首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
鄂西利川地区位于湘鄂西构造带与川东构造带的过渡部位,叠加褶皱发育,地处两大构造带分界处的齐岳山高陡背斜带断裂发育。本文以利川地区褶皱和断裂为研究对象,在野外观测和分析的基础上,采用断层滑动数据反演方法,对构造应力场进行了恢复;结合区域构造演化历史,提出该区侏罗纪以来经历了五期构造应力作用,从早到晚分别为:北西-南东向挤压(J3-K1)、近东西向挤压(K1)、近南北向挤压(K1-K2)、北西-南东向引张(K2)和北东-南西向挤压(E3)。该区侏罗纪以来构造变形序列的建立,为深入认识齐岳山高陡背斜带地质灾害形成的地质背景提供了构造地质学证据。  相似文献   

2.
Detailed structural and isotopic analyses in the Hoanib and Ugab River Valleys indicate the existence of an exotic 1.7- to 1.8-Ga terrane in the Pan-African Kaoko Belt. This crustal block, called as Mudorib Complex, is imbricated between autochthonous and para-autochthonous rocks of Congo Craton, Kaoko Basin, and Western Kaoko Batholith units during the main tectono-thermal phase of Kaoko Belt collision around 580?Ma, involving the Rio de La Plata, Congo and Kahalari paleoplates. This terrain is positioned between the 1.9-Ga Pruwes Complex units of SW edge of the Congo Craton and the 0.58- to 0.55-Ga Amspoort Suite granitoids of the Western Kaoko Batholith. It is coincident with a regional positive aeromagnetic anomaly trending from NNW in the Ugab region to the Namibia-Angola border. Internally, Mudorib Complex consists in 1.73- to 1.81-Ga tonalitic?Ctrondhjemitic?Cdioritic?Cgranodioritic sequence of gneisses associated with cogenetic gabbroic and anothositic-gneisses in the core zone of this Pan-African structure. Field relationship and U?CPb zircon and Sm?CNd whole-rock isotope data combined with geochemical information suggest the existence of two rock associations in the Mudorib Complex, namely late Paleoproterozoic tonalitic?Ctrondhjemitic?Cdioritic-gneisses with island-arc affinity and tholeiitic metabasites of juvenile origin, showing Nd model age of 1.73?C2.17?Ga and ??Nd(t) of ?2.05?C+4.3. This 1.8- to 1.7-Ga complex is also intruded by granitic dykes formed at 1.49?C1.50?Ga with Nd model age of 1.75?C2.34?Ga during stable tectonic conditions. In addition to widespread Pan-African tectono-metamorphic events, a secondary metamorphic event of ~1.3?Ga is also recognized in the Mudorib rocks, which may be associated with accretion process of the complex to the Paleoproterozoic to Archean nucleus of the Kaoko Belt in the Hoanib River Valley.  相似文献   

3.
In the metamorphic cores of many orogenic belts, large macroscopic folds in compositional layering also appear to fold one or more pervasive matrix foliations. The latter geometry suggests the folds formed relatively late in the tectonic history, after foliation development. However, microstructural analysis of four examples of such folds suggests this is not the case. The folds formed relatively early in the orogenic history and are the end product of multiple, near orthogonal, overprinting bulk shortening events. Once large macroscopic folds initiate, they may tighten further during successive periods of sub-parallel shortening, folding or reactivation of foliations that develop during intervening periods of near orthogonal shortening. Reactivation of the compositional layering defining the fold limbs causes foliation to be rotated into parallelism with the limbs.Multiple periods of porphyroblast growth accompanied the multiple phases of deformation that postdated the initial development of these folds. Some of these phases of deformation were attended by the development of large numbers of same asymmetry spiral-shaped inclusion trails in porphyroblasts on one limb of the fold and not the other, or larger numbers of opposite asymmetry spirals on the other limb, or similar numbers of the same asymmetry spirals on both limbs. Significantly, the largest disparity in numbers from limb to limb occurred for the first of these cases. For all four regional folds examined, the structural relationships that accompanied these large disparities were identical. In each case the shear sense operating on steeply dipping foliations was opposite to that required to originally develop the fold. Reactivation of the folded compositional layering was not possible for this shear sense. This favoured the development of sites of approximately coaxial shortening early during the deformation history, enhancing microfracture and promoting the growth of porphyroblasts on this limb in comparision to the other. These distributions of inclusion trail geometries from limb to limb cannot be explained by porphyroblast rotation, or folding of pre-existing rotated porphyroblasts within a shear zone, but can be explained by development of the inclusion trails synchronous with successive sub-vertical and sub-horizontal foliations.  相似文献   

4.
通过收集和分析小秦岭金矿田地质资料, 重点对典型矿床不同标高探矿工程进行系统研究, 探讨了该矿田的控矿构造特征。研究认为, 受褶皱构造控制, 区内含金石英脉多位于杨砦峪—大月坪—金罗斑复式背形轴部或背形局部侧转处; 矿田内部控矿断裂发育可分为成矿前断裂(早期韧性剪切带)、成矿早期断裂(中期脆韧或韧脆性剪切带)和主成矿期断裂(晚期脆性断裂)3个时期, 主要控矿断裂大致可分为近东西向、北东向、北西向和近南北向共4组; 区内矿体和矿床的大小直接由构造带及单条断裂的规模决定, 同时因构造活动期次、构造变形类型和强度的不同, 造成区内矿脉赋存状态各异以及矿化不均衡现象普遍存在。研究成果可为本区开展大比例尺成矿预测提供借鉴。   相似文献   

5.
《Gondwana Research》2003,6(2):215-229
Interpretation of satellite data in combination with regional field traverses, delineating the major structural features such as the Nagavali and Vamsadhara Shear Zones and associated fold patterns, provides a synoptic picture of the regional tectonic framework of the central part of the Eastern Ghats Mobile Belt. The complex geology of the study area can broadly be grouped into three distinct deformational events. D1 fabrics represented by near flat-lying gneissic foliations, paralleling the lithological banding are best preserved in low strain domains and are related to Middle to late Archaean thrusting (3000-2600 Ma). The second deformational event D2 is characterized by the development of shear zones and associated mylonitic fabrics and magmatism probably during 1450-850 Ma. The Pan-African thermal (500-550 Ma) overprint is restricted to shear zones in the form of reworking. Regionally, the central part of the Eastern Ghats Mobile Belt can be divided into five distinct structural domains based on structural geometry of folds, foliations and lineations. A three-dimensional block diagram of the Nagavali and Vamsadhara Shear Zones involving fold-thrust tectonics associated with westward thrusting is presented here. A correlation of Pan-African Shear Zones in adjacent continents wrapping around the Archaean Dharwar Craton in the reconstruction of Rodinia and East Gondwana supercontinent suggests an east-west convergence.  相似文献   

6.
中国大陆“十字构造”形成演化及其大陆动力学意义   总被引:1,自引:1,他引:0  
东亚大陆是由许多分别亲劳亚或亲冈瓦纳的中小陆块经过复杂拼合而成的最为复杂的大陆,而中国大陆地处东亚的核心位置,是研究东亚大陆形成演化的关键。控制中国大陆形成演化的最主要的构造格架是"十字构造",即东西向的中央造山系和南北向的贺兰-川滇南北构造带。前者自东而西包括秦岭造山带、祁连造山带和昆仑造山带,是南方和北方陆块群历经古生代-印支期拼合形成中国大陆主体的构造结合带,并遭受中新生代陆内造山改造,构成了中国大陆地质地理、生态环境、人文经济等南北分野;后者不同区段继承了前寒武纪板块构造记录,逐步转化为古亚洲洋或古特提斯构造域大陆边缘,尤其是新特提斯构造运动,形成青藏高原隆升-扩展变形的东部边界,控制了晚中生代-新生代中国大陆东西反转演化。以"十字构造"为坐标系,中国大陆四个象限的地质、地球物理结构、自然资源、生态环境、人文经济等存在明显差异。   相似文献   

7.
渤海湾盆地基岩地质图及其所包含的构造运动信息   总被引:10,自引:1,他引:9  
利用油气勘探资料编制的渤海湾盆地基岩地质图 ,分析了基岩露头分布及其反映的中、新生代构造运动特征。基岩地质图显示渤海湾盆地基底岩层受印支运动和燕山运动影响发育有一系列近EW向、NNE—NE向的褶皱和逆断层等挤压构造变形。基岩露头展布表明渤海湾盆地西部、北部在侏罗纪之前的剥蚀作用明显强于东部和南部地区。基岩地层形成的区域褶皱轴向及各亚构造层之间的不整合面接触关系反映出在下—中三叠统沉积之后至下—中侏罗统沉积之前的某个“关键时刻”渤海湾地区发生了一次重要的构造变革 ,导致早期的近EW向构造被NNE—NE向构造替代。而从区域应力体制来看 ,下—中侏罗统沉积之后渤海湾地区的区域构造环境发生了重要变化 ,从中生代早期的挤压构造环境变为以裂陷作用为主的构造演化时期  相似文献   

8.
黔西北五指山地区叠加构造变形特征对铅锌矿成矿的控制   总被引:1,自引:0,他引:1  
五指山铅锌矿区位于贵州省普定县与织金县交界区域,大地构造位于扬子板块中部、江南造山带西缘。野外构造研究表明,受早古生代加里东构造运动的控制与影响,矿区内震旦系—下古生界构造变形与上古生界—中生界的构造变形明显不同。震旦系—下古生界构造线近东西向,发育近东西向平缓褶皱、南倾或北倾劈理,显示近南北向的挤压收缩变形。震旦系—下古生界区内发育两组南北、北西向陡倾断层,断层明显受限制而不穿越晚古生代之后的地层。发育在震旦系—下古生界内的层间滑动与断层活动控制着铅锌矿的分布。晚古生代之后区域构造应力场发生转变,由早期近南北向的挤压收缩转为早燕山期SEE向NWW挤压逆冲,由此对震旦纪—早古生代变形进行叠加与改造,宏观上形成以NE走向为特征的区域构造格局。后期形成的褶皱轴面主要向SEE倾斜,断层向NWW逆冲,与早期变形呈斜跨式叠加。燕山期断层活动促进了铅锌矿的迁移与聚集。  相似文献   

9.
Three structural profiles across the Coastal Terrane, the Boundary Igneous Complex and the Orogen Core have been studied in the Kaoko Belt of northwestern Namibia. The oldest known Si fabric is inherited from an older tectono-metamorphic event. It occurs in the Coastal Terrane only and the extent of its reworking increases from south to north. The S1 foliation reactivates or folds Si fabric in the Coastal Terrane and appears as an early planar fabric in granitoids of the Boundary Igneous Complex and migmatites of the Orogen Core domain. Superimposed subvertical S2 fabric corresponds to axial plane cleavage of upright close to isoclinal folds and the extent of its development also increases from south to north. Active migration of partial melt during S2 development in the Orogen Core dates the onset of this deformation at ~550?Ma. Distribution of F2 fold axes and L2 stretching lineations suggests pure shear?Cdominated deformation associated with development of N?CS trending S2 cleavage preserved in the central profile, followed by sinistral simple shear?Cdominated deformation on newly developed NW?CSE trending pervasive cleavage in the northern part of the area. Such spatial variation in the deformation record is attributed to the irregular shape of the Congo Craton indenter that is reflected by heterogeneous development of the S2 cleavage front in the Coastal Terrane and the Boundary Igneous Complex. Common orientation of L1 and L2 stretching lineations and solid-state reworking on both S1 and S2 planes suggest single event of sinistral transpression since 550?Ma with strain partitioning into domains of oblique thrusting (reactivated S1) and transcurrent sinistral shearing (S2 and S3). Such succession of deformation structures suggests that major subvertical shear zones in the Kaoko Belt do not correspond to early crustal discontinuities, but rather reflect late strain localization during cooling.  相似文献   

10.
沁水盆地南缘自中生代以来,主要经历了印支期、燕山期、喜马拉雅期三期构造活动的影响。通过对地表露头的断 层面擦痕、纵弯褶皱及共轭节理系的研究,获得了古构造应力场信息。在研究区东部 NNE 向的太行山断裂带内,逆冲挤压 构造非常明显,与其相伴发育的不对称背斜构造表明其主压应力方向为 110°;中部的 EW 向正断层、地堑系可能是印支期 近 SN 向挤压作用下形成的逆冲构造经历了新生代构造反转作用而产生的,新生代伸展作用非常显著,伸展方向为 26°, 249°,347°;西部边界由近 SN 向断裂组成,存在新生代近 EW 及 NEE-SSW 向伸展运动的擦痕证据,伸展方向为 94°,72°。 区内发育 NNW-SSE,NW-SE,NE-SW,NEE-SWW,近 SN 等几个方向的共轭节理系,表明存在过燕山期 NW-SE 向的水平 挤压构造应力场和喜山期 NE-SW 向水平挤压构造应力场,近 EW 向水平挤压应力场可能是在这两期主要构造应力场转换过 程中形成的。  相似文献   

11.
松辽盆地继承性断裂带特征及其在油气聚集中的作用   总被引:12,自引:4,他引:12  
松辽盆地沉积盖层发育三套断裂组合,即张性断块构造断裂组合、张性断块构造-滑脱型正断层组合断裂组合、扭动断裂组合。三套断裂组合主干断层具有继承发育特点,形成继承性发育断裂带。这些断裂带不仅控制了深部构造格局、中浅层沉积体系的发育与展布以及盖层的构造变形,而且对盆地油气系统中油气运移、聚集与保存发挥着重要作用,因此继承性发育断裂带周围是盆地油气的主要聚集区带。  相似文献   

12.
Age calibrated deformation histories established by detailed mapping and dating of key magmatic time markers are correlated across all tectono-metamorphic provinces in the Damara Orogenic System.Correlations across structural belts result in an internally consistent deformation framework with evidence of stress field rotations with similar timing,and switches between different deformation events.Horizontal principle compressive stress rotated clockwise ~180°in total during Kaoko Belt evolution,and~135° during Damara Belt evolution.At most stages,stress field variation is progressive and can be attributed to events within the Damara Orogenic System,caused by changes in relative trajectories of the interacting Rio De La Plata,Congo,and Kalahari Cratons.Kaokoan orogenesis occurred earliest and evolved from collision and obduction at ~590 Ma,involving E-W directed shortening,progressing through different transpressional states with ~45° rotation of the stress field to strike-slip shear under NW-SE shortening at ~550-530 Ma.Damaran orogenesis evolved from collision at ~555-550 Ma with NW-SE directed shortening in common with the Kaoko Belt,and subsequently evolved through ~90°rotation of the stress field to NE-SW shortening at ~512-508 Ma.Both Kaoko and Damara orogenic fronts were operating at the same time,with all three cratons being coaxially convergent during the 550-530 Ma period;Rio De La Plata directed SE against the Congo Craton margin,and both together over-riding the Kalahari Craton margin also towards the SE.Progressive stress field rotation was punctuated by rapid and significant switches at ~530-525 Ma,~508 Ma and ~505 Ma.These three events included:(1)Culmination of main phase orogenesis in the Damara Belt,coinciding with maximum burial and peak metamorphism at 530-525 Ma.This occurred at the same time as termination of transpression and initiation of transtensional reactivation of shear zones in the Kaoko Belt.Principle compressive stress switched from NW-SE to NNW-SSE shortening in both Kaoko and Damara Belts at this time.This marks the start of Congo-Kalahari stress field overwhelming the waning Rio De La Plata-Congo stress field,and from this time forward contraction across the Damara Belt generated the stress field governing subsequent low-strain events in the Kaoko Belt.(2)A sudden switch to E-W directed shortening at ~508 Ma is interpreted as a far-field effect imposed on the Damara Orogenic System,most plausibly from arc obduction along the orogenic margin of Gondwana(Ross-Delamerian Orogen).(3)This imposed stress field established a N-S extension direction exploited by decompression melts,switch to vertical shortening,and triggered gravitational collapse and extension of the thermally weakened hot orogen core at ~505 Ma,producing an extensional metamorphic core complex across the Central Zone.  相似文献   

13.
石炭系碳酸盐岩中大规模断层崖残留体是研究区新构造变动的显著地貌特征。相关摩擦滑动面的产状、擦痕线理定向及其运动学标志的野外观测数据表明,西起川主寺,东抵黄龙乡,中更新世(Q2)以来存在一条近东西走向的左行走滑断层。沿川主寺—黄龙左行走滑断层的位移在切错了近SN走向的岷山隆起后,向东追踪并改造先存的雪山逆冲断层,在黄龙乡以东通过3种方式发生了构造和位移转换,即(1)其前方北侧派生出一系列NE走向的左行剪切断裂;(2)沿走向位移逐渐减弱为顺层滑动;(3)其前方南侧转化为沿近SN向虎牙断裂的左旋斜冲。川主寺—黄龙断裂的构造几何学和运动学特征及其与岷江、虎牙冲断层的构造联系,支持一个左行剪切转换构造体制。松潘—平武地区的卫星遥感图像,1970—2008年的地震活动性,以及1991年以来4次GPS重复测量结果所建立的现今位移矢量场等证据表明,川主寺—黄龙左行走滑断裂系统是继东昆仑—岷江断裂组合之后发育起来的、现在仍然活动的剪切转换断裂构造,是青藏高原东缘东北角的典型地震构造样式之一,反映了青藏高原物质具有向东逃逸的趋势。  相似文献   

14.
张忠义 《地学前缘》2019,26(2):1-15
在大巴山西北侧镇巴县简池地区开展1∶10 000的地质填图和构造解析工作,重点研究露头和区域尺度上叠加褶皱变形的时空变化、成因,确定褶皱的构造属性及变形时限。研究表明未拆离的中上三叠统-中侏罗统沉积岩系中发育两组褶皱:(1)北东近东西向褶皱(F1),成组、分区断续相连,线性展布发育,代表了区域米仓山主背斜较陡倾南翼上的次级大型褶皱的枢纽带;(2)北西北北西向褶皱(F2),区域呈弧形展布,发育隔挡式褶皱组合型式,构成大巴山前陆坳陷带东部边缘的复式向斜。北西北北西向褶皱向西横跨在北东近东西向褶皱之上,形成露头尺度上的2类4种基本样式,发育大角度叠加交切的两组褶皱弯滑擦痕。北东近东西向褶皱减弱消失在同造山的上三叠统-中侏罗统(Ts1Ts4岩性段)中,上被中侏罗世晚期Ts5与Ts6岩性段包络覆盖,属中生代南秦岭碰撞造山相关的前陆生长褶皱,时限约为213~178 Ma,与米仓山构造形成晚期阶段的指向南的非共轴剪切变形有关。北西北北西向褶皱将研究区的中生代及之前岩系普遍卷入了变形,属晚中生代大巴山陆内造山带的前陆构造褶皱,时限约为160~120 Ma,区域褶皱变形长期保持稳定的总体近似纯剪的应变状态。尽管两期挤压收缩褶皱事件的时间间隔不长,但两组褶皱的样式、形成时间、构造属性与形成机制都存在巨大差异,表明区域构造环境和地壳变形机制的重大变动和转换。  相似文献   

15.
The geology of the No 1 and 3 pits at the Ranger Mine in the Pine Creek Inlier (PCI) of Australia is dominated by Palaeoproterozoic volcanic, carbonate and sedimentary sequences that unconformably overlie Archaean granitic gneiss of the Nanambu Complex (2470±50 Ma). These sequences are folded, faulted and sheared, and crosscut by east-trending granite (sensu stricto) dykes and pegmatite veins, and gently dipping N–NE trending mafic dykes of the Oenpelli Dolerite (1690 Ma). Regional metamorphism is to greenschist facies and contact metamorphism is to hornblende-hornfels facies.The rocks of the Ranger Mine have been subjected to at least two phases of ductile–brittle deformation (D2–D3) and one phase of brittle deformation (D4). These events were preceded by regional diastathermal or extension-related metamorphism (D1) and the development of an ubiquitous bedding-parallel cleavage (S1).D2 resulted in the development of NNE–NNW trending mesoscopic folds (F2) and a network of thrusts and dextral reverse shears. The modelled palaeo-stress directions for the emplacement of pegmatite veins suggests that they formed early in D2. D3 resulted in the development of WNW–NW trending mesoscopic folds (F3), a weakly defined axial planar cleavage (S3) and sinistral reactivation of D2 shears. D2–D3 are correlated with deformation during the Maud Creek Event of the Top End Orogeny (1870–1780 Ma), while the emplacement of granite dykes and pegmatite veins is correlated with emplacement of regional granites at 1870–1860 Ma.D4 is associated with brittle deformation and resulted in the development of normal faults and fault breccias during a period of east–west extension. This event is correlated with regional east–west extension during deposition of Palaeo- to Mesoproterozoic platform sequences.The sequence of tectonic events established in this study indicates that uranium-bearing ore shoots in the Ranger No 1 and 3 pits formed during extension in D4, and after emplacement of the Oenpelli Dolerite at 1690 Ma. However, the currently accepted 1737±20 U–Pb Ma age places the mineralising event at time of regional post-orogenic erosion, after the Top End Orogeny and before emplacement of the Oenpelli Dolerite and extension in D4. The U–Pb age is not consistent with Sm–Nd ages for primary uranium mineralisation at Nabarlek and Jabiluka at 1650 Ma [Econ. Geol. 84 (1989) 64] and does not concur with currently accepted regional tectonic data of Johnston [Johnston, J.D., 1984. Structural evolution of the Pine Creek Inlier and mineralisation therein, Northern Territory, Australia. Unpublished PhD Thesis, Monash University, Australia], Needham et al. [Precambrian Res. 40/41 (1988) 543] and others. Consequently, the absolute age of uranium mineralisation at the Ranger Mine is open.  相似文献   

16.
黔西北纳雍-水城一带位于扬子板块西南缘,区内断裂和褶皱极为发育。通过详细野外地质调查,并结合沉积地层接触关系,对区内构造行迹及其组合特征、构造变形期次和构造演化进行探讨。研究表明,震旦纪末至中侏罗世纳雍-水城一带经历了多次构造事件,特别是广西构造事件和印支期构造事件,导致明显的差异剥蚀,但均未造成地层褶皱变形,地层间表现为平行不整合接触。晚侏罗世以后的燕山构造期和喜山构造期才是区内发生构造变形的重要时期。纳雍-水城一带发育的NE-SW、NW-SE及近E-W向三组构造以及在NE-SW、NW-SE向两组构造交接转换部位发育的穹窿构造、构造盆地,均为侏罗纪晚期至早白垩世时期强烈构造事件的产物。其中NE-SW向褶皱及近E-W向断层先期形成,NW-SE向褶皱后期形成,并对先期形成的NE-SW向褶皱进行叠加改造。  相似文献   

17.
The Canadian Cordillera is separable into two major northerly trending tectonic units—the Pacific Orogen and the Columbian Orogen, with the latter further separated into the Omineca Crystalline Belt and the easterly Rocky Mountain Fold and Thrust Belt. Synkinematic metamorphism of Jurassic age within the Omineca Belt is thought to be associated with accretion of westerly terranes of the Pacific Orogen—more specifically the Quesnellia terrane—that was thrust easterly over the Omineca Belt towards the craton. Mylonitic rocks mark the margin between these two belts and this margin is well-exposed near Crooked Lake, central British Columbia.Structural analysis across the zone of convergence between these two terranes indicates that the cratonic basement and the accreted cover sequences have several phases of deformation and metamorphism in common. The initial common phase of deformation, wherein convergence is accomplished, is characterized by easterly verging folds that are superposed by a second common phase having westerly verging folds that deform the zone of convergence and control the present regional map pattern. A final common phase of deformation produced easterly verging folds.Change in vergence direction is interpreted as resulting from change in direction of transport related to subduction process: first obduction of Quesnellia onto the Omineca craton, followed later by easterly subduction of an oceanic Quesnellia below the craton.All evidence of transport direction(s) points to convergence occurring at very high angles to the zone of convergence. There appears to be no evidence of transport parallel with the strike of the zone. If transport has taken place parallel to the strike of the zone, then this transport occurred before convergence or evidence of this motion has been destroyed during the convergence.  相似文献   

18.
松辽盆地东缘中生代断裂构造十分发育。在对松辽盆地东缘营城组详细野外地质调查基础上,较系统刻画了断裂的性质、产状和时空分布规律,将研究区中生代断裂活动划分出海西晚期[CD1]印支期、营城期、营城末期和晚白垩世晚期4期。依据营城组火山口的分布规律首次识别出营城期隐伏断裂,该断裂控制了营城组火山岩的形成和分布。在研究区发现了营城期南北向断裂,为与徐家围子地区庆深气田营城组中的南北向断裂对比提供了重要依据。营城期本区处于近东西向伸展断陷和挤压逆冲相互交替的构造应力场中,营城末期受佳木斯-伊通和四平-哈尔滨两条左旋走滑断裂的强烈影响,形成北东-南西向的构造应力场,控制了北东向基性岩脉的侵入和大量北东向、北西向走滑断层的形成。认为研究区与徐家围子地区营城期及营城末期断裂具有明显的可比性,为庆深气田火山岩储层分布规律预测奠定了构造基础。  相似文献   

19.
纳赤台地区位于东昆仑成矿带中段,为解决该区域重要成矿带基础地质矿产等方面的问题,开展了1:5万基础地质矿产调查。结果显示: 区内构造强应变带和糜棱岩化带交替频繁出现,脆—韧性剪切带中强片理化及糜棱岩化、S-C组构、旋转碎斑和不对称褶皱等构造现象常见,EW向、NWW向构造发育; 新识别出的构造形迹和新发现的一些金铜铅锌等矿点及矿化线索,与区域上绝大多数矿床、矿点分布实例及EW向、NWW向线性构造带产出较一致,表明构造与成矿存在着直接或间接的关系。EW向、NWW向为主的构造与多金属矿床在时空和成因上有着密切的关系,昆仑河韧性剪切带形成时代为中—晚志留世(432~423 Ma),同区内新发现的二道沟白钨矿、铜金山钨锡矿的成矿时代较接近,认为该区域找矿潜力较大。  相似文献   

20.
为查明宁武煤田北部构造特征及其对石炭-二叠系的控煤作用,结合野外露头、钻孔岩性、三维地震等资料,分析了宁武煤田构造区带划分、地层结构、构造演化及应力场特征,明确了宁武煤田北部主力煤层的控煤构造。研究表明:晚古生代以来,宁武煤田主要经历了印支、燕山和喜马拉雅3期构造运动,其中燕山期构造最为复杂,具有幕式、挤压伸展交替演化,控制了煤田现今的构造格局;煤田边界主要受NE—近NS向逆冲断裂带控制,内部由平鲁向斜、朔县向斜和宁武向斜3个赋煤区构成。煤田内发育NE—NEE、近NS向和近EW向正断层,且具有叠加改造和差异性分布的特征,平面多呈斜交、平行分布,垂向多为垒堑、顺向和反向断阶构造样式,共同控制了不同井田的煤层赋存稳定区。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号