首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The sea level difference between Naze and Nishinoomote and sea level anomalies (the residuals after removal of seasonal variations) around the Nansei Islands were examined in relation to the large meander in the Kuroshio south of central Japan. They are indices of surface velocity and geostrophic transport of the Kuroshio in the Tokara Strait and in the East China Sea, respectively. All of them were large during the meandering period, and each of them reached a maximum before or after the generation of the large meander in 1975. Thus the surface velocity and the geostrophic transport of the Kuroshio in the Tokara Strait and the East China Sea were large during the meandering period. The sea level difference between Naze and Nishinoomote (or Makurazaki) shows that the surface velocity and geostrophic transport in the Tokara Strait were significantly larger during the extinction stage in 1963 and during the generation stage in 1975 and were correlated with the position of the Kuroshio east of Kyûshû in 1974 and 1975 before the generation of the large meander.The surface velocity of the Kuroshio southeast of Yakushima (E-line) based on dynamic calculation referred to 1,000 db was weak during the meandering period, and was out of phase with the variation of surface velocity in the Tokara Strait monitored by tide gauge data. The analysis of GEK and hydrographic data shows that southwestward flow existed below 600 m in the slope region on the E-line and weakened during the meandering period. Thus, the out-of-phase variation in surface velocity mentioned above seems to be partly explained by the variation in velocity on the reference level at the E-line.  相似文献   

2.
Conditions for the formation of large meander (LM) of the Kuroshio are inferred from observational data, mainly obtained in the 1990s. Propagation of the small meander of the Kuroshio from south of Kyushu to Cape Shiono-misaki is a prerequisite for LM formation, and three more conditions must be satisfied. (1) The cold eddy carried by small meander interacts with the cold eddy in Enshu-nada east of the cape. During and just after the propagation of small meander, (2) the Kuroshio axis in the Tokara Strait maintains the northern position and small curvature, and (3) current velocity of the Kuroshio is not quite small. If the first condition is not satisfied, the Kuroshio path changes little. If the first condition is satisfied, but the second or third one is not, the Kuroshio transforms to the offshore non-large-meander path, not the LM path. All three conditions must be satisfied to form the large meander. For continuance of the large meander, the Kuroshio must maintain the small curvature of current axis in the Tokara Strait and a medium or large range of velocity and transport. These conditions for formation and continuance may be necessary for the large meander to occur. Moreover, effects of bottom topography on position and structure of the Kuroshio are described. Due to topography, the Kuroshio changes horizontal curvature and vertical inclination of current axis in the Tokara Strait, and is confined into either of two passages over the Izu Ridge at mid-depth. The former contributes to the second condition for the LM formation.  相似文献   

3.
I summarize the variations of the path of the Kuroshio and of the Tsushima Current mainly based on the results of my studies. The Tsushima Current forms three branches just after it enters the Japan Sea through the Tsushima Strait. The first and third branch currents flow along the Japanese and Korean coasts, respectively, and the second branch current flows from the western channel of the Tsushima Strait to the west of the Oki Islands only in summer from June to August. Properties of the topographic waves which are thought to work on the formation of the second branch are described mainly in terms of the dispersion relations. The Kuroshio has three typical paths,i.e., the nearshore and offshore non-large-meander paths and the typical large-meander path. The Kuroshio alternately takes the nearshore and offshore paths in the non-large-meander period, occasionally changes from the nearshore nonlarge-meander path to the large-meander path and, after having taken the large-meander path for several years, changes to the offshore non-large-meander path. Sea levels south of Japan are clearly different between the non-large-meander and large-meander periods, while they are not different between the periods of the nearshore and offshore non-large-meander paths. But, sea level and water properties in the coastal region show remarkable features during short periods of transitions between the typical non-large-meander paths. Future problems and subjects of studies on these currents are indicated. Especially, importance of velocity monitoring of the Kuroshio is emphasized, and a design of the observation across the Tokara Strait is proposed.  相似文献   

4.
Relationships of the sea level differences between Naze and Nishinoomote and between Kushimoto and Uragami with wind stress over the North Pacific are examined for interannual variability. These sea level differences are considered to be indications of Kuroshio transport in Tokara Strait and Kuroshio path south of Enshu-nada, respectively. In the sea level difference between Kushimoto and Uragami, dominant variations are found to have periods of about seven years and 3–4 years. The variation of about 7-year period, which corresponds to that in the Kuroshio path between the large meander and non-large meander, is coherent with the variation of the wind stress curl in a region about 2,400 km east of the Kii Peninsula, where negative stress curl weakens about two years before the sea level difference drops (i.e. the large meander path in the Kuroshio generates). The variation of the 3–4 year period is coherent with that of the wind stress in a large area covering the eastern equatorial Pacific, which suggests that it links with global-scale atmospheric variations. Interannual variation in sea level difference between Naze and Nishinoomote is not coherent with that between Kushimoto and Uragami, which suggests that it is not related to the variation of the Kuroshio path south of Enshu-nada, but is coherent with that of the zonally-integrated Sverdrup transport in the latitudinal zone along 30°N. It is suggested that the interannual variation of the Kuroshio transport in Tokara Strait can be explained by the barotropic response to the wind stress.  相似文献   

5.
Spectral properties of sea levels at Naze, Nishinoomote, Kushimoto, Uragami, Miyake-jima and HachijÔ-jima are examined for the non-large-meander (February 1964 – May 1975) and large-meander (October 1975 – December 1979) periods, and the periodicity of variation of the Kuroshio path is clarified.The large meander of the Kuroshio occurs with a primary period of about 20 years and secondary period of 7 to 8. 5 years. During the non-large-meander period, the Kuroshio alternately takes the nearshore and offshore non-large-meander paths with a primary period of 1. 6–1. 8 years. This variation is moreover composed of 110-day, around 195-day and annual periods. The 110-day variation of the Kuroshio path appears to have influence on the coastal sea levels between the Kii Peninsula and the Izu Ridge;i. e., the coastal sea levels rise and fall with one-month time lag after the Kuroshio has begun to approach and leave the Japanese coast. During the large-meander period, the 70 and 110-day variations are remarkable in sea levels south of Japan except Miyake-jima and HachijÔ-jima. The 70-day variation is highly coherent throughout the south coast of Japan; the coherent area of the 110-day variation seems to be smaller.The sea-level variations at Naze and Nishinoomote are not significantly coherent for any of the periods except for annual and semiannual cycles during both the non-large-meander and large-meander periods. That is, the sea-level variations are incoherent between the onshore and offshore sides of the Kuroshio, except for seasonal variation.  相似文献   

6.
The variation of velocity and potential vorticity (PV) of the Kuroshio at the PN line in the East China Sea and the TK line across the Tokara Strait were examined in relation to the path variations of the Kuroshio in the southern region of Japan, using quarterly data from a conductivity-temperature-depth profiler and a shipboard acoustic Doppler current profiler during 1987–97. At the PN line the Kuroshio has a single stable current core located over the continental slope and a significant maximum of PV located just onshore of the current axis in the middle part of the main pycnocline. On the other hand, the Kuroshio at the TK line has double current cores over the two gaps in the Tokara Strait; the northern core has a much larger velocity than the southern core on average during periods of the large meander of the Kuroshio, while the difference in strength between the double cores is small during the non-large-meander (NLM) period. At the TK line, PV in the middle pycnocline is variable; it is small and nearly uniform throughout the section for 40% of the total observations, while it has a significant maximum near the northern core for 30% and two maxima corresponding to the double current cores for 23%. The small, nearly uniform PV occurs predominantly during the NLM period, and is closely related to the generation of the small meander of the Kuroshio southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
The characteristics of the Kuroshio axis south of Kyushu, which meanders almost sinusoidally, are clarified in relation to the large meander of the Kuroshio by analyzing water temperature data during 1961–95 and sea level during 1984–95. The shape of the Kuroshio axis south of Kyushu is classified into three categories of small, medium, and large amplitude of meander. The small amplitude category occupies more than a half of the large-meander (LM) period, while the medium amplitude category takes up more than a half of the non-large-meander (NLM) period. Therefore, the amplitude and, in turn, the curvature of the Kuroshio axis is smaller on average during the LM period than the NLM period. The mean Kuroshio axis during the LM period is located farther north at every longitude south of Kyushu than during the NLM period, with a slight difference west of the Tokara Islands and a large difference to the east. A northward shift of the Kuroshio axis in particular east of the Tokara Islands induces small amplitude and curvature of the meandering shape during the LM period. During the NLM period, the meandering shape and position south of Kyushu change little with Kuroshio volume transport. In the LM formation stage, the variation of the Kuroshio axis is small west of the Tokara Islands but large to the east due to a small meander of the Kuroshio. In the LM decay stage, the Kuroshio meanders greatly south of Kyushu and is located stably near the coast southeast of Kyushu. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Properties of the index of position of the Kuroshio axis in the Tokara Strait, named the Kuroshio position index (KPI), were examined using sea-level data during 1984–92. The index is KPI=(X+M x )/(Y+M y whereX(Y) is the anomaly of sea-level difference of Nakanoshima (Naze) minus Nishinoomote from the 1984–92 meanM x (M y ). The correlation with the latitude of the Kuroshio axis in the Tokara Strait concluded that the KPI withM x /M y =0.83 and realisticM y (100±40 cm) best indicates the position of the Kuroshio axis in the strait. The KPI withM x =83 cm andM y =100 cm was newly called the KPI as the best index. Using daily values of this KPI, the relation between the position of the Kuroshio in the strait and the large meander of the Kuroshio shown by Kawabe (1995) was confirmed and studied in detail. A large meander forms (ends) 3.3 (5.1) months after a northward (southward) shift of the Kuroshio in the Tokara Strait. Yet, a temporary southward shift with a duration of ten to twenty days does not finish the large-meander (LM) path. At the LM formation, a small meander southeast of Kyushu begins to move eastward associated with the northward shift. The processes of LM formation and decay are started by the meridional move of the Kuroshio axis in the Tokara Strait. The Kuroshio axis at the FES line during the LM path is located farther north by 7 latitude than that during the non-large-meander (NLM) path. The latitude during the LM formation (decay) stage is a little higher (lower) than that during the LM (NLM) period, though the Kuroshio still takes an NLM (LM) path.  相似文献   

9.
Interannual variations of sea level at the Nansei Islands and volume transport of the Kuroshio during 1967–95 are calculated by integrating variations carried by windforced Rossby waves. Effects of eddy dissipation and ocean ridges are considered. Ridge effect is inferred by comparing between the calculated and observed sea levels. The calculation is satisfactory to sea levels and Kuroshio transport for the whole period. They are mostly caused by Rossby waves forced by wind and modified by the ridges, and are due to barotropic wave primarily and the first baroclinic wave secondly. The calculated Kuroshio transport well represents variations of several-year scales with maximums in respective duration of the large meander (LM) of the Kuroshio, as well as bi-decadal variation that transport was small during the non-LM period of 1967–75 and large during the LM-dominant period of 1975–91. Mean volume transport of the subtropical gyre is estimated at 57 Sv (1 Sv = 106 m3s–1) and divided by the Nansei Shoto Ridge into those of the Kuroshio in the East China Sea (25.5 Sv) and a subsurface current east of this ridge (31.5 Sv). The Subtropical Countercurrent and a southward deep current east of the Izu-Ogasawara Ridge are estimated at 16 Sv and 7 Sv, respectively. The calculated transports of the Kuroshio and other subtropical currents reach maximums at every El Niño event due to strong excitement of upwelling barotropic Rossby wave.  相似文献   

10.
利用1977-1991年日本“KuroshioExploitationandUtilizationResearch”(KER)资料和日本气象厅海洋观测资料计算吐噶喇海峡的黑潮流速和流量。结果表明,海峡处黑潮主轴的平均核心流速为92.0cm/s,平均流量为周.1×106m3/s;揭示了吐噶喇海峡黑潮流速的多核结构和多股流动的突出特征。探讨了海峡中流量分布状况和季节变化。  相似文献   

11.
Temporal variations of the Kuroshio volume transport in the Tokara Strait and at the ASUKA line are decomposed by phase-propagating Complex EOF modes of high-resolution sea surface dynamic topography (SSDT) field during the first tandem period of TOPEX/POSEIDON and ERS-1 (from October 1992 to December 1993). Both variations are dominated by a mode with nearly semi-annual cycle, which indicates a series of interactions between the Kuroshio and meso-scale eddies. Namely, northern part of a westward-propagating meso-scale eddy at 23°N is captured into the southern side of the Kuroshio at the south of Okinawa, then it moves downstream along the Kuroshio path passing the Tokara Strait, and reaches to the ASUKA line where it merges with another eddy propagating from the east at 30°N. The variation at the ASUKA line is, however, less dominated by this mode; instead, it includes the SSDT variations in the south of Shikoku and the east of Kyushu which would be directly affected by eddies from the east without passing the Tokara Strait. On the other hand, the same analysis for movements of the Kuroshio axis in the Strait indicates that they are governed by short-term variations locally confined to the Kuroshio in the East China Sea without being induced by meso-scale eddies. This results, however, seem to depend strongly on a time scale of interest. It is suggested that the long-term movements of the Kuroshio axis in the Strait would demonstrate coincidence with SSDT variation in the south of Japan.  相似文献   

12.
Historical GEK data provided by JODC is analyzed to investigate the characteristic variation in velocity of the Kuroshio, with special reference to the formation of small meanders south of Kyûshû. It is found that, during or prior to the period of small meander formation, there is a tendency for an abrupt increase in the current velocity west of Yaku-Shima (Yaku-Island), representing an increase in the main current intensity upstream. Also, there are apparent time lags in the variation in current velocity along the path of the Kuroshio between the upstream and the downstream regions of the small meander area. Namely, it is apparent that the increase in Kuroshio velocity in the Satsunan Strait procedes that offshore of Shikoku during the period of the small meander formation, by the order of one month. These results indicate that a nonlinear effect due to the increase in current velocity is a possible cause of the generation of small meanders.  相似文献   

13.
Model output from a Pacific basin-wide three-dimensional physical-biogeochemical model during the period of 1991 to 2008 was used to investigate the impact of Kuroshio water on the source water of the southeastern Taiwan Strait. Based on the characteristic salinities of both Kuroshio water and the South China Sea water, a Kuroshio impact index (KII) was designed to measure the degree of impact. The KII correlates significantly with the northeast-southwest component of wind stress, but the former lags the latter by approximately two months. The correlation coefficient between them increases from 0.267 4 to 0.852 9, with a lag time increasing from 0 to 63 days. The impact of Kuroshio Water is greater in winter and spring than in summer and autumn. At the interannual time scale, El Niño and La Niña events play an important role in impacting the KII. During El Niño events, more Kuroshio water contributes to the source water of the southeastern Taiwan Strait. Conversely, during La Niña events, less Kuroshio water contributes to the source water.  相似文献   

14.
为研究东部型和中部型两类厄尔尼诺(El Ni?o)事件与中国近海海表温度(sea surface temperature,SST)变化间的联系,基于中国科学院大气物理研究所连续80年(1940—2019年)的SST再分析数据,采用EOF分解、合成分析等方法做了初步分析,发现中国近海及毗邻海域近80年SST变化与全球变暖密切相关。并且两类El Ni?o事件对中国近海SST变化的影响存在显著差异。东部型El Ni?o事件发展过程中,中国近海及毗邻海域SST在发展年主要为负异常,衰退期为正异常;中部型ElNi?o事件发展过程中, SST变化区域差异大,发展年日本附近海域为正异常, 28°N以南为弱的负异常。两类El Ni?o事件引发西太平洋风场反气旋涡的时间、位置与强度等的不同,是造成中国近海风场与海表温度异常(sea surface temperature anomaly, SSTA)差异的主要原因。  相似文献   

15.
Transitions between the three typical paths of the Kuroshio south of Japan (the nearshore and offshore non-large-meander paths and the large-meander path) are described using sea level data at Miyake-jima and HachijÔ-jima in the Izu Islands and temperature data at a depth of 200 m observed from 1964 to 1975 and in 1980.In transitions between the nearshore and offshore non-large-meander paths the variation of the Kuroshio path occurs first in the region off Enshû-nada between the Kii Peninsula and the Izu Ridge and subsequently over the ridge. In the nearshore to offshore transition the offshore displacement of the path occurs first off Enshû-nada and then develops southeastwardly in the direction of HachijÔ-jima. In the reverse transition shoreward displacement occurs first off Enshû-nada and then throughout the region west and east of the Izu Ridge. The position of the Kuroshio south of Cape Shiono-misaki (the southernmost tip of the Kii Peninsula) is almost fixed near the coast throughout these transition periods, and significant variations of the Kuroshio path only occur east of the cape. The nearshore to offshore and offshore to nearshore transitions can be estimated to take about 25 and 35 days, respectively, during which the variation of the Kuroshio path over the Izu Ridge occurs for the last 11 and 25 days.The transitions between the non-large-meander and large-meander paths show that the large-meander path is mostly formed from the nearshore non-large-meander path and always changes to the offshore non-large-meander path.  相似文献   

16.
During the 1997/1998 El Niño event, extensive oceanic temperature profiles were taken off the coast of California in January and February 1998 using Airborne Expendable Bathythermographs (AXBTs). These AXBT measurements are compared with altimetry-based upper-ocean temperature estimates using TOPEX and ERS satellite altimetry data. The altimetry-based temperature estimates are well correlated with the AXBT data, in particular when combining the two satellite data sets together to form a blended altimeter temperature estimate. Both the AXBT and altimetry data show that the nearshore coastal El Niño signal differed from that further offshore. The AXBT data show that near shore, the warm anomalies extended to much greater depths and had greater amplitude. A time series of the satellite-derived layer-averaged temperatures, averaged separately over the nearshore and offshore halves of the AXBT analysis domain, also shows a larger El Niño signal in the nearshore half. The role of local atmospheric forcing of the coastal oceanic temperature anomalies is analyzed using NCEP reanalysis and coastal upwelling data sets. The forcing terms include Ekman pumping, radiation, surface heat fluxes, precipitation, and alongshore wind stresses that drive coastal upwelling (expressed as a coastal downwelling index, CDI). The temperature forcing from all of the terms except the CDI anomalies are small. The CDI anomalies can explain most of the slowly varying temperature changes that occur near the coast during a two-year period spanning the El Niño event, as well as some of the larger amplitude, rapid (monthly) warming episodes that appear to be part of the El Niño signal. Several distinct rapid warming episodes, however, are not correlated with the CDI anomalies, and therefore we conclude that the nearshore El Niño signal originates from a combination of both a remote oceanic pathway and local atmospheric forcing.  相似文献   

17.
Understanding the transport and distribution of marine larvae by ocean currents is one of the key goals of population ecology. Here we investigate circulation in the East Australian Current (EAC) and its impact on the transport of larvae and coastal connectivity. A series of Lagrangian particle trajectory experiments are conducted in summer and winter from 1992-2006 which enables us to investigate seasonal and inter-annual variability. We also estimate a mean connectivity state from the average of each of the individual realisations. Connectivity patterns are related to the movement of five individual larval species (two tropical, two temperate and one invasive species) and are found to be in qualitative agreement with historical distribution patterns found along the coast of SE Australia.We use a configuration of the Princeton Ocean Model to investigate physical processes in the ocean along the coast of SE Australia where the circulation is dominated by the EAC, a vigorous western boundary current. We assimilate hydrographic fields from a ∼10?\km global analysis into a ∼3?\km resolution continental shelf model to create a high-resolution hindcast of ocean state for each summer and winter from 1992-2006. Particles are released along the coast of SE Australia, and at various isobaths across the shelf (25-1000 m) over timescales ranging from 10-90 days. Upstream of the EAC separation point across-shelf release location dominates the particle trajectory length scales, whereas seasonality dominates in the southern half of the domain, downstream of the separation point.Lagrangian probability density functions show dispersion pathways vary with release latitude, distance offshore and the timescale of dispersion. Northern (southern) release sites are typified by maximum (minimum) dispersal pathways. Offshore release distance also plays a role having the greatest impact at the mid-latitude release sites. Maximum alongshore dispersion occurs at the mid-latitude release sites such as Sydney. Seasonal variability is also greatest at mid-latitudes, associated with variations in the separation point of the EAC. Climatic variations such as El Niño and La Niña are also shown to play a role in dictating the connectivity patterns. La Niña periods have a tendency to increase summer time connectivity (particularly with offshore release sites) while El Niño periods are shown to increase winter connectivity.The EAC acts as a barrier to the onshore movement of particles offshore, which impacts on the connectivity of offshore release sites. Consequentially particles released inshore of the EAC jet exhibit a greater coastal connectivity than those released offshore of the EAC front. The separation point of the EAC also dictates connectivity with more sites being connected (with lower concentration) downstream of the separation point of the EAC. These results can provide a useful guide to the potential connectivity of marine populations, or the spread of invasive pests (via ballast water or release of propagules from established populations).  相似文献   

18.
Distribution of the sea surface temperature (SST) across the Kuroshio has been measured in the Tokara Strait by the Kagoshima Prefectural Experimental Fishery Station, using a thermometer installed on boardEmerald-Amami, a ferry that operates regularly between Kagoshima and Naha. The data from 1 October 1978 to 30 September 1981 were analyzed in this paper.A sharp temperature front is usually formed at the northern edge of the current zone of the Kuroshio, and its position is very variable and moves north and south between Satamisaki and Nakanoshima. The northward migration of the front can easily be traced, but the southward migration is obscure in many cases. Some of the southward migrations seem to be understood as arising from the alternate appearance of two different fronts, namely a weakening of the northern front and a strengthening of the southern front, which are associated with the double structure of the Kuroshio front. The temperature contrast across the Kuroshio front is very weak in August through October, and the phase of its seasonal variation lags a few months behind that of temperature itself. Transitions between the states with and without temperature contrast occur suddenly, though the transition times differ year by year. Periodical fluctuations with a period of several tens of days are often observed in the migration region of the Kuroshio front. The fluctuations sometimes look very periodical within limited time periods, but the fluctuations are very changeable in nature from year to year.The results show that continuous observation of the SST distribution across the Tokara Strait yields a good tool for monitoring fluctuations of the Kuroshio path and the occurrence of the Ohsumi Branch Current, at least in the season when a large horizontal temperature contrast exists.  相似文献   

19.
Three Kuroshio small meanders off the southeast coast of Kyushu that occurred during 1994 to 1995 were investigated by using satellite-derived sea surface temperature (SST) and sea surface height (SSH) maps, World Ocean Circulation Experiment (WOCE) Hydrographic Program (WHP) repeat section and Japan Meteorological Agency (JMA) hydrographic observations. Based on the satellite data, we observed that the three small meanders are formed by different processes: the triggering and growth of these meanders are caused by a cyclonic eddy propagating from the Kuroshio recirculation region or Kuroshio front meanders traveling from the East China Sea. Investigation of the two small meanders in 1994 and 1995 spring that are captured by the WHP observation showed quite consistent hydrographic features. On the nearshore side of the meandering Kuroshio, a countercurrent appears, associated with vertically uniform upward lifts of the isopycnals from sea surface to bottom at the boundary between the countercurrent and the Kuroshio. In the countercurrent region, the waters in the density ranges of the North Pacific subtropical mode water (NPSTMW) and the North Pacific Intermediate Water (NPIW) are more saline and less saline than typical waters that the Kuroshio carries in a non-small meander state, respectively. There are indications that high-salinity NPSTMW and low-salinity NPIW distributed off the Kuroshio was supplied to the countercurrent region. In the meandering Kuroshio flow, while there is no notable change in properties around the NPSTMW density range, salinity of the NPIW is significantly higher than that carried by the Kuroshio in a non-small meander state, but not higher than that in the Kuroshio at the Tokara Strait, which suggests that saline NPIW from the Tokara Strait, less mixed with low-salinity NPIW off the Kuroshio, may be carried by the meandering Kuroshio. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
由于缺少观测数据和对黑潮水准确定义,很难识别出从太平洋入侵到南海的黑潮水团。本文基于一个经过观测验证的三维模式MITgcm,利用被动示踪物标记黑潮水,研究了入侵南海的黑潮水的时空变化。研究表明,在冬季,黑潮水入侵的范围最广,几乎占据了18°N-23°N和114°E-121°E的区域;并有一个分支进入台湾海峡;黑潮入侵的范围随深度增加逐渐减小。在夏季,黑潮水被限制在118°E以东,且没有分支进入台湾海峡;入侵的范围从海面到约205米是增大的,之后随深度增加逐渐减小。通过分析从2003年到2012年黑潮入侵的年际变化,与厄尔尼诺年和正常年相比,冬季黑潮入侵后向台湾海峡的分支在拉尼娜年是最弱的,这可能与中国大陆东南方向的风应力旋度有关。通过吕宋海峡的黑潮入侵通量(KIT)是西向的,其年平均值约为-3.86×106 m3/s,大于吕宋海峡通量(LST,约-3.15×106 m3/s)。250米以上的KIT约占了全深度通量的60-80%。此外,从2003年到2012年KIT与Niño 3.4指数的相关系数到达0.41,小于LST与Niño 3.4指数的相关系数0.78。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号