首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 77 毫秒
1.
Populations of the copepod species Calanus finmarchicus often dominate the springtime biomass and secondary production of shelf ecosystems throughout the North Atlantic Ocean. Recently, it has been hypothesised that interannual to interdecadal fluctuations observed in such populations are driven primarily by climate-associated changes in ocean circulation. Here, we compare evidence from the North Sea and Gulf of Maine/Western Scotian Shelf (GoM/WSS) linking fluctuations in C. finmarchicus abundance to changes in ocean circulation associated with the North Atlantic Oscillation (NAO). A particularly striking contrast emerges from this Trans-Atlantic comparison: whereas the North Sea C. finmarchicus population exhibits a negative correlation with the NAO index, the GoM/WSS population exhibits a more complex, positive association with the index. The physical processes underlying these contrasting population responses are discussed in the context of regional- to basin-scale circulation changes associated with the NAO.  相似文献   

2.
Seasonal development of Calanus finmarchicus was studied in relation to the physical environment and phytoplankton bloom dynamics in the Norwegian Sea during eight basin-scale surveys from March to August 1995. Our main objective was to gain new knowledge about the life cycle of C. finmarchicus and its adaptation to the physical and biological environment of the Norwegian Sea. Time of spawning, estimated by temperature-dependent back-calculations from the occurrences of copepodite stage 1 (CIs), varied by water mass and occurred mainly during the phytoplankton pre-bloom and bloom periods. Recruitment to CI of the year's first generation (G1) generally occurred during the bloom and late bloom. The seasonal development of C. finmarchicus was progressively delayed from Coastal to Atlantic and to Arctic water, and from south to north within Atlantic and Arctic waters. This delay was partly linked to the phytoplankton bloom development that followed the same pattern, but development of C. finmarchicus also showed an increasing tendency to lag behind the phytoplankton development in colder waters. This may explain why C. finmarchicus are less successful in colder water. The consumption of nitrate was used as proxy for the seasonal history of phytoplankton development to aid interpretation of the lifecycle of C. finmarchicus. This approach allows us to align phytoplankton bloom and copepod development sequences despite temporal and geographical variation in bloom development, which otherwise tend to cause variability in quasi-synoptic and large-scale data. Two generations of C. finmarchicus were found in southern and northern regions of Coastal Water, and in southern Atlantic Water. In northern Atlantic Water and in Arctic Water, one generation was observed.  相似文献   

3.
We review current knowledge and understanding of the biology and ecology of the calanoid copepod Calanus helgolandicus in European waters, as well as provide a collaborative synthesis of data from 18 laboratories and 26 sampling stations in areas distributed from the northern North Sea to the Aegean and Levantine Seas. This network of zooplankton time-series stations has enabled us to collect and synthesise seasonal and multi-annual data on abundance, body size, fecundity, hatching success and vertical distribution of C. helgolandicus. An aim was to enable comparison with its congener Calanus finmarchicus, which has been studied intensively as a key component of European and north east Atlantic marine ecosystems. C. finmarchicus is known to over-winter at depth, whereas the life-cycle of C. helgolandicus is less well understood. Overwintering populations of C. helgolandicus have been observed off the Atlantic coast between 400 and 800 m, while in the Mediterranean there is evidence of significant deep-water populations at depths as great as 4200 m. The biogeographical distribution of C. helgolandicus in European coastal waters covers a wide range of habitats, from open ocean to coastal environments, and its contribution to mesozooplankton biomass ranges from 6% to 93%. Highest abundances were recorded in the Adriatic and off the west coast of Spain. C. helgolandicus is generally found in 9-20 °C water, with maximum abundances from 13-17 °C. In contrast, C. finmarchicus is found in cooler water between 0 and 15 °C, with peak abundances from 0 to 9 °C. As water has warmed in the North Atlantic over recent decades, the range of C. helgolandicus and its abundance on the fringes of its expanding range have increased. This review will facilitate development of population models of C. helgolandicus. This will not only help answer remaining questions but will improve our ability to forecast future changes, in response to a warming climate, in the abundance and distribution of this important species.  相似文献   

4.
The distribution and demography of Calanus finmarchicus, C. glacialis and C. hyperboreus were studied throughout their growth season on a basin scale in the Norwegian Sea using ordination techniques and generalized additive models. The distribution and demographic data were related to the seasonal development of the phytoplankton bloom and physical characteristics of water masses. The resulting quantified relationships were related to knowledge on life cycle and adaptations of Calanus species. C. finmarchicus was the numerically dominant Calanus species in Coastal, Atlantic and Arctic waters, showing strong association with both Atlantic and Arctic waters. C. hyperboreus and C. glacialis were associated with Arctic water; however, C. glacialis was occasionally observed in the Norwegian Sea and is probably an expatriate advected into the area from various origins. Demography indicated one generation per year of C. finmarchicus, a two-year life cycle of C. hyperboreus, and both one- and two-year life cycles for C. glacialis in the water masses where they were most abundant. For the examined Calanus species, young copepodites of the new generation seemed to be tuned to the phytoplankton bloom in their main water mass. The development of C. finmarchicus was delayed in Arctic water, and mis-match between feeding stages and the phytoplankton bloom may reduce survival and reproductive success of C. finmarchicus in Arctic water. Based on low abundances of C. hyperboreus CI–III in Atlantic water and main recruitment to CI prior to the phytoplankton bloom, we suggest that reproduction of C. hyperboreus in Atlantic water is not successful.  相似文献   

5.
The distribution of Calanus finmarchicus was studied on a transect across the central Greenland Sea, and on five transects from the Eurasian shelves across the Atlantic Inflow in the Arctic Ocean. Stage composition was used as an indicator for successful growth; gonad maturity and egg production were taken as indicators for reproductive activity. On the Arctic Ocean transects, these parameters were measured simultaneously from the sibling species Calanus glacialis. Response of egg production rate to different temperatures at optimal food conditions was very similar between both species in the laboratory. C. finmarchicus was present at all stations studied, but young developmental stages were only present close to the regions of submergence of Atlantic water under the Polar water. This together with a decreasing abundance and biomass from west to east along the Atlantic Inflow in the Arctic Ocean and reproductive failure indicates that C. finmarchicus is expatriated in the Arctic Ocean. We hypothesize that the late availability of food in the Arctic Ocean, rather than low temperature per se, limits reproductive success. Better reproductive success in the very low temperature regions of the Return Atlantic Current and the marginal ice zone in the Greenland Sea supports this hypothesis. The possibility for a replacement of C. glacialis by C. finmarchicus and consequences for the ecosystem after increasing warming of the Arctic are discussed.  相似文献   

6.
We collected mesozooplankton samples in the upper 100 m in spring or early summer each year between 1995 and 2000 along a section from Hamilton Bank (Labrador) to Cape Desolation (Greenland), and along additional sections in spring 1997 and early summer 1995. The North Atlantic waters of the central basin were characterised by the presence of the copepods Calanus finmarchicus, Euchaeta norvegica and Scolecithrocella minor and euphausiids. Calanus glacialis, Calanus hyperboreus and Pseudocalanus spp. were associated with the Arctic waters over the shelves. Amongst the other enumerated groups larvaceans were concentrated over the shelves and around the margins. Amphipods, pteropods and the copepods Oithona spp. and Oncaea spp. showed no definable relationships with water masses or bathymetry, while the diel migrant ostracods and chaetognaths were confined to deep water. Metrida longa, also a strong diel migrant, and Microcalanus spp., a mainly deep water species and possible diel migrant, were both sometimes quite abundant on the shelves as well as in the central basin, consistent with their likely Arctic origins.Analysis of community structure along the section across the Labrador Sea indicated that stations could be grouped into five different zones corresponding to: the Labrador Shelf; the Labrador Slope; the western and central Labrador Sea; the eastern Labrador Sea and Greenland Slope; and, the Greenland Shelf. The boundaries between zones varied spatially between years, but community composition was relatively consistent within a given zone and a given season (spring versus early summer). The relationship between community composition and water masses was not entirely straightforward. For example, Labrador Shelf water was generally confined to the shelf, but in spring 2000 when it also dominated the adjacent slope zone, the community in the Labrador Slope zone was similar to those found in other years. Conversely, in spring 1997, when Arctic organisms were unusually abundant in the Labrador Slope zone, there was no increased contribution of shelf water. In addition, North Atlantic organisms were often found on the shelves when no slope or central basin water was present.Although other organisms were sometimes very abundant, the mesozooplankton preserved dry weight biomass was dominated everywhere by the three species of Calanus, which together always accounted for ≥70%. One species, C. finmarchicus, comprised >60% of the total mesozooplankton biomass and >80% of the abundance of large copepods in spring and summer throughout the central Labrador Sea. In western and central regions of the central basin average C. finmarchicus biomass was ca 4 g dry weight m−2 and average abundance, ca 17?000 m−2 over both seasons. Highest levels (ca 7 g dry weight m−2, >100?000 m−2) occurred in the northern Labrador Sea in spring and in eastern and southwest regions in early summer. C. hyperboreus contributed ca 20% of the total mesozooplankton biomass in the central basin in spring and <5% in early summer, while C. glacialis accounted for <1%. Over the shelves, C. hyperboreus contributed a maximum of 54% and 3.6 g dry weight m−2, and C. glacialis, a maximum of 29% and 1 g dry weight m−2, to the total mesozooplankton biomass.  相似文献   

7.
Continuous Plankton Recorder data suggest that the Irminger Sea supports a major proportion of the surface-living population of the copepod Calanus finmarchicus in the northern North Atlantic, but there have been few studies of its population dynamics in the region. In this paper, we document the seasonal changes in the demographic structure of C. finmarchicus in the Irminger Sea from a field programme during 2001/2002, and the associations between its developmental stages and various apparent bio-physical zones. Overwintering stages were found widely at depth (>500 m) across the Irminger Sea, and surviving females were widely distributed in the surface waters the following spring. However, recruitment of the subsequent generation was concentrated around the fringes of the Irminger Sea basin, along the edges of the Irminger and East Greenland Currents, and not in the central basin. In late summer animals were found descending back to overwintering depths in the Central Irminger Sea. The key factors dictating this pattern of recruitment appear to be (a) the general circulation regime, (b) predation on eggs in the spring, possibly by the surviving G0 stock, and (c) mortality of first feeding naupliar stages in the central basin where food concentrations appear to be low throughout the year.We compared the demographic patterns in 2001/2002 with observations from the only previous major survey in 1963 and with data from the Continuous Plankton Recorder (CPR) surveys. In both previous data sets, the basic structure of G0 ascent from the central basin and G1 recruitment around the fringes was a robust feature, suggesting that it is a recurrent phenomenon. The Irminger Sea is a complex mixing zone between polar and Atlantic water masses, and it has also been identified as a site of sporadic deep convection. The physical oceanographic characteristics of the region are therefore potentially sensitive to climate fluctuations. Despite this, the abundance of C. finmarchicus in the region, as measured by the CPR surveys, appears not to have responded to climate factors linked to the North Atlantic Oscillation Index, in contrast with the stocks in eastern Atlantic areas. We speculate that this may because biological factors (production and mortality), rather than transport processes are the key factors affecting the population dynamics in the Irminger Sea.  相似文献   

8.
Two copepod species, Calanus finmarchicus (a widespread North Atlantic species) and C. glacialis (an Arctic species), are dominant in the zooplankton of Arctic seas. We hypothesized that the anticipated warming in the Arctic might have different effects on the arctic and boreal species. The effect of temperature on egg production rate (EPR) in these species at temperatures of 0, 2.5, 5, 7.5, and 10°C under contrasting feeding conditions was assessed in 5-day-long experiments. The EPR of the fed C. finmarchicus increased with temperature over the entire tested range. On the contrary, the EPR of C. glacialis increased only in the range of 0–5°C and dropped with further temperature growth. The difference in the influence of temperature on reproduction of these two species is statistically significant. Feeding conditions have a considerable effect on the C. finmarchicus EPR. The EPRs of the female C. glacialis that fed or starved for 5 days displayed no significant difference. These results suggest that the C. finmarchicus EPR increases with temperature under favorable feeding conditions, whereas the C. glacialis EPR decreases at a temperature over 5°C independently of the feeding conditions. This allows for prediction of the shift in abundances of these two species in pelagic communities of Arctic seas in the case of a warming scenario.  相似文献   

9.
《Oceanologica Acta》2003,26(3):255-268
Data collected during cruises of the Former Soviet Union (in 1963–1989) and the British Atlantic meridional transect program (in 1995–1999) were used to analyse macroscale patterns in phyto- and zooplankton biomass, size structure, species diversity, chlorophyll a, and plankton bioluminescence in the macroscale anticyclonic gyre of the South Atlantic Ocean. The spatial pattern of bioluminescence intensity was in good agreement with that of remotely sensed (CZCS) chlorophyll a, phosphate, salinity, and copepod species diversity index distributions especially in terms of geographic inclinations of the isolines, both associated with the north-westward pattern off the South equatorial current. Among the 416 copepod species recorded in samples, 51 species were noted throughout the whole gyre. On the other hand, there were a number of species found only in one of the currents. The mesozooplankton biomass size spectra (calculated in carbon units), exhibited a fairly stable slope of the curve from the eastern periphery of the gyre to its centre. The British Atlantic meridional transect program meridional transect through the western part of the gyre showed mesozooplankton size spectra in greater detail between the equator and 50° S. Although the spectra change slowly along the transect as far as 36° S, there is a general trend toward increasing slopes from the equatorial region to the oligotrophic central gyre. The calculated phyto-to-zooplankton ratio indicated that for the tropical anticyclonic gyres, the mesozooplankton carbon biomass could be represented as the exponential function of the phytoplankton carbon.  相似文献   

10.
Spring dominant copepods and their distribution pattern in the yellow sea   总被引:4,自引:0,他引:4  
We investigated the relationship between mesoscale spatial distribution of environmental parameters (temperature, salinity, and sigma-t), chlorophyll-a concentration and mesozooplankton in the Yellow Sea during May 1996, 1997, and 1998, with special reference to Yellow Sea Bottom Cold Water (YSBCW). Adult calanoid copepods,Calanus sinicus, Paracalanus parvus s.l.,Acartia omorii, andCentropages abdominalis were isolated by BVSTEP analysis based on the consistent explainable percentage (-32.3%) of the total mesozooplankton distributional pattern. The copepods, which accounted for 60 to 87% of the total abundances, occupied 73-78% of the copepod community. The YSBCW consistently remained in the northern part of the study area and influenced the spatial distribution of the calanoid copepods during the study periods. Abundances of C.sinicus andP. parvus s.l., which were high outside the YSBCW, were positively correlated with the whole water average temperature (p<0.01). In contrast, the abundances of C.abdominalis andA. omorii, which were relatively high in the YSBCW, were associated with the integrated chl-a concentration based on factor analysis. These results indicate that the YSBCW influenced the mesoscale spatial heterogeneity of average temperature and integrated chl-a concentration through the water column. This consequently affected the spatial distribution pattern of the dominant copepods in association with their respective preferences for environmental and biological parameters in the Yellow Sea during spring.  相似文献   

11.
Molecular population genetic analysis has provided evidence that the copepod, Calanus finmarchicus, of the Labrador Current, Gulf of St Lawrence, Scotian Shelf, Gulf of Maine, and Georges Bank constitute a single, interbreeding population. The DNA sequence of a 350 base pair portion of the mitochondrial large subunit (16S) ribosomal RNA (rRNA) gene was determined for a total of 72 individuals collected in 1992, and 110 individuals collected in 1993 from these regions. There was significant heterogeneity in haplotype frequencies among the samples collected in 1992, but this heterogeneity did not resolve into regional patterns. The only regional differences seen were between pooled samples of the western N. Atlantic and those of the Norwegian Sea. There were no significant differences in haplotype frequencies among the samples collected in 1993, and fewer haplotypes were observed in these samples. Intraspecific molecular variation was typical of other marine species: there were 29 haplotypes among the 182 individuals sequenced. The frequency distribution of the haplotypes was highly skewed: 128 individuals shared one haplotype and 19 individuals were unique. There were 24 variable sites among the 350 bases sequenced; estimated nucleotide diversity was 0.0042. The genetic character of C. finmarchicus populations in the western N. Atlantic was stable over time in that three of the haplotypes (including the most abundant) occurred in both 1992 and 1993. However, haplotype frequencies differed significantly between the two years. The lack of regional structure in the 1992 samples and the genetic homogeneity of samples collected in 1993 across the domain from the Labrador Current to the Gulf of St Lawrence to Georges Bank and the Gulf of Maine indicated that there is significant gene flow across this region. The persistent genetic pattern suggests that the Gulf of St Lawrence may be an important source region for recruitment of C. finmarchicus to Georges Bank. Determination of zooplankton dispersal patterns within high gene flow species will provide information that may not be determined by conventional oceanographic analyses.  相似文献   

12.
黄海中华哲水蚤C5发育期油脂积累初步研究   总被引:3,自引:2,他引:1       下载免费PDF全文
根据9个黄海调查航次的数据,研究了黄海中华哲水蚤C5发育期油脂积累的区域、季节变化,并探讨了中华哲水蚤油脂积累对其生理、生活史的可能作用。在黄海近岸海域,中华哲水蚤C5期油囊体积常年较小;而在陆架海域则表现出明显的季节差异。在陆架区,C5期的油囊体积与度夏过程联系密切:最大油囊体积(可占前体部体积的30%以上)出现于度...  相似文献   

13.
Calcareous nannoplankton from sediment trap samples collected at six sites in the Atlantic Ocean from 23° S to 73° N (cruise 20 of R/V Vityaz’ and cruise 33 and 34 of R/V Akademik Mstislav Keldysh). Those samples were studied with a scanning electron microscope. In the coastal and open-sea regions of the North and South Atlantic and in the subarctic region of the Norwegian Sea, the conditions are significantly different. In the shelf area of the Benguela upwelling, 11 species were recognized; some of them were agglutinated by diatoms and tintinnides or covered the surface of pellets. The Broken Spur and TAG pelagic areas of the North Atlantic contained up to 43 coccolith species. They included holococcoliths, large pelagic, and delicate easily soluble species distributed over the entire water column. The presence of coccoliths in the high-latitude area of the Norwegian Sea is related to their supply with the warmer North Atlantic waters. These assemblages are distinguished by a low species diversity and an enhancement of the coccolith solubility with the depth increase.  相似文献   

14.
On a transect across the Lomonosov Ridge stratified zooplankton tows were made to the bottom at seven stations. A species inventory was established and compared with earlier observations in the Arctic Ocean. Differences between the Amundsen and Makarov basins are relatively small and correspond well with the general circulation patterns for Atlantic, Pacific, and neritic waters, suggesting slow mixing rates for the different basins. There were no remarkable differences in the species composition or their vertical distribution between the two sides of the Lomonosov Ridge. This indicates effective faunistic exchange across the ridge, although several bathy-pelagic species were almost or completely absent on top of the Ridge. Biomass showed a strong gradient along the transect, with a pronounced peak (9.5 g dry weight m−2) in the core of Atlantic water over the ridge, and minima over the deep basins. These differences were related to the effect of bottom topography for deep-living species, and the dynamics of the Atlantic layer for the meso- and epipelagic species. The maximum was formed mainly by the copepods Calanus hyperboreus and Metridia longa together with chaetognaths and ostracods. The presence of young developmental stages in some of the abundant species (C. hyperboreus, M. longa) suggests successful reproduction at all stations but C. finmarchicus was almost exclusively represented as old stages and adults. Comparison with earlier data on abundance and biomass from the Canada Basin (Russian Drift station “North Pole-22”) shows a pronounced difference with respect to both absolute quantities and relative composition. The copepod C. finmarchicus is completely absent in the central Canada Basin, and the portion of non-copepod zooplankton is dramatically decreased. This points to a reduced advection of Atlantic water or more severe food conditions in this basin.  相似文献   

15.
The intensive study of the Arabian Sea during the 1990s included mesozooplankton investigations by the Netherlands, United Kingdom, Pakistan, India, Germany and the United States. Several major discoveries resulted. First, the high biomass of mesozooplankton observed during the Northeast Monsoon season is sustained by primary productivity stimulated by convective mixing and by an active microbial loop. The apparent ‘paradox’ of high standing stocks of mesozooplankton coinciding with low standing stocks of phytoplankton thus was resolved. Second, the Southwest Monsoon (upwelling) season supports a burst of mesozooplankton growth, much of which is exported to the interior of the Arabian Sea by strong currents and eddy activity and to depth at the end of the season when diapause causes at least one very abundant copepod to leave the epipelagic zone. Third, the oxygen minimum zone severely restricts the vertical distribution of mesozooplankton in the eastern region of the Arabian Sea. The copepod that withstands conditions in the OMZ most readily, Pleuromamma indica, has increased in abundance over the past thirty years suggesting the OMZ may have grown in size and/or intensity in that time. Fourth, the Fall Intermonsoon and Northeast Monsoon seasons are characterized everywhere by increased abundance of the cyclopoid copepod genus, Oithona. Abundances of Oithona measured in the 1990s are much higher than those of the 1930s, suggesting food web alterations over the past half-century.  相似文献   

16.
The occurrence of the invasive nonindigenous copepod Oithona davisae Ferrari and Orsi, 1984, is reported for the first time in the Aegean Sea. The data we collected in August 2017 from 14 stations along the Turkish coast of the Aegean Sea reveal the spatial distribution of O. davisae between the openning of the Dardanelles Strait in the north and the Izmir Bay in the south. The O. davisae individuals, in seven mesozooplankton samples collected from a single station, were consistently found in the inner part of the Izmir Bay from April 2015‐October 2016. The abundance of female O. davisae ranged from 4 ind./m3 in April 2015 to 31,524 ind./m3 in July 2016 and contributed to the total oithonid female population by 10.8% in April 2015 and 92.8% in September 2016. Our results show that this species is well established in the inner part of Izmir Bay and that it has become a permanent component of the copepod community in the area.  相似文献   

17.
We have determined chlorophyll a (Chla) concentration, primary productivity, cell density and species composition of diatoms, and the number of microzooplankton at the surface in the subarctic North Pacific in January 1996. The wet weight of copepods obtained by vertical tows from 150 m to the surface was also measured during the cruise. Chla concentration and primary productivity tended to be higher in the region west of 180°, the western subarctic North Pacific (WSNP), than east of 180°, the eastern subarctic North Pacific (ESNP). The same results were observed for the total diatom cell densities and for the genera Thalassiosira and Denticulopsis. Significant linear relationships were observed between the Thalassiosira cell density and Chla concentration and primary productivity, indicating that Thalassiosira contributes to the high-WSNP and low-ESNP distribution patterns of Chla concentration and primary productivity. Moreover, naked ciliate abundance tended to be lower in the WSNP than in the ESNP, whereas copepod biomass showed an inverse trend. Significantly negative Spearman rank correlations were found between the Thalassiosira cell density and the number of naked ciliates and between the number of naked ciliates and the wet weight of copepods. These results indicate that copepod grazing indirectly controls Thalassiosira cell density via predation on the naked ciliates. We conclude that the high copepod biomass in the WSNP is a factor controlling the high-WSNP and low-ESNP Thalassiosira abundance and hence Chla concentration and primary productivity patterns.  相似文献   

18.
《Progress in Oceanography》2007,72(2-3):117-120
We briefly introduce the different chapters of this special issue which review the current knowledge and understanding of the biology and ecology of Centropages typicus obtained over the last 30 years. The papers are grouped into two major theme areas: the first five papers review behaviour, feeding, metabolism, growth and development, and reproduction, and the four following papers have a regional focus dealing with temporal and spatial distribution in the Mediterranean Sea and in the North Atlantic shelf areas. The findings reviewed in the two groups of papers converge to explain why C. typicus is such a very successful copepod species in these coastal areas. In the different chapters, similarities and differences with congeneric species (C. velificatus, C. hamatus, C. brachiatus, C. chierchiae, C. furcatus, and C. abdominalis) have been explored where these are known.  相似文献   

19.
The biomass, species and chemical composition of the mesozooplankton and their impact on lower food levels were estimated along a transect across the Arctic Ocean. Mesozooplankton biomass in the upper 200 m of the water column was significantly higher (19–42 mg DW m-3) than has previously been reported for the Arctic Ocean, and it reached a maximum at ca. 87°N in the Amundsen Basin. The lowest values were recorded in the Chukchi Sea and Nansen Basin, where ice cover was lower (50–80%) than in the central Arctic Ocean. In the deeper strata (200–500 m) of the Canadian and Eurasian Basins, the biomass was always much lower (4.35–16.44 mg DW m-3). The C/N (g/g) ratio for the mesozooplankton population was high (6.5–8.5) but within the documented range. These high values (when compared to 4.5 at lower latitudes) may be explained by the high lipid content. Mesozooplankton accounted for approximately 40% of the total particulate organic carbon in the upper 100 m of the water column. Mesozooplankton species composition was homogeneous along the transect, consisting mainly of copepods (70–90% of the total number). It was dominated by four large copepod species (Calanus hyperboreus, C. glacialis, C. finmarchicus and Metridia longa), which together accounted for more than 80% of the total biomass. According to measurements of gut pigment and gut turnover rates, the mesozooplankton on average ingested between 6 and 30% of their body carbon per day as phytoplankton. Microzooplankton may have provided an additional source of energy for the mesozooplankton community. These data emphasize the importance of mesozooplankton in the arctic food web and reinforce the idea that the Arctic Ocean should no longer be considered to be a “biological desert”.  相似文献   

20.
The North Atlantic right whale, a seriously endangered species, is found in Cape Cod Bay (Massachusetts, USA) during the winter and early spring. During their residency in these waters, these whales are frequently observed feeding. This study evaluated spatial and temporal changes in the chemical composition (carbon weight and C/N ratio) of the food resource targeted by the right whales in Cape Cod Bay. The three taxa measured (Centropages typicus, Pseudocalanus spp., and Calanus finmarchicus) had highly variable chemical compositions resulting from the different life strategies and from fluctuations in their surrounding environment. The impact of seasonal variability in the energy densities of the food resource of right whales was calculated and compared to the energetic requirements of these whales. Calculations indicated that differences in the nutritional content of the zooplankton prey in Cape Cod Bay could have a considerable effect on the nutrition available to the right whales. Therefore, it is likely that using more precise estimates of the energetic densities of the prey of right whales would lead to a re‐evaluation of the adequacy of the food resource available to these whales in the North Atlantic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号