首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
A new response spectrum method, which is named complex multiple-support response spectrum (CMSRS) method in this article, is developed for seismic analysis of non-classically damped linear system subjected to spatially varying multiple-supported ground motion. The CMSRS method is based on fundamental principles of random vibration theory and properly accounts for the effect of correlation between the support motions as well as between the modal displacement and velocity responses of structure, and provides an reasonable and acceptable estimate of the peak response in term of peak seismic ground motions and response spectra at the support points and the coherency function. Meanwhile, three new cross-correlation coefficients or cross covariance especially for the non-classically damped linear structures with multiple-supports excitations are derived under the same assumptions of the MSRS method of classically damped system. The CMSRS method is examined and compared to the results of time history analyses in two numerical examples of non-classically damped structures in consideration of the coherences of spatially variable ground motion. The results show that for non-classically damped structure, the cross terms representing the cross covariance between the pseudo-static and dynamic component are also quite small just as same as classically damped system. In addition, it is found that the usual way of neglecting all the off-diagonal elements in transformed damping matrix in modal coordinates in order to make the concerned non-classically damped structure to become remaining proportional damping property will bring some errors in the case of subjected to spatially excited inhomogeneous ground motion.  相似文献   

2.
A new response-spectrum mode superposition method, entirely in real value form, is developed to analyze the maximum structural response under earthquake ground motion for generally damped linear systems with repeated eigenvalues and defective eigenvectors. This algorithm has clear physical concepts and is similar to the complex complete quadratic combination (CCQC) method previously established. Since it can consider the effect of repeated eigenvalues, it is called the CCQC-R method, in which the correlation coefficients of high-order modal responses are enclosed in addition to the correlation coefficients in the normal CCQC method. As a result, the formulas for calculating the correlation coefficients of high-order modal responses are deduced in this study, including displacement, velocity and velocity-displacement correlation coefficients. Furthermore, the relationship between high-order displacement and velocity covariance is derived to make the CCQC-R algorithm only relevant to the high-order displacement response spectrum. Finally, a practical step-by-step integration procedure for calculating high-order displacement response spectrum is obtained by changing the earthquake ground motion input, which is evaluated by comparing it to the theory solution under the sine-wave input. The method derived here is suitable for generally linear systems with classical or non-classical damping.  相似文献   

3.
A simple modal damping identification model developed by the present authors for classically damped linear building frames is extended here to the non-classically damped case. The modal damping values are obtained with the aid of the frequency domain modulus of the roof-to-basement transfer function and the resonant frequencies of the structure (peaks of the transfer function) as well as the modal participation factors and mode shapes of the undamped structure. The assumption is made that the modulus of the transfer function of the non-classically damped structure matches the one of the classically damped structure in a discrete manner, i.e., at the resonant frequencies of that function modulus. This proposed approximate identification method is applied to a number of plane building frames with and without pronounced non-classical damping under different with respect to their frequency content earthquakes and its limitations and range of applicability are assessed with respect to the accuracy of both the identified damping ratios and that of the seismic structural response obtained by classical mode superposition and use of those identified modal damping ratios.  相似文献   

4.
A recently proposed procedure for interrelating the steady-state and transient responses of multi-degree-of-freedom, classically damped linear systems is extended to non-classically damped systems. The extension is formulated for baseexcited systems, and it is illustrated by simple examples.  相似文献   

5.
A procedure is presented to determine new modal combination rules (both CQC and SRSS) for non‐classically damped structures. The procedure presented in this paper does not need the solution of any complex eigenvalue problem, in contrast to other methods found in the literature. Thus, the modal combination rules presented here are easily applicable, even by those engineers who are unaccustomed to using complex algebra. Moreover, these formulations show the further advantage of requiring the response spectra only for the target damping ratio value. So the use of approximated formulae, necessary for passing from the response spectrum with the target damping ratio value to other ones, is avoided. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
Two mode combination methods are presented for structures with non-classical (non-proportional) damping. They are of the same level of complexity as the well-known SRSS and CQC methods. They require only a single, real-valued participation factor for each mode, a single correlation coefficient, and standard relative displacement response spectra. A base-isolation study shows that the standard SRSS and CQC methods for classically damped structures give under-conservative response predictions, and that the proposed methods give accurate predictions.  相似文献   

7.
In stochastic analysis the knowledge of cross-correlation coefficients is required in order to combine the response of the modal Single-Degree-Of-Freedom (SDOF) oscillators for obtaining the nodal response. Moreover these coefficients play a fundamental role in the seismic analysis of structures when the response spectrum method is used. In fact they are used in some modal combination rules in order to obtain the maximum response quantities starting from the modal maxima. Herein a method for the evaluation of the cross-correlation coefficients for non-classically damped systems is presented. It is defined in the time domain instead of the frequency domain as usually encountered in the literature. Although non-classically damped structures possess complex eigenproperties, the great advantage in using this approach lies in the fact that the evaluation of these coefficients does not require complex quantities. Moreover a further particularization of the presented method allows a simple application of the spectrum analysis requiring only one response spectrum for an assigned damping ratio. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

8.
Mode-superposition analysis is an efficient tool for the evaluation of the response of linear systems subjected to dynamic agencies. Two well-known mode-superposition methods are available in the literature, the mode-displacement method and the mode-acceleration method. Within this frame a method is proposed called a dynamic correction method which evaluates the structural response as the sum of a pseudostatic response, which is the particular solution of the differential equations, and a dynamic correction evaluated using a reduced number of natural modes. The greater accuracy of the proposed method with respect to the other methods is evidenced through extensive numerical tests, for classically and non-classically damped systems.  相似文献   

9.
After reviewing briefly a recently proposed procedure for evaluating the dynamic transient response of a classically damped linear system from its corresponding steady-state response, a modified procedure is presented which also appears to be highly efficient for non-classically damped systems of the type encountered in studies of soil-structure interaction. The concepts involved are developed by reference to viscously damped single-degree-of-freedom systems, and numerical solutions are included to illustrate the accuracy and efficiency of the proposed procedure and its superiority over the classical Discrete Fourier Transform approach.  相似文献   

10.
A critical, textbook-like review of the generalized modal superposition method of evaluating the dynamic response of nonclassically damped linear systems is presented, which it is hoped will increase the attractiveness of the method to structural engineers and its application in structural engineering practice and research. Special attention is given to identifying the physical significance of the various elements of the solution and to simplifying its implementation. It is shown that the displacements of a non-classically damped n-degree-of-freedom system may be expressed as a linear combination of the displacements and velocities of n similarly excited single-degree-of-freedom systems, and that once the natural frequencies of vibration of the system have been determined, its response to an arbitrary excitation may be computed with only minimal computational effort beyond that required for the analysis of a classically damped system of the same size. The concepts involved are illustrated by a series of examples, and comprehensive numerical data for a three-degree-of-freedom system are presented which elucidate the effects of several important parameters. The exact solutions for the system are also compared over a wide range of conditions with those computed approximately considering the system to be classically damped, and the interrelationship of two sets of solutions is discussed.  相似文献   

11.
The evaluation of the dynamic response of non-classically damped linear structures requires the solution of an eigenproblem with complex eigenvalues and modal shapes. Since in practice only a small number of complex modes are needed, the complex eigenvalue problem is solved in the modal subspace in which the generalized damping matrix is not uncoupled by classical real modes. It follows that the evaluation of the structural response requires in both cases the determination of complex modes by numerical techniques, which are not as robust as techniques currently used for the solution of the real eigenvalue problem, and the use of complex algebra. In the present paper an unconditionally stable step-by-step procedure is presented for the response of non-classically damped structures in the modal subspace without using complex quantities. The method is based on the evaluation of the fundamental operator in approximated form of the numerical procedure. In addition, the method can be easily modified to incorporate the modal superposition pseudo-static correction terms.  相似文献   

12.
In the complex mode superposition method, the equations of motion for non-classically damped multiple-degree-of-freedom (MDOF) discrete systems can be transferred into a combination of some generalized SDOF complex oscillators. Based on the state space theory, a precise recurrence relationship for these complex oscillators is set up; then a delicate general solution of non-classically damped MDOF systems, completely in real value form, is presented in this paper. In the proposed method, no calculation of the matrix exponential function is needed and the algorithm is unconditionally stable. A numerical example is given to demonstrate the validity and efficiency of the proposed method.  相似文献   

13.
Coupling adjacent buildings using discrete viscoelastic dampers for control of response to low and moderate seismic events is investigated in this paper. The complex modal superposition method is first used to determine dynamic characteristics, mainly modal damping ratio and modal frequency, of damper-linked linear adjacent buildings for practical use. Random seismic response of linear adjacent buildings linked by dampers is then determined by a combination of the complex modal superposition method and the pseudo-excitation method. This combined method can effectively and accurately determine random seismic response of non-classically damped systems in the frequency domain. Parametric studies are finally performed to identify optimal parameters of viscoelastic dampers for achieving the maximum modal damping ratio or the maximum response reduction of adjacent buildings. It is demonstrated that using discrete viscoelastic dampers of proper parameters to link adjacent buildings can reduce random seismic responses significantly. Copyright © 1999 John Wiley & Sons Ltd.  相似文献   

14.
The stationary response of multi-degree-of-freedom non-classically damped linear systems subjected to stationary input excitation is studied. A modal decomposition procedure based on the complex eigenvectors and eigenvalues of the system is used to derive general expressions for the spectral moments of response. These expressions are in terms of cross-modal spectral moments and explicitly account for the correlation between modal responses; thus, they are applicable to structures characterized with significant non-classical damping as well as structures with closely spaced frequencies. Closed form solutions are presented for the important case of response to white-noise input. Various quantities of response of general engineering interest can be obtained in terms of these spectral moments. These include mean zero-crossing rate and mean, variance and distribution of peak response over a specified duration. Examples point out several instances where non-classical damping effects become significant and illustrate the marked improvement of the results of this study over conventional analysis based on classical damping approximations.  相似文献   

15.
An industrial building is a non-classically damped system due to the different damping properties of the primary structure and equipment.The objective of this p...  相似文献   

16.
The peak dynamic responses of two mathematical models of a fifteen-storey steel moment resisting frame building subjected to three earthquake excitations are computed by the response spectrum and time history methods. The models examined are: a ‘regular’ building in which the centres of stiffness and mass are coincident resulting in uncoupled modes with well-separated periods in each component direction of response; and an ‘irregular’ building with the mass offset from the stiffness centre of the building causing coupled modes with the translational modes having closely spaced periods. Four response spectrum modal combination rules are discussed and are used to predict the peak responses: (1) the square root of the sum of the squares (SRSS) method; (2) the double sum combination (DSC) method; (3) the complete quadratic combination (CQC) method; and (4) the absolute sum (ABS) method. The response spectrum results are compared to the corresponding peak time history values to evaluate the accuracy of the different combination rules. The DSC and the CQC methods provide good peak response estimates for both the regular and irregular building models. The SRSS method provides good peak response estimates for the regular building, but yields significant errors in the irregular building response estimates. The poor accuracy in the irregular building results is attributable to the effects of coupled modes with closely spaced periods. It is concluded that the DSC and CQC methods produce response estimates of equivalent accuracy. Both methods are recommended for general use. In addition to the DSC and CQC rules, the SRSS method is recommended for systems where coupled modes with closely spaced periods do not dominate the response.  相似文献   

17.
A response spectrum method which combines the analytical advantage of the mode acceleration formulation and the practical advantage of the mode displacement formulation is developed for seismic response calculation of non-classically damped structures. It reduces the error associated with the truncation of the high frequency modes without explicitly using them in the analysis. The method is especially effective for calculating the response of stiff structural systems and also for calculating the response quantities which are strongly affected by high frequency modes. Even with flexible structures, it is shown to provide more accurate response results than the results obtained with the mode displacement approach.  相似文献   

18.
A method for parametric system identification of classically damped linear system in frequency domain is adopted and extended for non‐classically damped linear systems subjected up to six components of earthquake ground motions. This method is able to work in multi‐input/multi‐output (MIMO) case. The response of a two‐degree‐of‐freedom model with non‐classical damping, excited by one‐component earthquake ground motion, is simulated and used to verify the proposed system identification method in the single‐input/multi‐output case. Also, the records of a 10 storey real building during the Northridge earthquake is used to verify the proposed system identification method in the MIMO case. In this case, at first, a single‐input/multi‐output assumption is considered for the system and modal parameters are identified, then other components of earthquake ground motions are added, respectively, and the modal parameters are identified again. This procedure is repeated until all four components of earthquake ground motions which are measured at the base level of the building are included in the identification process. The results of identification of real building show that consideration of non‐classical damping and inclusion of the multi‐components effect of earthquake ground motions can improve the least‐squares match between the finite Fourier transforms of recorded and calculated acceleration responses. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
For structures with non-proportional damping, complex eigenvectors or mode shapes must be used in order to decoe the equations of motion. The resulting equations can then be solved in a systematic way. The necessity of solvie complex eigenvalue problem of a large system remains an obstacle for the practical application of the method. This stres utilizes the fact that in practice only a small number of the complex modes are needed. Therefore, these complex modes be approximated by a linear combination of a small number of the undamped modes, which can be obtained by established methods with less cost. An additional eigenvalue problem is then solved in a subspace with a much sm dimension to provide the best combination coefficient for each complex mode. The method of solution for the decoue equations is then carried over, using the approximate complex modes expressed in undamped mode shapes, to resue simple formulas for the time- and frequency-domain solution. Thus, an efficient modal superposition method is develoe for non-proportionally damped systems. The accuracy of this approximate method is studied through an example. Comparing the frequency response result using the approximate method with that using the exact complex modes, found that the error is negligible.  相似文献   

20.
A method is proposed for the deterministic and stochastic non-stationary analysis of linear composite systems with cascaded secondary subsystems subjected to a seismic input. This method makes it possible to evaluate, by means of a unitary formulation, the deterministic and non-stationary stochastic response of both classically and non-classically damped subsystems and of secondary subsystems multiply supported on the primary one, as well as the ground. The proposed procedure is very efficient from a computational point of view, because of the Kronecker algebra systematically employed. Indeed, by using this algebra, it is possible to obtain in a very compact and elegant form the eigenproperties of the composite system as a function of the eigenproperties of the two subsystems taken separately. Moreover, it is possible to write the first order differential equations governing the evolution of the second order moments of the response and to solve them in a simple way.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号