首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Full-rangenonlinearanalysisoffatiguebehaviorsofreinforcedconcretestructuresbyfiniteelementmethod¥SongYupu;ZhaoShunbo;WangRuim...  相似文献   

2.
Analysis of Collision Protection for Ocean and Offshore Structures   总被引:1,自引:0,他引:1  
1 .Introduction Many accidents of ocean and offshore structuresinvolve impact loadings .Some famous ship colli-sion cases arethe Tj rn Bridge (Sweden) ,the West Bridge of the Great Belt Link (Denmark) andtheMaracaibo Bridge (Venezuela) . Most studies usedthe Hertzian contact law(Zukaset al .,1982) tocalculate the impact force and analyze structures subjectedtoimpact loadings .Other alternative meth-ods such as the spring-dashpot and momentumbalance methods utilizedthe coefficient of rest…  相似文献   

3.
By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full-scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load.  相似文献   

4.
The bucket foundation is a new type of foundation for offshore application to intermediate-depth waters. It has advantages over conventional ones. However, there is no consensus in the analysis and design of this type of foundation. In this paper, the lateral bearing capacity and the failure mechanism of multi-bucket foundations are studied with different connection stiffness and bucket spacing by use of a three-dimensional finite element method. Based on the numerical analysis results, a limit analysis method of plasticity for evaluating the lateral bearing capacity of large-spacing multi-bucket foundation with rigid connection in soft ground is proposed. This method provides a simple procedure that gives results comparable to those from the finite element analyses.  相似文献   

5.
-The temperature distributions obtained by different methods of analysis for solving thermal transfer of reinforced concrete (R. C.) submarine oil tanks (RCSOT), including flat wall method, cylinder wall method and finite element method, are compared with the experimental data of thermal transfer of RCSOT. The precision and scope of applicability of different methods are discussed. The principle for selecting analysis method for solving thermal transfer of RCSOT is given. The analytical and experimental temperature distributions show that the wall of RCSOT should consist of double walls and empty space between them should be filled with sand or other heat insulation materials to reduce the temperature difference of the wall and to prevent concrete from cracking.  相似文献   

6.
This paper analyses nonlinear dynamics of cable towed body system. The cable has been modeled and analyzed using a new nodal position finite element method, which calculates the position of the cable directly instead of the displacement by the existing finite element method. The newly derived nodal position finite element method eliminates the need of decoupling the rigid body motion from the total motion, where numerical errors arise in the existing nonlinear finite element method, and the limitation of small rotation in each time step in the existing nonlinear finite element method. The towed body is modeled as a rigid body with six degrees of freedom while the tow ship motion is treated as a moving boundary to the system. A special procedure has been developed to couple the cable element with the towed body. The current approach can be used as design tool for achieving improved directional stability, maneuverability, safety and control characteristics with the cable towed body. The analysis results show the elegance and robustness of the proposed approach by comparing with the sea trial data.  相似文献   

7.
The dynamic response of offshore platforms is more serious in hostile sea environment than inshallow sea.In this paper,a hybrid solution combined with analytical and numerical method is proposedto compute the stochastic response of fixed offshore platforms to random waves,considering wave-struc-ture interaction and non-linear drag force.The simulation program includes two steps:the first step is theeigenanalysis aspects associated the structure and the second step is response estimation based on spectralequations.The eigenanalysis could be done through conventional finite element method conveniently andits natural frequency and mode shapes obtained.In the second part of the process,the solution of theoffshore structural response is obtained by iteration of a series of coupled spectral equations.Consideringthe third-order term in the drag force,the evaluation of the three-fold convolution should be demanded fornonlinear stochastic response analysis.To demonstrate this method,a numerical analysis is carrie  相似文献   

8.
由于海洋工程中的钢管桩具有直径大、桩壁薄和超长的特点,桩的自由站立稳定性分析是桩基设计的重要组成部分。结合海洋工程的设计实例,借助三维非线性有限元分析方法,考虑桩身变形的几何非线性特性,研究了桩身倾斜度、支撑情况以及水平荷载等因素对桩身自由站立稳定性的影响规律,并将线性分析方法和非线性分析方法得到的结果进行了比较。  相似文献   

9.
根据墨西哥湾某海域一典型固定式海洋平台为原型,按照几何相似准则和刚度相似准则设计并制作海洋平台试验模型,开展极限强度模型试验研究,观察并记录其破坏过程。并采用非线性有限元方法(ANSYS)对试验模型进行极限强度数值计算,将计算结果与试验结果对比,结果表明计算结果与试验结果吻合较好,验证非线性有限元方法的有效性。  相似文献   

10.
海上高桩承台基础结构承台部分的设计主要依靠高桩码头和桥梁等其他高桩承台结构的经验,基于在建工程,为解决设计时容易设计出过厚承台和多余配筋的问题,本文采用有限元对包括土体在内的整个风机基础进行精细化数值模拟计算,计算结果与规范算法进行对比,得到承台设计时规范算法的安全余量,同时提出配筋优化方向。结果表明:基于弹性材料模型计算结果,有限元计算结果小于规范算法计算结果,基桩最大压力相差22.43%,最大上拔力相差2.08%,弯矩差别最大为57.89%,最小为18.85%;基于弹塑性材料模型计算结果,钢筋最大应力出现在钢管桩桩头,承台顶层钢筋受力较小,设计时可加强钢管桩桩头配筋,减少承台顶层钢筋数量。  相似文献   

11.
- In this paper, the authors use the finite element method to conduct a special static analysis for the loadout procedure of offshore structures. By introducing a variable Xmove (the distance between the relative coordinate system fixed in the moving upper structure and the absolute coordinate system fixed on slideway), adopting substructure to treat the upper structure, and using the elastic foundation beam to model the slideway, the model for the analysis of the loadoul procedure is established. On the basis of this model, DASOS-J loadout program, a program system for the static analysis of loadout offshore structures, is also developed.  相似文献   

12.
Stress and deformation of offshore piles under structural and wave loading   总被引:3,自引:0,他引:3  
Various offshore structures, especially large structures such as Tension Leg Platforms (TLP), are usually supported by concrete piles as the foundation elements. The stress distribution within such a large structure is a dominant factor in the design procedure of an offshore pile. To provide a more accurate and effective design for offshore foundation systems under axial and lateral wave loads, a finite element model is employed herein to determine the stresses and displacements in a concrete pile under similar loading conditions. A parametric study is also performed to examine the effects of the stress distribution due to the changing loading conditions.  相似文献   

13.
In this paper, the foundation soil of offshore structure is simulated as a two phase saturated porous medium. The dynamic equations of porous medium and finite element formulation are given. For structural analysis, the technique of multilevel substructure is used, and the saturated soil analysis is set in the highest level substructure model. Based on these theories a dynamic finite element analysis program DIASS for the analysis of interaction between two phase ocean soil foundation and platform structures has been developed. A numerical example is given here to illustrate the influence of the pore water in soil on the structural response of an ocean platform.  相似文献   

14.
针对深海立管在理想环境和外部水环境中发生碰撞的情况,从立管碰撞最大径向位移和应力峰值两方面展开研究,充分利用ABAQUS仿真得到的数据,基于数值模拟和回归分析,提出四因素三水平的立管碰撞响应面分析方法。采用Design-Expert软件的BOX设计,对立管的非线性碰撞过程中的碰撞应力峰值和最大径向位移等两个试验指标进行回归分析并分别建立二次响应面回归模型。通过将响应面分析所得最优化解与有限元计算结果的对比,最终验证了响应面分析方法及所得模型的准确性。  相似文献   

15.
海上平台桶基沉贯渗流场的有限元法数值模拟   总被引:2,自引:1,他引:2  
桶形基础平台是一种新型的海洋平台,这种型式的平台与传统的导管架式平台的主要区别在于采用桶形基础代替打下桩基础,桶形基础的负压沉贯过程是一个复杂的水动力过程,其关键在于主动脉施加的桶内外压力差产生渗流场,渗流场的形成与发展对于负压沉贯有决定性的影响。本文用有限元分析方法对桶形基础负压沉贯流流场进行动态模拟,建立了桶形基础负压沉贯过程中渗流场的有限元分析模型,模型试验的结果与按有限元分析计算模型得一的  相似文献   

16.
A caisson breakwater is built on soft foundations after replacing the upper soft layer with sand. This paper presents a dynamic finite element method to investigate the strength degradation and associated pore pressure development of the intercalated soft layer under wave cyclic loading. By combining the undrained shear strength with the empirical formula of overconsolidation clay produced by unloading and the development model of pore pressure, the dynamic degradation law that describes the undrained shear strength as a function of cycle number and stress level is derived. Based on the proposed dynamic degradation law and M-C yield criterion, a dynamic finite element method is numerically implemented to predict changes in undrained shear strength of the intercalated soft layer by using the general-purpose FEM software ABAQUS, and the accuracy of the method is verified. The effects of cycle number and amplitude of the wave force on the degradation of the undrained shear strength of the intercalated soft layer and the associated excess pore pressure response are investigated by analyzing an overall distribution and three typical sections underneath the breakwater. By comparing the undrained shear strength distributions obtained by the static method and the quasi-static method with the undrained shear strength distributions obtained by the dynamic finite element method in the three typical sections, the superiority of the dynamic finite element method in predicting changes in undrained shear strength is demonstrated.  相似文献   

17.
The failure of a ship hull girder is governed by buckling and plastic collapse of the deck, bottom and side shell steel stiffened plates. The stiffened steel plating in ships is generally subjected to both in-plane and out-of-plane loading and is more important to understand the characteristics of these panels under buckling. Tests are reported on the collapse load of stiffened plates with and without cutout and with reinforced cutout under uniaxial compression. A generalized computer program for the semi-analytical solutions proposed by various investigators based on strut approach and orthotropic plate approach, and a finite element analysis program based on orthotropic plate approach are developed. The panels are also analysed using the finite element analysis software ANSYS. An approximate method based on strut approach is proposed to calculate the collapse load of stiffened plates with cutouts and initial imperfections. The reduction in strength of the panels due to the presence of square cutout, rectangular cutout and increase in strength due to reinforcement around rectangular cutout are calculated based on the test results. Comparisons are made between the test results and predictions based on semi-analytical solutions and finite element analyses, and the uncertainty parameters calculated are discussed. Based on this study it is concluded that the cutout can be reinforced with a maximum increase in strength up to 19% for plate initiated failures.  相似文献   

18.
Abstract

Pile foundation is the most popular option for the foundation of offshore wind turbines. The degradation of stiffness and bearing capacity of pile foundation induced by cyclic loading will be harmful for structure safety. In this article, a modified undrained elastic–plastic model considering the cyclic degradation of clay soil is proposed, and a simplified calculation method (SCM) based on shear displacement method is presented to calculate the axial degradated capacity of a single pile foundation for offshore wind turbines resisting cyclic loadings. The conception of plastic zone thickness Rp is introduced to obtain the function between accumulated plastic strain and displacement of soil around pile side. The axial ultimate capacity of single piles under axial cyclic loading calculated by this simplified analysis have a good consistency with the results from the finite element analysis, which verifies the accuracy and reliability of this method. As an instance, the behavior of pile foundation of an offshore wind farm under cyclic load is studied using the proposed numerical method and SCM. This simplified method may provide valuable reference for engineering design.  相似文献   

19.
Determining the ultimate capacity of suction caissons in response to combined vertical, horizontal, and moment loading is essential for their design as foundations for offshore wind turbines. However, the method implemented for stability analysis is quite limited. Numerical limit analysis has an advantage over traditional limit equilibrium methods and nonlinear finite element methods in this case because upper and lower bounds can be achieved to ensure that the exact ultimate capacity of the caisson falls within the appropriate range. This article presents theories related to numerical limit analysis. Simulations are conducted for centrifuge model tests, the findings of which reveal the ability of numerical limit analysis to deal with the inclined pullout capacity of suction caissons. Finally, this article proposes an estimation of the ultimate capacity of a 3.5 MW offshore wind turbine foundation on normally consolidated clay based on the typical environmental parameters of Bothkennar, Scotland. Undrained failure envelopes and safety factors are obtained for suction caissons with different embedment ratios. Failure mechanisms, plastic zones, clay stress distributions, and the influence of the skin friction coefficients of caissons are discussed in detail.  相似文献   

20.
M.J. Fadaee  H. Saffari  R. Tabatabaei   《Ocean Engineering》2008,35(17-18):1854-1861
This paper uses theorem of shakedown to assess the shakedown limit of elastic–plastic offshore structures. For this aim, an envelope of elastic response of the structure to cyclic loading cases is required. The shakedown limit is basically a valid collapse mechanism and can be quantified using yield line analysis. In this work, Melan theorem of shakedown (lower bound) is employed. Requiring simple elastic envelope and the domain defining yield lines only are the advantages of the Melan theorem. The shakedown analysis can be conducted by the finite element method (FEM), which is the main body of this paper. In order to evaluate the method of this paper, which is in fact combining the Melan theorem and the FEM, two steel offshore frames are analyzed using the proposed method and the results obtained are compared with the results of classical non-linear analysis method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号