首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The Jiashian earthquake (ML 6.4) occurred on 4 March 2010. It was the largest inland event in southern Taiwan of 2010. The mainshock location was unexpected since it occurred in an area with relatively low background seismicity. In addition, reports of earthquake focal mechanisms do not fit with any known active fault geometry. In order to understand the origin of this earthquake, especially its rupture process, we perform a joint source inversion by using teleseismic body wave, GPS coseismic displacements and near field ground motion data. In this study, we considered a northwest–southeast trending fault with a northeast dip retrieved from GPS coseismic data and aftershocks distribution. To analyze the detailed slip distribution in space and time, we used near field 3D Green’s functions provided by spectral-element method and a full time–space inversion technique. We find a complex rupture process with several slip patches distributed inside two main asperities. The slip map reveals a mean slip of 12.9 cm for a maximum slip of 27.3 cm leading to a Mw 6.47 for this event. The rupture initiates in the deepest portion of the fault at 20 km depth, and propagated upward up to 2 km depth to form the two asperities. The source time function of this event revealed two pulses corresponding to the two asperities, for a total duration time of about 16 s. Most aftershocks occurred near the upper boundary of the deepest asperity while no aftershocks are located close to the shallowest one. We infer that the locations of these slip patches are related to the surrounding fault systems that may have restricted the rupture propagation during the earthquake.  相似文献   

2.
The Mw 9.3 Sumatra earthquake of December 26, 2004 caused extensive coseismic displacements globally, measurements of which were made essentially using modern geodetic techniques. This earthquake induced considerable perturbation in stress distribution as far as ∼8000 km away from the epicenteral region, which is tending to relax to its normal rates as seen from postseismic transient deformation. The monitoring of crustal displacements from strategically located sites using GPS provides coseismic as well as postseismic deformation that facilitates the understanding of the fault geometry, elastic thickness, postseismic relaxation mechanisms, rheology and earthquake recurrence time interval.We investigated coseismic and postseismic GPS derived displacements in Indian region together with the GPS data collected from Andaman and Sumatra region. It is found that while EW displacements are significantly large in peninsular India, those in the region to the north of Central India Tectonic Zone (CITZ) are relatively small. We could delineate the postseismic transients from position time series and interpreted them in terms of viscoelastic relaxation. It is inferred that the postseismic deformation is characterized by a power-law viscoelastic flow in the mantle. In Indian peninsula region, the timescale parameter of the exponential decay (τ = 250 days) would require an extremely low viscosity for the upper mantle. Relying on the prevailing coseismic and postseismic displacement fields, the present study also reflects upon the contemporary litho-tectonics of the Indian sub-continent.  相似文献   

3.
Poroelastic relaxation and aftershocks of the 2001 Bhuj earthquake, India   总被引:1,自引:0,他引:1  
We analyse aftershocks of the 26 January 2001 Bhuj earthquake, India, that were recorded for 10 weeks following the mainshock. We calculate undrained or instantaneous pore pressure and change in Coulomb stress due to the earthquake and their poroelastic relaxation in the following 10 weeks period. Almost all aftershocks occurred in the region of coseismic dilatation. In the subsequent period, pore pressure increased through relaxation in the dilatation region which further modified coseismic Coulomb stress. Maximum increase in pore pressure is estimated to be about 0.7 MPa in 60 days time following the mainshock. Correlation between the zones of increased pore pressure and postseismic Coulomb stress with that of aftershocks, suggests a definite role of fluid diffusion in their delayed triggering.  相似文献   

4.
大地震导致的同震及震后效应,对于分析不同地震之间的相互影响及区域地震危险性等有着重要的作用。文中开发了模拟地震同震及震后效应的三维黏弹性有限元程序,通过计算走滑断层震例(概念性模型)引起的同震及震后效应,并与解析/半解析解进行对比,验证了程序的可靠性。同时基于概念性模型,分析了不同介质参数对同震及震后的地表变形的影响。研究表明,地球介质的横向不均匀性对地震同震位移有显著的影响,而中下地壳上地幔的黏度对震后效应起着主要控制作用。最后将该程序应用于青藏高原东缘,计算分析了2008年MW7.9汶川大地震导致的同震及震后库仑应力变化对2013年MW6.6芦山地震及2017年MW6.5九寨沟地震的影响。结果显示,汶川地震导致的库仑应力变化在芦山地震震源附近(0.013 MPa)及九寨沟地震震源附近(0.009 MPa)都为正值,说明汶川地震可能使得两次地震提前发生。   相似文献   

5.
The November 27, 2005 Qeshm Island earthquake (Mw 6.0) occurred along the Zagros Thrust and Fold Belt which accommodates about half of the deformation caused by the Arabian and Eurasian Plates convergence. As typical for the belt, the earthquake was associated with buried reverse faulting and produced no surface rupture. Here, teleseismic broadband P velocity waveforms of the earthquake are inverted to obtain coseismic finite-fault slip distribution of the earthquake. It is obtained that rupture was controlled by failure of a single asperity with largest displacement of approximately 0.6 m, which occurred at a depth of 9 km. The slip model indicated radial rupture propagation from the hypocentre and confirmed blind reverse faulting within deeper part (below the depth of 6 km) of the sedimentary cover above the Hormuz Salt, lying between the cover and the basement, releasing a seismic moment of about 1.3?×?1018 Nm (MW?=?6.0). The results also confirm that the Hormuz Salt behaves as a barrier for rupture propagation to the basement below and occurrence of the aftershock activity downdip from the rupture within the Hormuz Salt. Calculated Coulomb stress variations caused by the coseismic rupture indicates stress coupling between the 2005 Qeshm Island earthquake and both the largest aftershock several hours later and the 2008 Qeshm Island earthquake (MW?=?5.9). The stress calculations further indicated stress load at the depth range (15–20 km) of the well-located aftershocks, corresponding to depths of the Hormuz Salt and top of the basement and providing plausible explanation for occurrence of the aftershocks within those layers.  相似文献   

6.
The Mw 9.0 Tohoku-Oki earthquake that occurred off the Pacific coast of Japan on March 11, 2011, was followed by thousands of aftershocks, both near the plate interface and in the crust of inland eastern Japan. In this paper, we report on two large, shallow crustal earthquakes that occurred near the Ibaraki-Fukushima prefecture border, where the background seismicity was low prior to the 2011 Tohoku-Oki earthquake. Using densely spaced geodetic observations (GPS and InSAR datasets), we found that two large aftershocks in the Iwaki and Kita-Ibarake regions (hereafter referred to as the Iwaki earthquake and the Kita-Ibarake earthquake) produced 2.1 m and 0.44 m of motion in the line-of-sight (LOS), respectively. The azimuth-offset method was used to obtain the preliminary location of the fault traces. The InSAR-based maximum offset and trace of the faults that produced the Iwaki earthquake are consistent with field observations. The fault location and geometry of these two earthquakes are constrained by a rectangular dislocation model in a multilayered elastic half-space, which indicates that the maximum slips for the two earthquakes are 3.28 m and 0.98 m, respectively. The Coulomb stress changes were calculated for the faults following the 2011 Mw 9.0 Tohoku-Oki earthquake based on the modeled slip along the fault planes. The resulting Coulomb stress changes indicate that the stresses on the faults increased by up to 1.1 MPa and 0.7 MPa in the Iwaki and Kita-Ibarake regions, respectively, suggesting that the Tohoku-Oki earthquake triggered the two aftershocks, supporting the results of seismic tomography.  相似文献   

7.
Two moderate magnitude earthquakes (M5.5 and M5.4) occurred in January 2010 with their epicenters at a distance of about 5?km between them, in the western part of the Corinth Gulf. The recordings of the regional seismological network, which is dense locally, were used for the location of the two main events and aftershocks, which are concentrated in three clusters beneath the northern coasts of the Gulf. The first two clusters accompany each one of the two stronger earthquakes, whereas the third cluster comprises only low magnitude aftershocks, located westward of the two stronger events. Seismic excitation started in January 18, 2010, with the M?=?5.5 earthquake in the area occupied by the central cluster. Seismicity immediately jumped to the east with numerous aftershocks and the M?=?5.4 earthquake which occurred four days later (January 22, 2010). Cross sections normal to the long axis of each cluster show ruptures on north dipping faults at depths of 7?C11?km. Focal mechanisms of the stronger events of the sequence support the results obtained from the spatial distribution of the aftershocks that three different fault segments activated in this excitation. The slip vectors of all the events have an NNW?CSSE to NNE?CSSW orientation almost parallel to the direction of extension along the Corinth Gulf. Calculation of the Coulomb stress changes supports an interaction between the different clusters, with the major activity being coincided with the area of positive induced stress changes after the first earthquake.  相似文献   

8.
The 12 September 2007 great Bengkulu earthquake (M w 8.4) occurred on the west coast of Sumatra about 130 km SW of Bengkulu. The earthquake was followed by two strong aftershocks of M w 7.9 and 7.0. We estimate coseismic offsets due to the mainshock, derived from near-field Global Positioning System (GPS) measurements from nine continuous SuGAr sites operated by the California Institute of Technology (Caltech) group. Using a forward modelling approach, we estimated slip distribution on the causative rupture of the 2007 Bengkulu earthquake and found two patches of large slip, one located north of the mainshock epicenter and the other, under the Pagai Islands. Both patches of large slip on the rupture occurred under the island belt and shallow water. Thus, despite its great magnitude, this earthquake did not generate a major tsunami. Further, we suggest that the occurrence of great earthquakes in the subduction zone on either side of the Siberut Island region, might have led to the increase in static stress in the region, where the last great earthquake occurred in 1797 and where there is evidence of strain accumulation.  相似文献   

9.
The satellite radiointerferometry data revealed deformations of the coastal part of Sakhalin Island caused by the earthquake with M w = 6.2 that occurred in the Tatar Strait near Nevelsk. Based on the joint analysis of the satellite and seismological data, dislocation models were contrived for the main shock and its strong aftershocks with the western dip of the fault planes. This made it possible to determine the source mechanisms and the geometrical parameters of the seismic ruptures and to calculate the coseismic vertical and horizontal displacements. In contrast to the one-dimensional model of the insular land displacements determined from the satellite radiointerferometry measurements, this provided a three-dimensional model of the surface deformations for the epicentral zone.  相似文献   

10.
以山东郯城1668年大地震为例,以前人地表地质调查结果为约束,利用弹性位错理论初步获取了该地震的同震破裂模型;在此基础上,基于粘弹性分层模型分析了该地震的同震和震后形变,同时以主震断层为接收断层计算了库仑应力分布,进一步讨论了地幔不同粘滞性系数对地表形变和库仑应力变化的影响。计算结果显示,该地震是一个右旋走滑为主兼有一定逆冲性质的地震,其同震位移巨大,能量释放较彻底;同震破裂造成震中郯城县西北、东北和南部部分断层库仑应力增加,而震后形变使得这些断层库仑应力进一步增加,在单县、宿迁和日照等地,地震后350 a库仑应力变化量达到+1bar-+1MPa量级;地幔粘滞性系数不同,形变量和库仑应力变化达到稳定的时间不同,但最终趋于稳定的数值基本一致。  相似文献   

11.
A damaging and widely felt moderate (Mw 5.0) earthquake occurred in the Talala region of Saurashtra, Gujarat (western India) on November 6, 2007. The highly productive sequence comprised about 1300 micro earthquakes (M > 0.5) out of which 325 of M ? 1.5 that occurred during November 6, 2007–January 10, 2008 were precisely located. The spatial aftershock distribution revealed a NE–SW striking fault in accordance with the centroid moment tensor solution, which in turn implies left-lateral motion. The orientation and sense of shear are consistent with similarly orientated geological fault identified in the area from satellite imagery and field investigation.The aftershocks temporal decay, b-value of frequency–magnitude distribution, spatial fractal dimension, D, and slip ratio (ratio of the slip occurred on the primary fault to the total slip) were examined with the purpose to identify the properties of the sequence. The high b-value (1.18 ± 0.01) may be attributed to the paucity of the larger (M ? 4.0) aftershocks and reveals crustal heterogeneity and low stress regime. The high p-value (1.10 ± 0.39), implying fast decay rate of aftershocks, evidences high surface heat flux. A value of the spatial fractal dimension (D) equal to 2.21 ± 0.02 indicates random spatial distribution and source in a two-dimensional plane that is being filled-up by fractures. A slip ratio of 0.42 reveals that more slip occurred on secondary fault systems.The static Coulomb stress changes due to the coseismic slip of the main shock, enhanced off fault aftershock occurrence. The occurrence of a moderate earthquake (Mw 4.3) on October 5, 2008 inside a region of positive Coulomb stress changes supports the postulation on aftershock triggering. When the stress changes were resolved on a cross section including the stronger (M4.8) foreshock plane that is positioned adjacent to the main fault, it became evident that the activity continued there due to stress transfer from the main rupture.  相似文献   

12.
The Okhotsk deep focus earthquake (M w = 8.3), the largest in the history of instrumental seismology, occurred on May 24, 2013, at 05:45 UTC in the Sea of Okhotsk near the western coast of the Kamchatka Peninsula. For the first time we have succeeded in catching the field of horizontal and vertical coseismic offsets generated by a strong deep seismic event, and investigating its characteristics using continuous GPS measurements. Based on these data and taking into account the seismological information, we have developed a dislocation model of the Okhotsk deep focus earthquake.  相似文献   

13.
The paper is focused on recent displacement rates in the Altai-Sayan region, obtained by hydroleveling, leveling, and satellite geodesy. Effective elastic moduli and viscosity parameters of the crust are used in the modeling of coseismic and tectonic processes. The elastic moduli are determined from measurements of periodic vertical displacements during seasonal loadings of the Sayano-Shushenskaya hydropower plant. We present the results of the modeling of coseismic displacements during the earthquakes of 10 February 2011 (M = 6.1) and 27 December 2011 (M = 6.7) in Tuva and West Sayan. The results of GPS determinations for postseismic displacements in the Chuya earthquake zone (Gorny Altai, 27 September 2003, M = 7.5) are analyzed; models for the geologic medium are selected; and its effective viscosity is estimated. The tectonic component of the recent crustal displacements in the Altai-Sayan region is defined.  相似文献   

14.
2008年MS 8.0级汶川大地震发生在具有复杂的地质构造背景、强烈的地表起伏、不均匀的弹性和黏性结构的龙门山断裂带上。由于震前地震活动性不够强烈且地表构造变形较小,龙门山断裂带的地震危险性在汶川地震之前被低估。从数值模拟的角度,建立黏弹性有限元模型,考虑了初始地形、重力、构造加载、黏弹性松弛等因素对2008年汶川大地震的孕震、同震及震后150年变形全过程的影响,定量研究了映秀-北川断裂带的同震及震后变形,分析了弹性层、黏弹性层的应力积累、释放、调整的特点,模拟得到地表同震和震后位移与大地测量资料较为吻合,对汶川大地震的余震分布进行了力学上的解释,模拟得到震前、同震及震后的应力变化有助于深入分析大地震的动力学成因及其对周围区域的地震危险性影响。   相似文献   

15.
汶川"5.12"8.0级特大地震,造成重大人员伤亡和财产损失。地震对周围地区断层活动性的影响和余震发展方向是人们关心的一个问题。根据汶川地震同震静态位移我们计算了周围地区一些断层的库仑应力变化,并据此评价了震后周围地区断层和地震的活动性。计算结果表明,龙门山断裂带东北段,包括北川、青川、宁强等地,为库仑应力增强区,有利于地震的发生。较大的余震分布与库仑应力增强区有较好的对应关系。鲜水河断裂带主要为库仑应力下降区,只有一小段为增高区,鲜水河断裂带总体上不利于地震活动。成都地区的西北部库仑应力增强,东南部应力下降。库仑应力变化的研究对大震后地震趋势的分析有重要意义。  相似文献   

16.
The recent 10 August 2009 Coco earthquake (Mw 7.5), the largest aftershock of the giant 2004 Sumatra Andaman earthquake, occurred within the subducting India plate under the Burma plate. The Coco earthquake nucleated near the northwestern edge of the 2004 Sumatra-Andaman earthquake rupture under the unruptured updip segment of the plate boundary interface. The earthquake with predominant normal motion on approximately north-south to northeast-southwest oriented plane is very similar to the 27 June 2008 Little Andaman earthquake which occurred in the South Andaman region near the trench. We provide the only available estimate of coseismic offset due to the 2009 Coco earthquake at a survey-mode GPS site in the north Andaman, located about 60 km south of the Coco earthquake epicentre. The not so large coseismic displacement of about 2 cm in the ESE direction is consistent with the earthquake focal mechanism and its magnitude. We suggest that, like the 2008 Little Andaman earthquake, this earthquake too occurred on one of the approximately north-south to northeast-southwest oriented steep planes of the obliquely subducting 90°E ridge which was reactivated in normal motion after subduction, under the favourable influence of coseismic and ongoing postseismic deformation due to the 2004 Sumatra-Andaman earthquake. Another notable feature of this earthquake is its relatively low aftershock productivity. We suggest that the earthquake occurred very close to the aseismic region of the Irrawaddy frontal arc of very low seismicity where pre-existing faults are not so critically stressed and because of which the earthquake could trigger only a few aftershocks in its immediate vicinity.  相似文献   

17.
Seismogenesis of aftershocks occurring in the Kachchh seismic zone for more than last 10?years is investigated through modeling of fractal dimensions, b-value, seismic velocities, stress inversion, and Coulomb failure stresses, using aftershock data of the 2001 Bhuj earthquake. Three-dimensional mapping of b-values, fractal dimensions, and seismic velocities clearly delineate an area of high b-, D-, and Vp/Vs ratio values at 15?C35?km depth below the main rupture zone (MRZ) of the 2001 mainshock, which is attributed to higher material heterogeneities in the vicinity of the MRZ or deep fluid enrichment due to the release of aqueous fluid/volatile CO2 from the eclogitisation of the olivine-rich lower crustal rocks. We notice that several aftershocks are occurred near the contacts between high (mafic brittle rocks) and low velocity regions while many of the aftershocks including the 2001 Bhuj mainshock are occurred in the zones of low velocity (low dVp, low dVs and large Vp/Vs) in the 15?C35?km depth range, which are inferred to be the fractured rock matrixes filled with aqueous fluid or volatiles containing CO2. Further support for this model comes from the presence of hydrous eclogitic layer at sub-lithospheric depths (34?C42?km). The depth-wise stress inversions using the P- and T-axes data of the focal mechanisms reveal an increase in heterogeneity (i.e., misfit) with an almost N?CS ??1 orientation up to 30?km depth. Then, the misfit decreases to a minimum value in the 30?C40?km depth range, where a 60o rotation in the ??1 orientation is also noticed that can be explained in terms of the fluid enrichment in that particular layer. The modeling of Coulomb failure stress changes (??CFS) considering three tectonic faults [i.e., NWF, GF, and Allah bund fault (ABF)] and the slip distribution of the 2001 mainshock on NWF could successfully explain the occurrences of moderate size events (during 2006?C2008) in terms of increase in positive ??CFS on GF and ABF. In a nutshell, we propose that the fluid-filled mafic intrusives are acting as stress accentuators below the Kachchh seismic zone, which generate crustal earthquakes while the uninterrupted occurrence of aftershocks is triggered by stress transfer and aqueous fluid or volatile CO2 flow mechanisms. Further, our results on the 3-D crustal seismic velocity structure, focal mechanisms, and b-value mapping will form key inputs for understanding wave propagation and earthquake hazard-related risk associated with the Kachchh basin.  相似文献   

18.
We present the seismic energy, strain energy, frequency–magnitude relation (b-value) and decay rate of aftershocks (p-value) for the aftershock sequences of the Andaman–Sumatra earthquakes of December 26, 2004 (M w 9.3) and March 28, 2005 (M w 8.7). The energy released in aftershocks of 2004 and 2005 earthquake was 0.135 and 0.365% of the energy of the respective mainshocks, while the strain release in aftershocks was 39 and 71% for the two earthquakes, respectively. The b-value and p-value indicate normal value of about 1. All these parameters are in normal range and indicate normal stress patterns and mechanical properties of the medium. Only the strain release in aftershocks was considerable. The fourth largest earthquake in this region since 2004 occurred in September 2007 off the southern coast of Island of Sumatra, generating a relatively minor tsunami as indicated by sea level gauges. The maximum wave amplitude as registered by the Padang, tide gauge, north of the earthquake epicenter was about 60 cm. TUNAMI-N2 model was used to investigate ability of the model to capture the minor tsunami and its effect on the eastern Indian Coast. A close comparison of the observed and simulated tsunami generation, propagation and wave height at tide gauge locations showed that the model was able to capture the minor tsunami phases. The directivity map shows that the maximum tsunami energy was in the southwest direction from the strike of the fault. Since the path of the tsunami for Indian coastlines is oblique, there were no impacts along the Indian coastlines except near the coast of epicentral region.  相似文献   

19.
We have computed static stress changes associated to several earthquakes occurred in the Apennine chain, in Italy. Stress associated with fault slip has been computed by the Okada (1992) formulation. Static Coulomb stress changes associated to three subevents forming the Irpinia, 1980, Ms=6.9 main shock indicate that such subevents have been consecutively triggered, each one by stress changes produced by previous ones. Furthermore, aftershocks of this complex faulting event are well correlated with zones of maximum increase of Coulomb stress. The interplay of regional stress and of local stress changes due to the mainshock produces an aftershock distribution considerably wide and a large variability of focal mechanisms. Variability of focal mechanism is consistent with a low level of background regional stress (less than 2 Mpa). The analysis of two further seismic sequence in the central Apennine, occurred on 1979 close to Norcia town (ML=5.9) and on 1984 in National Park of Abruzzo (ML=5.5), also show a clear correlation of aftershock occurrence with positive Coulomb stress changes generated by mainshocks. The static stress change due to the mainshock of 1984, in Abruzzo region, is likely to have triggered, 4 days after, a further mainshock (ML=5.1) on the northern edge prolongation of the main fault, where the Coulomb stress change is maximum.Such evidences indicate a strong correlation among earthquakes in the Apennine chain, trough static stress changes, at several time and space scales. Modelling of such effects is useful both for improving our knowledge of the earthquake dynamics and for a better evaluation of seismic hazard in Italy.  相似文献   

20.
汶川8.0级大地震震源机制与构造运动特征   总被引:2,自引:2,他引:0       下载免费PDF全文
徐纪人  赵志新 《中国地质》2010,37(4):967-977
根据地震震源机制、断层参数结果,结合GPS测定的同震位移场与构造研究的最新结果,综合分析研究了2008年汶川8级大地震汶川地震发生的地震活动背景、震源应力场、断层构造运动特征及其动力学机制。地震活动性分析研究结果表明,2008年汶川8级大地震是在青藏高原与其周边地域构造运动剧烈,2001年起始的地震活动高潮期的背景下发生的。其长达300km的地震震源断层填补了青藏高原东缘1900年以来存在的8级地震活动的空区。震源机制与区域应力场特征及其动力学机制研究表明,汶川8级地震震源处于南北地震带中南段东部,青藏高原东向扩张与四川盆地的抵抗是该区构造运动的主要特征。汶川地震及其强余震是在一个稳定的、主压应力P轴以北西西-东南东方向为主的震源应力场控制下发生的。说明汶川地震震源区域主要受到四川盆地、华南块体区域应力场的控制并发震的。龙门山断裂带西侧的青藏高原相对于四川盆地发生的东向上升;而东侧的四川盆地相对于青藏高原发生的西向下降构造运动是2008年汶川8级地震发生的主要地震成因即地震发生机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号