首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
由于传统搜索方法对岩质边坡滑裂面的确定无法兼顾效率与精度, 如何迅速准确确定潜在滑裂面仍然是个难题。极限平衡法在岩质边坡稳定性分析中备受认可, 采用岩质边坡平面剪切滑动模型, 以滑裂面的倾角来表征潜在滑裂面的位置; 基于极值法, 推导了极限平衡条件下平面剪切破坏型岩质边坡潜在滑裂面的解析解, 并结合香港秀茂坪路边坡对其准确性进行了验证, 进一步对四川宜宾打营盘山公路多级边坡进行了整体稳定性分析。结果表明: 香港秀茂坪边坡采用本文方法确定的边坡潜在滑裂面倾角与实际滑坡倾角基本一致。实际工程应用中, 采用Slide软件中布谷鸟搜索法和模拟退火法两种搜索方法得到的滑裂面倾角分别为38.0°和37.0°, 本解析法所得倾角为34.8°; 选用Janbu法、Morgenstern-Price法和Sarma法分别计算对应的稳定系数, 结果均为1.04左右, 本文所得稳定系数为1.15, 可见本文方法所得结果基本准确。通过参数敏感性分析发现, 随着黏聚力的增加, 边坡滑裂面倾角越来越小, 稳定系数也随之增加; 而当内摩擦角增大时, 边坡滑裂面倾角和稳定系数也随之增大。   相似文献   

2.
This paper describes a precise method combining numerical analysis and limit equilibrium theory to determine potential slip surfaces in soil slopes. In this method, the direction of the critical slip surface at any point in a slope is determined using the Coulomb’s strength principle and the extremum principle based on the ratio of the shear strength to the shear stress at that point. The ratio, which is considered as an analysis index, can be computed once the stress field of the soil slope is obtained. The critical slip direction at any point in the slope must be the tangential direction of a potential slip surface passing through the point. Therefore, starting from a point on the top of the slope surface or on the horizontal segment outside the slope toe, the increment with a small distance into the slope is used to choose another point and the corresponding slip direction at the point is computed. Connecting all the points used in the computation forms a potential slip surface exiting at the starting point. Then the factor of safety for any potential slip surface can be computed using limit equilibrium method like Spencer method. After factors of safety for all the potential slip surfaces are obtained, the minimum one is the factor of safety for the slope and the corresponding potential slip surface is the critical slip surface of the slope. The proposed method does not need to pre-assume the shape of potential slip surfaces. Thus it is suitable for any shape of slip surfaces. Moreover the method is very simple to be applied. Examples are presented in this paper to illustrate the feasibility of the proposed method programmed in ANSYS software by macro commands.  相似文献   

3.
In analyzing seismic stability of a slope with upper bound limit analysis method, the slip surface is often assumed as a log-spiral or plane slip surface. However, due to the presence of a weak layer and unfavorable geological structural surface or a bedrock interface with overlying soft strata, the preexisting slip surface of the slope may be irregular and composed of a series of planes rather than strictly log-spiral or plane shape. A computational model is developed for analyzing the seismic stability of slopes with pre-existing slip surfaces. This model is based on the upper bound limit analysis method and can consider the effect of anchor bolts. The soil or rock is deemed to follow the Mohr-Coulomb yield criterion. The slope is divided into multiple block elements along the slip surface. According to the displacement compatibility and the associated flow rule, a kinematic velocity field of the slope can be obtained computationally. The proposed model allows not only calculation of the rate of external work owing to the combined effect of self-weight and seismic loading, but also that of the energy dissipation rate caused by the slip surface, interfaces of block elements and anchorage effect of the anchors. Considering a direct relationship between the rate of external work and the energy dissipation rate, the expressions of yield acceleration and permanent displacement of anchored slopes can be derived. Finally, the validity of this proposed model is illustrated by analysis on three typical slopes. The results showed that the proposed model is more easily formulated and does not need to solve complex equations or time consuming iterations compared with previous methods based on the conditions of force equilibrium.  相似文献   

4.
工程实践表明, 外基坑宽度和坑中坑会影响基坑坑底滑裂面的形成方式, 因此, 经典朗肯土压力理论的假设建立在半无限空间土体的基础上不再适用。基于极限平衡理论和微分体受力平衡方法, 考虑土体黏聚力和围护结构与滑动土体摩阻力, 推导了宽基坑和窄基坑坑中坑的被动土压力理论计算公式。通过具体算例对比了宽基坑与窄基坑在坑中坑条件下被动土压力大小的变化趋势。结果表明, 考虑摩擦力条件下的被动土压力大于未考虑摩擦力的被动土压力; 无论宽基坑还是窄基坑, 有内坑的被动土压力小于无内坑时的被动土压力; 无内坑时, 外基坑宽度的增加导致被动土压力减小, 而在有内坑的情况下, 外基坑宽度的增加, 反而增大被动土压力; 在窄基坑中, 随着内坑位置的移动, 土压力先变小后增大, 且内坑平面尺寸的增大导致土压力逐渐减小。因此, 内坑的存在将降低坑中坑基坑的外坑被动土压力, 工程中应注意内坑的存在。   相似文献   

5.
This paper presents a general solution for active earth pressure acting on a vertical retaining wall with a drainage system along the soil-structure interface. The backfill has a horizontal surface and is composed of cohesionless and fully saturated sand with anisotropic permeability along the vertical and horizontal directions. The extremely unfavourable seepage flow on the back of the retaining wall due to heavy rainfall or other causes will dramatically increase the active earth pressure acting on the retaining walls, increasing the probability of instability. In this paper, an analytical solution to the Laplace differential governing equation is presented for seepage problems considering anisotropic permeability based on Fourier series expansion method. A good correlation is observed between this and the seepage forces along a planar surface generated via finite element analysis. The active earth pressure is calculated using Coulomb’s earth pressure theory based on the calculated pore water pressures. The obtained solutions can be degenerated into Coulomb’s formula when no seepage exists in the backfill. A parametric study on the influence of the degree of anisotropy in seepage flow on the distribution of active earth pressure behind the wall is conducted by varying ratios of permeability coefficients in the vertical and horizontal directions, showing that anisotropic seepage flow has a prominent impact on active earth pressure distribution. Other factors such as effective internal friction angle of soils and soil/wall friction conditions are also considered.  相似文献   

6.
随着城市的不断发展,基坑开始由传统的二维模式向三维空间转变。该文借助于坑壁土体的三维破坏模式,推导出双层土体的破坏模型,在此模型基础上基于土体塑性上限理论及极限平衡分析理论,提出了考虑空间效应的土压力计算公式以及相应的空间效应影响系数。该计算公式可用于基坑土钉墙、护坡桩、地下连续墙等支护系统的设计。  相似文献   

7.
基于等分圆弧滑面的简化条件,采用土塑性极限分析理论,建立了土质边坡极限分析模型,并推导得到了土质边坡稳定系数计算公式。该方法考虑了圆弧滑面的内能耗散率作用和边坡土体自重荷载、地震惯性力及孔隙水压力所做的外功率作用,可以解决土质边坡稳定性分析问题,是一种改进的土质边坡稳定性评价极限分析方法。  相似文献   

8.
Portal water injection sheet pile (PWISP), as a retaining wall, appeared in seashore engineering in 2000. Although there have been many systematic methods addressing the issue, there are very few focusing on the new structure because of the difficulties in defining the earth pressure between the two piles. A new method is proposed in this paper to obtain the earth pressure between the PWISPs. Stability analysis against overturning follows as a consequence. Using Finite Element Analysis (FEA) software ANSYS, both the nonlinear characteristics of the soil and those of the contact elements are taken into account to obtain the earth pressure distribution on the contact surface. Based on the results of the FEA, Rankin's theory and the slip plane theory, the formula of the earth pressure on the inner surfaces between the piles is given. Assuming the PWISP as the analysis object and the earth pressure as an outside force acting upon it, the equation of stability against overturning of the PWISP is presented. Finally, some parameters are discussed about the stability of the PWISP against overturning, such as the embedded depth of the front pile, the distance between the two rows of piles, the internal friction angle and the cohesion of the earth. The results show that the increase of the cohesion and the internal friction angle will decrease the distance and the embedded depth, and therefore enhance the stability against overturning. Specifically, when the distance is 1/3-2/3 of the maximal excavation depth, the two rows of piles give the best performance in stability.  相似文献   

9.
Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground, laggings are usually installed to avoid collapse of soil between piles. Evaluating the earth pressure acting on laggings is of great importance in design process. Since laggings are usually less stiff than piles, the lateral pressure on lagging is much closer to active earth pressure. In order to estimate the lateral earth pressure on lagging more accurately, first, a model test of cantilever stabilizing pile and lagging systems was carried out. Then, basing the experimental results, a three-dimensional sliding wedge model was established. Last, the calculation process of the total active force on lagging is presented based on the kinematic approach of limit analysis. A comparison is made between the total active force on lagging calculated by the formula presented in this study and the force on a same-size rigid retaining wall obtained from Rankine's theory. It is found that the proposed method fits well with the experimental results. Parametric studies show that the total active force on lagging increases with the growth of the lagging height and the lagging clear span; while decreases as the soil internal friction angle and soil cohesion increase.  相似文献   

10.
Long-term kinematic research of slowmoving debris slide is rare despite of the widespread global distribution of this kind. This paper presents a study of the kinematics and mechanism of the Jinpingzi debris slide located on the Jinsha river bank in southwest China. This debris slide is known to have a volume of 27×106 m3 in active state for at least one century. Field survey and geotechnical investigation were carried out to define the structure of the landslide. The physical and mechanical properties of the landslide materials were obtained by in-situ and laboratory tests. Additionally, surface and subsurface displacements, as well as groundwater level fluctuations, were monitored since 2005. Movement features, especially the response of the landslide movement to rainfall, were analysed. Relationships between resisting forces and driving forces were analysed by using the limit equilibrium method assuming rigid-plastic frictional slip. The results confirmed a viscous component in the long-termcontinuous movement resulting in the quasioverconsolidated state of the slip zone with higher strength parameters than some other types of slowmoving landslides. Both surface and subsurface displacements showed an advancing pattern by the straight outwardly inclined(rather than gently or reversely inclined) slip zone, which resulted in low resistance to the entire sliding mass. The average surface displacement rate from 2005 to 2016 was estimated to be 0.19~0.87 mm/d. Basal sliding on the silty clay seam accounted for most of the deformation with different degrees of internal deformation in different parts. Rainfall was the predominant factor affecting the kinematics of Jinpingzi landslide while the role of groundwater level, though positive, was not significant. The response of the groundwater level to rainfall infiltration was not apparent. Unlike some shallow slow-moving earth flows or mudslides, whose behaviors are directly related to the phreatic groundwater level, the mechanism for Jinpingzi landslide kinematics is more likely related to the changing weight of the sliding mass and thedownslope seepage pressure in the shallow soil mass resulting from rainfall events.  相似文献   

11.
针对矩形顶管上竖向土压力计算模型研究较少的现状,借助Terzaghi土压力计算理论,结合矩形顶管工程特点建立了考虑注浆作用的矩形顶管竖向土压力计算模型,提出了改进的竖向土压力计算公式;依托苏州某矩形顶管工程中竖向土压力实时监测数据,探究了其变化规律并验证了该计算公式的准确性。研究结果表明:土体中的剪切带从管道外壁两侧产生并沿竖直方向发展,且可贯穿至地表;临界状态下剪切带上的膨胀角完全发挥,以临界内摩擦角及其正弦值计算剪切带上的摩擦系数;不同的注浆压力下,管道上方可能出现“主动土拱”和“被动土拱”。计算值与实测值的对比分析表明,改进后的计算方法能够较好地包络矩形顶管竖向土压力范围。   相似文献   

12.
Unlike the limit equilibrium method (LEM), with which only the global safety factor of the landslide can be calculated, a local safety factor (LSF) method is proposed to evaluate the stability of different sections of a landslide in this paper. Based on three-dimensional (3D) numerical simulation results, the local safety factor is defined as the ratio of the shear strength of the soil at an element on the slip zone to the shear stress parallel to the sliding direction at that element. The global safety factor of the landslide is defined as the weighted average of all local safety factors based on the area of the slip surface. Some example analyses show that the results computed by the LSF method agree well with those calculated by the General Limit Equilibrium (GLE) method in two-dimensional (2D) models and the distribution of the LSF in the 3D slip zone is consistent with that indicated by the observed deformation pattern of an actual landslide in China.  相似文献   

13.
The stability of rock slope is often controlled by the existing discontinuous surfaces, such as discrete fractures, which are ubiquitously distributing in a geological medium. In contrast with the traditional approaches used in soil slope with a continuous assumption, the simulation methods of jointed rock slope are different from that of in soil slope. This paper presents a study on jointed rock slope stability using the proposed discontinuous approach, which considers the effects of discrete fractures. Comparing with traditional methods to model fractures in an implicit way, the presented approach provides a method to simulate fractures in an explicit way, where grids between rock matrix and fractures are independent. To complete geometric components generation and mesh partition for the model, the corresponding algorithms were devised. To evaluate the stability state of rock slope quantitatively, the strength reduction method was integrated into our analysis framework. A benchmark example was used to verify the validation of the approach. A jointed rock slope, which contains natural fractures, was selected as a case study and was simulated regarding the workflow of our framework. It was set up in the light of the geological condition of the site. Slope stability was evaluated under different loading conditions with various fracture patterns. Numerical results show that fractures have significant contributions to slope stability, and different fracture patterns would lead to different shapes of the slip surface. The devised method has the ability to calculate a non-circular slip surface, which is different from a circular slip surface obtained by classical methods.  相似文献   

14.
土质边坡空间临界滑动面搜索的优化算法   总被引:3,自引:0,他引:3  
将二维均质土坡作为平面应变问题,假定滑动面是一个圆弧,将滑弧圆心与半径转变为后缘剪入点、坡脚剪出点和过后缘点滑弧切线与x轴的交点等3个点的横坐标,然后以这3个参数为变量,给定合理的取值区间,应用黄金分割法搜索二维边坡的最小稳定系数及相应的临界滑动面。进一步假定均质土坡的三维空间滑动面为一旋转椭球体,旋转椭球体的竖向中轴面和二维的圆弧面一致,给定椭球体不同的水平轴半径值,采用以上二维滑动面搜索方法可求出不同水平半径所对应的三维最小稳定系数及相应的椭球面。结果表明:边坡的三维稳定系数没有极小值,但有极限值;对于横向延伸长的无限边坡,三维稳定系数逼近二维稳定系数,当旋转椭球长轴与短轴之比大于3时,二者很接近,边坡稳定性可简化为二维来分析;对于受地形、地下水等条件约束的短边坡,三维效应明显,在考虑实际边界条件的情况下按三维来分析。  相似文献   

15.
A new method, the dynamic reduction method (DRM) combined with the strain-softening method, was applied to evaluate the possible slip surface of a highly heterogeneous rock slope of the Dagangshan hydropower station in Southwest China. In DRM, only the strength of the failure elements is reduced and the softening reduction factor K is adopted to calculate the strength parameters. The simulation results calculated by DRM show that the further slip surface on the right slope of the Dagangshan hydropower station is limited in the middle part of the slope, while both SRM (strength reduction method) and LEM (limit equilibrium method) predict a failure surface which extends upper and longer. The observations and analysis from the three recorded sliding events indicate that the failure mode predicted by DRM is more likely the scenario. The results in this study illustrate that for highly heterogeneous slopes with geological discontinuities in different length scales, the proposed DRM can provide a reliable prediction of the location of the slip surface.  相似文献   

16.
This paper is concerned with the stability analysis of reinforced slopes. A new approach based on the limit equilibrium principle is proposed to evaluate the stability of the reinforced slopes. The effect of reinforcement is modeled as an equivalent restoring force acting the bottom of the slice and added into the general limit equilibrium (GLE) method. The equations of force and moment equilibrium of the slice are derived and corresponding iterative solution methods are provided. The new method can satisfy both the force and the moment equilibrium and be applicable to the critical failure surface of arbitrary form. Furthermore, the results predicted by the proposed method are compared with the calculation examples of other researchers and the centrifuge model test results to validate its correctness and effectiveness.  相似文献   

17.
使用双参数折减方法分析边坡稳定性的研究较多, 如何把两个折减系数定义为单一的综合安全系数是目前研究的一项重要内容。Isakov提出的最短折减路径法能够保证在不同工况下得到最小安全系数, 但是该方法的缺点在于计算复杂, 不适合工程应用。通过有限元数值模拟, 利用最短折减路径方法计算不同强度黏土构成的不同坡度均质土坡的最小安全系数和对应的折减系数, 探索了最小安全系数与土的初始黏聚力、内摩擦角以及边坡坡度的关系, 分析了初始强度对折减系数的影响。结果表明, 相同坡度下不同强度的黏土边坡在失稳时, 最小安全系数对应的临界破坏强度相同。临界破坏强度与坡度近似成线性正相关关系。由此基于最短折减路径法提出了一种新的计算最小安全系数的方法, 该方法得到的安全系数与目前常用的极限平衡方法所得结果相近, 并且计算简单, 因此可以用于边坡稳定性分析。   相似文献   

18.
This study investigated the influence factors on the seismic response and deformation modes of retaining walls using large-scale model shaking table tests. Experimental results showed that the distribution of peak seismic earth pressures along the height of a wall was a single peak value curve. The seismic earth pressures on a gravel soil retaining wall were larger than the pressures on the weathered granite and quartz retaining walls. Also, the peak seismic earth pressure increased with increases in the peak ground acceleration and the wall height. The measured seismic active earth pressures on a rock foundation retaining wall were larger than the calculated values, and the action position of resultant seismic pressure was higher than 0.33 H. In the soil foundation retaining wall, the measured seismic earth pressures were much smaller than the calculated values, while the action position was slightly higher than 0.33 H. The soil foundation retaining wall suffered base sliding and overturning under earthquake conditions, while overturning was the main failure mode for the rock foundation retaining walls.  相似文献   

19.
Assessing the slope deformation is significant for landslide prediction. Many researchers have studied the slope displacement based on field data from the inclinometer in combination with complicated numerical analysis. They found that there was a shear zone above the slip surface, and they usually focused on the distribution of velocity and displacement within the shear zone. In this paper, two simple methods are proposed to analyze the distribution of displacement and velocity along the whole profile of a slope from the slip surface to the slope surface during slow movement. In the empirical method, the slope soil above the shear zone is assumed as a rigid body. Dual or triple piecewise fitting functions are empirically proposed for the distribution of velocity along the profile of a slope. In the analytical method, the slope soil is not assumed as a rigid body but as a deformable material. Continuous functions of the velocity and displacement along the profile of a slope are directly obtained by solving the Newton's equation of motion associated with the Bingham model. Using the two proposed methods respectively, the displacement and velocity along the slope profiles of three slopes are determined. A reasonable agreement between the measured data and the calculated results of the two proposed methods has been reached. In comparison with the empirical method, the analytical method would be more beneficial for slope deformation analysis in slope engineering, because the parameters are material constants in the analytical solution independent of time t, and the nonlinear viscosity of the soil can be considered.  相似文献   

20.
利用ATG-300H型便携式测氢仪,分别在昌平地区、海原断裂带、北轮台断裂开展土壤氢气浓度测量。基于气体扩散方程,从采样器类型、测孔深度、土壤特性、断层作用等方面探讨氢气浓度测量的影响因素与机理。结果显示:1)土壤氢气浓度值受测孔闲置时间、测孔深度和采样器形状的影响较大;2)氢气浓度测值与气体扩散方程的理论解曲线吻合较好,其曲线形态主要与土壤中氢气的富集程度和土壤疏松程度密切相关;3)断层带上的氢气浓度受构造作用、断层滑动速率、断层闭锁程度、上下盘裂隙发育程度、裂隙开启或闭合状态等因素影响较大,这些因素主要影响深部氢气的向上迁移通道和在地表的富集程度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号