gabbros, we performed partial melting experiments on a natural ferrogabbro, which is assumed as protolith of the migmatites. The experiments were performed in an internally heated pressure vessel (IHPV) at 200 MPa, 930–1150 °C at relatively oxidizing conditions. Distinct amounts of water were added to the charge.

From 930 to 1000 °C, the observed experimental phases are plagioclase (An60–70), clinopyroxene, amphibole (titanian magnesiohastingsites), two Fe–Ti oxides, and a basaltic, K-poor melt. Above 1000 °C, amphibole is no longer stable. The first melts are very rich in normative plagioclase (>70 wt.%). This indicates that at the beginning of partial melting plagioclase is the major phase which is consumed to produce melt. In the experiments, plagioclase is stable up to high temperatures (1060 °C) showing increasing An content with temperature. This is not compatible with the natural migmatites, in which An-rich plagioclase is absent in the melanosomes, while amphibole is stable. Our results show that the partial melting of the natural rocks cannot be regarded as an “in-situ” process that occurred in a closed system. Considerable amounts of alkalis probably transported by water-rich fluids, derived from the mafic pluton underplating the TM gabbro, were necessary to drive the melting reaction out of the stability range of plagioclase. A partial melting experiment with a migmatite gabbro showing typical “in-situ” textures as starting material supports this assumption.

Crystallization experiments performed at 1000 °C on a glass of the fused ferrogabbro with different water contents added to the charge show that generally high water activities could be achieved (crystallization of amphibole), independently of the bulk water content, even in a system with very low initial bulk water content (0.3 wt.%). Increasing water contents produce plagioclase richer in An, reduces the modal proportion of plagioclase in the crystallizing assemblage and extends the melt fraction. High melt fractions of >30 wt.% could only be observed in systems with high bulk water contents (>2 wt.%). This indicates that the migmatites were generated under water-rich conditions (probably water-saturated), since those migmatites, which are characterized as “in-situ” formations, show generally high amounts of leucosomes (>30 wt.%).  相似文献   


20.
Mineral inclusions recovered from 100 diamonds from the A154 South kimberlite (Diavik Diamond Mines, Central Slave Craton, Canada) indicate largely peridotitic diamond sources (83%), with a minor (12%) eclogitic component. Inclusions of ferropericlase (4%) and diamond in diamond (1%) represent “undetermined” parageneses.

Compared to inclusions in diamonds from the Kaapvaal Craton, overall higher CaO contents (2.6 to 6.0 wt.%) of harzburgitic garnets and lower Mg-numbers (90.6 to 93.6) of olivines indicate diamond formation in a chemically less depleted environment. Peridotitic diamonds at A154 South formed in an exceptionally Zn-rich environment, with olivine inclusions containing more than twice the value (of  52 ppm) established for normal mantle olivine. Harzburgitic garnet inclusions generally have sinusoidal rare earth element (REEN) patterns, enriched in LREE and depleted in HREE. A single analyzed lherzolitic garnet is re-enriched in middle to heavy REE resulting in a “normal” REEN pattern. Two of the harzburgitic garnets have “transitional” REEN patterns, broadly similar to that of the lherzolitic garnet. Eclogitic garnet inclusions have normal REEN patterns similar to eclogitic garnets worldwide but at lower REE concentrations.

Carbon isotopic values (δ13C) range from − 10.5‰ to + 0.7‰, with 94% of diamonds falling between − 6.3‰ and − 4.0‰. Nitrogen concentrations range from below detection (< 10 ppm) to 3800 ppm and aggregation states cover the entire spectrum from poorly aggregated (Type IaA) to fully aggregated (Type IaB). Diamonds without evidence of previous plastic deformation (which may have accelerated nitrogen aggregation) typically have < 25% of their nitrogen in the fully aggregated B-centres. Assuming diamond formation beneath the Central Slave to have occurred in the Archean [Westerlund, K.J., Shirey, S.B., Richardson, S.H., Gurney, J.J., Harris, J.W., 2003b. Re–Os systematics of diamond inclusion sulfides from the Panda kimberlite, Slave craton. VIIIth International Kimberlite Conference, Victoria, Canada, Extended Abstracts, 5p.], such low aggregation states indicate mantle residence at fairly low temperatures (< 1100 °C). Geothermometry based on non-touching inclusion pairs, however, indicates diamond formation at temperatures around 1200 °C. To reconcile inclusion and nitrogen based temperature estimates, cooling by about 100–200 °C shortly after diamond formation is required.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号