首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We used the NIRSPEC instrument on the Keck-2 telescope atop Mauna Kea, HI to observe Comet C/2001 A2 (LINEAR) in a Target of Opportunity campaign on UT 2001 July 9.5, 10.5 August 4.4, 10.5. We measured seven organic parent volatiles (C2H6, C2H2, HCN, CH4, CO, CH3OH, H2CO) simultaneously with H2O. We obtained absolute production rates and relative abundances for parent volatiles, and also measured rotational temperatures for several of these species. The chemical composition of C/2001 A2 differs substantially from any comet we have observed to date. The abundances we measure (relative to H2O) for C2H6, C2H2, HCN, and CH3OH are enriched by a factor of ∼2 to 3 in C/2001 A2 compared with most comets in our database. Other molecular species were detected within the typical range of measured abundances. C/2001 A2 presented a unique opportunity to study the chemistry of a fragmenting comet where pristine areas are exposed to the Sun.  相似文献   

2.
C/2006 P1 McNaught is a dynamically new comet from the Oort cloud that passed very close to the Sun, driving overall volatile production rates up to about 1031 molecules s−1. Post-perihelion observations were obtained in a target-of-opportunity campaign using the CSHELL instrument at the NASA Infrared Telescope Facility atop Mauna Kea, Hawaii, on UT 2007 January 27 and 28. Eight parent volatiles (H2O, CH4, C2H2, C2H6, HCN, CO, NH3, H2CO) and two daughter fragments (OH and NH2) were detected, enabling the determination of a rotational temperature and production rate for H2O on UT January 27 and absolute and relative production rates for all the detected parent species on UT January 28. The chemical composition measured in the coma suggests that this close perihelion passage stripped off processed outer surface layers, likely exposing relatively fresh primordial material during these observations. The post-perihelion abundances we measure for CO and CH4 (relative to H2O) are slightly depleted while C2H2, NH2 and possibly NH3 are enhanced when compared to the overall comet population. Measured abundances for other detected molecular species were within the range typically observed in comets.  相似文献   

3.
We investigated the parent volatile composition of the Oort cloud Comet C/2000 WM1 (LINEAR) on 23-25 November 2001, using the Near Infrared Echelle Spectrograph on the Keck II telescope. Flux-calibrated spectra, absolute production rates, and mixing ratios are presented for H2O, HCN, CH4, C2H2, C2H6, H2CO, CH3OH and CO. Compared with “organics-normal” comets, WM1 is moderately depleted in HCN, CH4 and CH3OH, and is even more depleted in C2H2 and CO. Its composition is thus intermediate to comets that are severely depleted in their organic volatile composition and those that exhibit “normal” organic volatile abundances. We argue that WM1 may have formed closer to the young Sun than “organics-normal” comets, but at greater distance than the severely depleted comets, before its ejection to the Oort cloud. The mixing ratios of the above-listed organic volatiles agree day-by-day for 23-25 November 2001. Thus, there is no evidence of macroscopic heterogeneity in chemistry of this comet’s nucleus at the achieved measurement accuracy. As the first comet to show moderate organic depletion in parent volatiles, WM1 represents an important addition to the emerging taxonomic classification based on chemical composition.  相似文献   

4.
The neutral gas environment of a comet is largely influenced by dissociation of parent molecules created at the surface of the comet and collisions of all the involved species. We compare the results from a kinetic model of the neutral cometary environment with measurements from the Neutral Mass Spectrometer and the Dust Impact Detection System onboard the Giotto spacecraft taken during the fly-by at Comet 1P/Halley in 1986. We also show that our model is in good agreement with contemporaneous measurements obtained by the International Ultraviolet Explorer, sounding rocket experiments, and various ground based observations.The model solves the Boltzmann equation with a Direct Simulation Monte Carlo technique (Tenishev, V., Combi, M., Davidsson, B. [2008]. Astrophys. J. 685, 659-677) by tracking trajectories of gas molecules and dust grains under the influence of the comet’s weak gravity field with momentum exchange among particles modeled in a probabilistic manner. The cometary nucleus is considered to be the source of dust and the parent species (in our model: H2O, CO, H2CO, CO2, CH3OH, C2H6, C2H4, C2H2, HCN, NH3, and CH4) in the coma. Subsequently our model also tracks the corresponding dissociation products (H, H2, O, OH, C, CH, CH2, CH3, N, NH, NH2, C2, C2H, C2H5, CN, and HCO) from the comet’s surface all the way out to 106 km.As a result we are able to further constrain cometary the gas production rates of CO (13%), CO2 (2.5%), and H2CO (1.5%) relative to water without invoking unknown extended sources.  相似文献   

5.
T.Y Brooke  H.A Weaver  G Chin  S.J Kim 《Icarus》2003,166(1):167-187
High resolution infrared spectra of Comet C/1995 O1 (Hale-Bopp) were obtained during 2-5 March 1997 UT from the NASA Infrared Telescope Facility on Mauna Kea, Hawaii, when the comet was at r≈1.0 AU from the Sun pre-perihelion. Emission lines of CH4, C2H6, HCN, C2H2, CH3OH, H2O, CO, and OH were detected. The rotational temperature of CH4 in the inner coma was Trot=110±20 K. Spatial profiles of CH4, C2H6, and H2O were consistent with release solely from the nucleus. The centroid of the CO emission was offset from that of the dust continuum and H2O. Spatial profiles of the CO lines were much broader than those of the other molecules and asymmetric. We estimate the CO production rate using a simplified outflow model: constant, symmetric outflow from the peak position. A model of the excitation of CO that includes optical depth effects using an escape probability method is presented. Optical depth effects are not sufficient to explain the broad spatial extent. Using a parent+extended-source model, the broad extent of the CO lines can be explained by CO being produced mostly (∼90% on 5 March) from an extended source in the coma. The CO rotational temperature was near 100 K. Abundances relative to H2O (in percent) were 1.1±0.3 (CH4), 0.39±0.10 (C2H6), 0.18±0.04 (HCN), 0.17±0.04 (C2H2), 1.7±0.5 (CH3OH), and 37-41 (CO, parent+extended source). These are roughly comparable to those obtained for other long-period comets also observed in the infrared, though CO appears to vary.  相似文献   

6.
M.H. Moore  R.L. Hudson 《Icarus》2003,161(2):486-500
Infrared spectra and radiation chemical behavior of N2-dominated ices relevant to the surfaces of Triton and Pluto are presented. This is the first systematic IR study of proton-irradiated N2-rich ices containing CH4 and CO. Experiments at 12 K show that HCN, HNC, and diazomethane (CH2N2) form in the solid phase, along with several radicals. NH3 is also identified in irradiated N2 + CH4 and N2 + CH4 + CO. We show that HCN and HNC are made in irradiated binary ice mixtures having initial N2/CH4 ratios from 100 to 4, and in three-component mixtures have an initial N2/(CH4 + CO) ratio of 50. HCN and HNC are not detected in N2-dominated ices when CH4 is replaced with C2H6, C2H2, or CH3OH.The intrinsic band strengths of HCN and HNC are measured and used to calculate G(HCN) and G(HNC) in irradiated N2 + CH4 and N2 + CH4 + CO ices. In addition, the HNC/HCN ratio is calculated to be ∼1 in both icy mixtures. These radiolysis results reveal, for the first time, solid-phase synthesis of both HCN and HNC in N2-rich ices containing CH4.We examine the evolution of spectral features due to acid-base reactions (acids such as HCN, HNC, and HNCO and a base, NH3) triggered by warming irradiated ices from 12 K to 30-35 K. We identify anions (OCN, CN, and N3−) in ices warmed to 35 K. These ions are expected to form and survive on the surfaces of Triton and Pluto. Our results have astrobiological implications since many of these products (HCN, HNC, HNCO, NH3, NH4OCN, and NH4CN) are involved in the syntheses of biomolecules such as amino acids and polypeptides.  相似文献   

7.
Infrared observations of comets C/1996 B2 (Hyakutake) and C/1995 O1 (Hale-Bopp) benefited from the high spectral resolution and sensitivity of échelle spectrometers now equipping ground-based telescopes and from the availability of the Infrared Space Observatory (ISO). From the ground, several hydrocarbons were unambiguously detected for the first time: CH4, C2H2, C2H6. Water was observed through several of its hot vibrational bands, escaping telluric absorption. CO, HCN, NH3 and OCS were also observed, as well as several radicals. This permitted the evaluation of molecular production rates, of rotational temperature, and — taking advantage of the 1-D imaging of long-slit spectroscopy — of the space distribution of these species. With ISO, carbon dioxide was directly observed for the second time in a comet (after its detection from the Vega probes in P/Halley). The spectrum of water was investigated in detail (several bands of vibration and far-infrared rotational lines), permitting the evaluation of the rotational temperature of water, and of it spin temperature from the ortho-to-para ratio. Water ice was identified in the grains of Hale-Bopp as far as 7 AU from the ground and possibly at 3 AU with ISO. The composition of cometary volatiles appears to be strikingly similar to that of interstellar ices. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Dirty ice of a second kind (major components, H2O, CO, and N2; minor components less than several percents, NH3, CH4, and other organic substances such as HCN, CH3CN etc.) is assumed for the composition of volatiles in the cometary nucleus. The consistency with the observations of molecular ions and daughter molecules in the cometary atmosphere is argued by taking into account various ion-molecular reactions and dissociative recombinations. There is a satisfactory agreement for the second kind of dirty-ice model, but the presence of large amounts of CH4 and NH3 is found to be rather in contradiction with observational evidence. A velocity of 8 km s?1 for the hydrogen atoms, derived from analysis of the hydrogen Lyman-alpha corona around comets, is found from the dissociative recombination of H3O+, the dominant constituent of cometary ionosphere, in accordance with H3O++e ?→OH+H+H.  相似文献   

9.
Radiation synthesis has been proposed as a mechanism for changing the nature of the outer few meters of ice in a comet stored 4.6 billion years in the Oort cloud and may explain some of the differences observed between new and more evolved comets. Cometary-type ice mixtures were studied in a laboratory experiment designed to approximately simulate the expected temperature, pressure, and radiation environment of the interstellar Oort cloud region. The 2.5- to 15-μm infrared absorption features of thin ice films were analyzed near 20°K before and after 1 MeV proton irradiation. Various ice mixtures included the molecules H2O, NH3, CH4, N2, C3H8, CO, and CO2. All experiments confirm the synthesis of new molecular species in solid phase mixtures at 20°K. The synthesized molecules, identified by their infrared signatures, are C2H6, CO2, CO, N2O, NO, and CH4 (weak). Synthesized molecules, identified by gas chromatographic (GC) analysis of the volatile fraction of the warmed irradiated ice mixture, are C2H4 or C2H6, and C3H8. When CH4 is present in the irradiated ice mixture, long-chained volatile hydrocarbons and CO2 are synthesized along with high-molecular-weight carbon compounds present in the room temperature residue. Irradiated mixtures containing CO and H2O synthesize CO2 and those CO2 and H2O synthesize CO. Due to radiation synthesis, ~1% of the ice was converted into a nonvolatile residue containing complicated carbon compounds not present in blank samples. These results suggest that irrespective of the composition of newly accreted comets, initial molecular abundances can be altered and new species created as a result of radiation synthesis. Irradiated mixtures exhibited thermoluminescence and pressure enhancements during warming; these phenomena suggest irradiation synthesis of reactive species. Ourbursts in new comets resulting from similar radiation induced exothermic activity would be expected to occur beginning at distances of the order of 100 AU.  相似文献   

10.
We report on simultaneous optical and infrared observations of the Halley Family comet 8P/Tuttle performed with the ESO Very Large Telescope. Such multi-wavelength and coordinated observations are a good example of what can be done to support space missions. From high resolution optical spectroscopy of the CN (0,0) 388 nm and NH2 (0,9,0) 610 nm bands using UVES at UT2 we determined 12C/13C = 90 ± 10 and 14N/15N = 150 ± 20 in CN and we derived a nuclear spin temperature of NH3 of 29 ± 1 K. These values are similar to those found in Oort-Cloud and Jupiter Family comets. From low resolution long slit spectroscopy with FORS1 at UT2 we determined the CN, C3 and C2 production rates and the parent and daughter scale lengths up to 5.2 105 km tailward. From high resolution IR spectroscopy with CRIRES at UT1 we measured simultaneously the production rates and mixing ratios of H2O, HCN, C2H2, CH4, C2H6, and CH3OH.  相似文献   

11.
Sang J. Kim  T.R. Geballe  A. Jung  Y.C. Minh 《Icarus》2010,208(2):837-849
We present latitudinally-resolved high-resolution (R = 37,000) pole-to-pole spectra of Jupiter in various narrow longitudinal ranges, in spectral intervals covering roughly half of the spectral range 2.86-3.53 μm. We have analyzed the data with the aid of synthetic spectra generated from a model jovian atmosphere that included lines of CH4, CH3D, NH3, C2H2, C2H6, PH3, and HCN, as well as clouds and haze. Numerous spectral features of many of these molecular species are present and are individually identified for the first time, as are many lines of and a few unidentified spectral features. In both polar regions the 2.86-3.10-μm continuum is more than 10 times weaker than in spectra at lower latitudes, implying that in this wavelength range the single-scattering albedos of polar haze particles are very low. In contrast, the 3.24-3.53 μm the weak polar and equatorial continua are of comparable intensity. We derive vertical distributions of NH3, C2H2 and C2H6, and find that the mixing ratios of NH3 and C2H6 show little variation between equatorial and polar regions. However, the mixing ratios of C2H2 in the northern and southern polar regions are ∼6 and ∼3 times, respectively, less than those in the equatorial regions. The derived mixing ratio curves of C2H2 and C2H6 extend up to the 10−6 bar level, a significantly higher altitude than most previous results in the literature. Further ground-based observations covering other longitudes are needed to test if these mixing ratios are representative values for the equatorial and polar regions.  相似文献   

12.
Detections and upper limits to the continuum emission (1 ≤ λ ≤6 cm) and spectral line emission (OH, CO, CS, HCN, HCO+, CN, CH3CN, CH3C2H, NH3, H2O, HC3N, CH3CH2CN) are reported from radio observations of Comets 1983d and 1983e. Comparison is made with observations of CN at optical wavelengths. These results may be useful in planning future cometary observations.  相似文献   

13.
We present a comparative study on molecular abundances in comets basedon millimetre/submillimetre observations made with the IRAM 30-m,JCMT, CSO and SEST telescopes. This study concerns a sample of 24comets (6 Jupiter-family, 3 Halley-family, 15 long-period) observedfrom 1986 to 2001 and 8 molecular species (HCN, HNC, CH3CN,CH3OH, H2CO, CO, CS, H2S). HCN was detected in all comets,while at least 2 molecules were detected in 19 comets. From the sub-sample of comets for which contemporary H2O productionrates are available, we infer that the HCN abundance relative to water variesfrom 0.08% to 0.25%. With respect to other species, HCN is the moleculewhich exhibits the lowest abundance variation from comet to comet. Therefore,production rates relative to that of HCN can be used for a comparative study ofmolecular abundances in the 19 comets. It is found that: CH3OH/HCN varies from ≤ 9 to 64; CO/HCN varies from ≤ 24 to 180; H2CO/HCN varies between 1.6 and 10; and H2S/HCN varies between 1.5 and 7.6. This study does not show any clear correlation between the relative abundancesand the dynamical origins of the comets, or their dust-to-gas ratios.  相似文献   

14.
The formation of methylamine (CH3NH2) in the upper troposphere and lower stratosphere of Jupiter is investigated. Translationally hot hydrogen atoms are produced in the photolysis of ammonia, phosphine, and acetylene which react with methane to produce methyl (CH3) radicals; the latter recombine with NH2 to form CH3NH2. Also, methane is catalytically dissociated to CH3 + H by the species C2 and C2H produced in the photolysis of acetylene. It is shown that the combined production of CH3NH2 and subsequent photolysis to HCN is unlikely to account for the HCN observed near Jupiter's tropopause. Recombination of NH2 and C2H5N followed by photolysis to HCN is the preferred path. Production of C2H6 by these two processes is negligible in comparison to the downward flux of C2H6 from the Lyman α photolysis region of CH4. An upper limit column density on CH3PH2 is estimated to be ~1013 cm?2 as compared to 1015 cm?2 for CH3NH2. Hot H atoms account for a negligible fraction of the total ortho-para conversion by the reaction H + H2  相似文献   

15.
Observations of the Composite InfraRed Spectrometer (CIRS) during the entire nominal Cassini mission (2004-2008) provide us with an accurate global view of composition and temperature in the middle atmosphere of Titan (between 100 and 500 km). We investigated limb spectra acquired at resolution at nine different latitudes between 56°S and 80°N, with a better sampling in the northern hemisphere where molecular abundances and temperature present strong latitudinal variations. From this limb data acquired between February 2005 and May 2008, we retrieved the vertical mixing ratio profiles of C2H2, C2H4, C2H6, C3H8, CH3C2H, C4H2, C6H6, HCN, HC3N and CO2. We present here for the first time, the latitudinal variations of the C2H6, C3H8, CO2, C2H4 and C6H6 vertical mixing ratios profiles. Some molecules, such as C2H6 or C3H8 present little variations above their condensation level. The other molecules (except CO2) show a significant enhancement of their mixing ratios poleward of 50°N. C2H4 is the only molecule whose mixing ratio decreases with height at latitudes below 46°N. Regions depleted in C2H2, HCN and C4H2 are observed around 400 km (0.01 mbar) and 55°N. We also inferred a region enriched in CO2 located between 30 and 40°N in the 2-0.7 mbar pressure range. At 80°N, almost all molecules studied here present a local minimum of their mixing ratio profiles near 300 km (∼0.07 mbar), which is in contradiction with Global Circulation Models that predict constant-with-height vertical profiles due to subsidence at the north pole.  相似文献   

16.
Weaver  H. A.  Brooke  T. Y.  Chin  G.  Kim  S. J.  Bockelée-Morvan  D.  Davies  J. K. 《Earth, Moon, and Planets》1997,78(1-3):71-80
High resolution (λ/δλ ∼ 20,000) spectra of comet C/1995 O1 (Hale-Bopp) in the 2–5 μm region were obtained during UT 2–5 March 1997 using CSHELL at the NASA Infrared Telescope Facility (IRTF) on Mauna Kea. The heliocentric and geocentric distances of the comet were ∼1.1 AU and ∼1.5 AU,respectively. We detected emission lines of the gas-phase molecules H2O, 4, C2H6, C2H2, HCN, and CO and derived absolute production rates and relative abundances for all species. We also used the 2-dimensional nature of the CSHELL data to investigate the spatial distribution of the molecules and find evidence that CO was derived at least partly from an extended source in the coma. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
E.L. Gibb  M.J. Mumma  M.A. DiSanti 《Icarus》2003,165(2):391-406
We detected CH4 in eight Oort cloud comets using high-dispersion (λλ∼2×104) infrared spectra acquired with CSHELL at NASA's IRTF and NIRSPEC at the W.M. Keck Observatory. The observed comets were C/1995 O1 (Hale-Bopp), C/1996 B2 (Hyakutake), C/1999 H1 (Lee), C/1999 T1 (McNaught-Hartley), C/1999 S4 (LINEAR), C/2000 WM1 (LINEAR), C/2001 A2 (LINEAR), and 153/P Ikeya-Zhang (C/2002 C1). We detected the R0 and R1 lines of the ν3 vibrational band of CH4 near 3.3 μm in each comet, with the exception of McNaught-Hartley where only the R0 line was measured. In order to obtain production rates, a fluorescence model has been developed for this band of CH4. We report g-factors for the R0 and R1 transitions at several rotational temperatures typically found in comet comae and relevant to our observations. Using g-factors appropriate to Trot as determined from HCN, CO and/or H2O and C2H6, CH4 production rates and mixing ratios are presented. Abundances of CH4/H2O are compared among our existing sample of comets, in the context of establishing their place of origin. In addition, CH4 is compared to native CO, another hypervolatile species, and no correlation is found among the comets observed.  相似文献   

18.
W.M. Grundy  L.A. Young 《Icarus》2004,172(2):455-465
We present eight new 0.8 to 2.4 μm spectral observations of Neptune's satellite Triton, obtained at IRTF/SpeX during 2002 July 15-22 UT. Our objective was to determine how Triton's near-infrared spectrum varies as Triton rotates, and to establish an accurate baseline for comparison with past and future observations. The most striking spectral change detected was in Triton's nitrogen ice absorption band at 2.15 μm; its strength varies by about a factor of two as Triton rotates. Maximum N2 absorption approximately coincides with Triton's Neptune-facing hemisphere, which is also the longitude where the polar cap extends nearest Triton's equator. More subtle rotational variations are reported for Triton's CH4 and H2O ice absorption bands. Unlike the other ices, Triton's CO2 ice absorption bands remain nearly constant as Triton rotates. Triton's H2O ice is shown to be crystalline, rather than amorphous. Triton's N2 ice is confirmed to be the warmer, hexagonal, β N2 phase, and its CH4 is confirmed to be highly diluted in N2 ice.  相似文献   

19.
We present new experimental results on impact shock chemistry into icy satellites of the outer planets. Icy mixtures of pure water ice with CO2, Na2CO3, CH3OH, and CH3OH/(NH4)2SO4 at 77 K were ablated with a powerful pulsed laser—a new technique used to simulate shock processes which can occur during impacts. New products were identified by GC-MS and FTIR analyses after laser ablation. Our results show that hydrogen peroxide is formed in irradiated H2O/CO2 ices with a final concentration of 0.23%. CO and CH3OH were also detected as main products. The laser ablation of frozen H2O/Na2CO3 generates only CO and CO2 as destruction products from the salt. Pulsed irradiation of water ice containing methanol leads also to the formation of CO and CO2, generates methane and more complex molecules containing carbonyl groups like acetaldehyde, acetone, methyl formate, and a diether, dimethyl formal. The last three compounds are also produced when adding ammonium sulfate to H2O/CH3OH ice, but acetone is more abundant. The formation of two hydrocarbons, CH4 and C2H6 is observed as well as the production of three nitrogen compounds, nitrous oxide, hydrogen cyanide, and acetonitrile.  相似文献   

20.
Lis  D. C.  Mehringer  D. M.  Benford  D.  Gardner  M.  Phillips  T. G.  Bockelée-Morvan  D.  Biver  N.  Colom  P.  Crovisier  J.  Despois  D.  Rauer  H. 《Earth, Moon, and Planets》1997,78(1-3):13-20
We present millimeter-wave observations of HNCO, HC3N, SO, NH2CHO, H13CN, and H3O+ in comet C/1995 O1 (Hale-Bopp)obtained in February–April, 1997 with the Caltech Submillimeter Observatory (CSO). HNCO, first detected at the CSO in comet C/1996B2 (Hyakutake), is securely confirmed in comet Hale-Bopp via observations of three rotational transitions. The derived abundance with respect to H2O is (4-13) × 10-4. HC3N, SO, and NH2CHO are detected for the first time in a comet. The fractional abundance of HC3N based on observations of three rotational lines is (1.9 ± 0.2) × 10-4. Four transitions of SO are detected and the derived fractional abundance, (2-8) ×10-3, is higher than the upper limits derived from UV observations of previous comets. Observations of NH2CHO imply a fractional abundance of (1-8) × 10-4. H3O is detected for the first time from the ground. The H13CN (3-2)transition is also detected and the derived HCN/H13CN abundance ratio is 90 ± 15, consistent with the terrestrial12C/13C ratio. In addition, a number of other molecular species are detected, including HNC, OCS, HCO+, CO+, and CN(the last two are first detections in a comet at radio wavelengths). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号