首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The ultra-slow, asymmetrically-spreading Knipovich Ridge is the northernmost part of the Mid Atlantic ridge system. In the autumn of 2002 a combined ocean-bottom seismometer multichannel seismic (OBS/MCS) and gravity survey along the spreading direction of the Knipovich Ridge was carried out. The main objective of the study was to gain an insight into the crustal structure and composition of what is assumed to be an amagmatic segment of oceanic crust. P-wave velocity and Vp/Vs models were built and complemented by a gravity model. The 190 km long transect reveals a much more complex crustal structure than anticipated. The magmatic crust is thinner than the global average of 7.1 ± 1.0 km. The young fractured portion of Oceanic Layer 2 has low seismic velocities while the older part has normal seismic velocities and is broken into several rotated fault blocks seen as thickness variations of Layer 2. The youngest part of Oceanic Layer 3 is also dominated by low velocities, indicative of fracturing, seawater circulation and thermal expansion. The remaining portion of Layer 3 exhibits inverse variations in thickness and seismic velocity. This is explained by a sequence of periods of faster spreading (estimated to be up to 8 mm/year from interpretation of magnetic anomalies) when more normal gabbroic crust was being generated and periods of slower spreading (5.5 mm/year) when amagmatic stretching and serpentinization of the upper mantle occurred, and crust composed of mixed gabbro and serpentinized mantle was generated. The volumetric changes and upward fluid migration, associated with the process of serpentinization in this part of the crust, caused disruption to the overlying sedimentary layers.  相似文献   

2.
A combined ocean bottom seismometer, multichannel seismic reflection and gravity study has been carried out along the spreading direction of the Knipovich Ridge over a topographic high that defines a segment center. The youngest parts of the crust in the immediate vicinity of the ridge reveal fractured Oceanic Layer 2 and thermally expanded and possibly serpentinized Oceanic Layer 3. The mature part of the crust has normal thickness and seismic velocities with no significant crustal thickness and seismic velocity variations. Mature Oceanic Layer 2 is in addition broken into several rotated fault blocks. Comparison with a profile acquired ~40 km north of the segment center reveals significant differences. Along this profile, reported earlier, periods of slower spreading led to generation of thin crust with a high P-wave velocity (Vp), composed of a mixture of gabbro and serpentinized mantle, while periods of faster spreading led to generation of more normal gabbroic crust. For the profile across the segment center no clear relation exists between spreading rate and crustal thickness and seismic velocity. In this study we have found that higher magmatism may lead to generation of oceanic crust with normal thickness even at ultra-slow spreading rates.  相似文献   

3.
The structure of the oceanic crust adjacent to the Côte d’Ivoire–Ghana transform margin is deduced from multichannel seismic reflection and seismic wide-angle data, showing crustal heterogeneities within oceanic basement; the oceanic crust adjacent to the transform margin is half as thick as standard Atlantic oceanic crust. Refraction data indicate a gradual velocity transition towards typical mantle velocities. Such an abnormal oceanic crustal structure appears quite similar to crustal structures known along transform faults. This crustal thinning may be related to thermal effects of the nearby continental crust, on the oceanic accretion processes. We did not find geophysical evidence for oceanic crust contamination by continental lithosphere.  相似文献   

4.
The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.  相似文献   

5.
As an interoceanic arc, the Kyushu-Palau Ridge(KPR) is an exceptional place to study the subduction process and related magmatism through its interior velocity structure. However, the crustal structure and its nature of the KPR,especially the southern part with limited seismic data, are still in mystery. In order to unveil the crustal structure of the southern part of the KPR, this study uses deep reflection/refraction seismic data recorded by 24 ocean bottom seismometers to reconstruct a detail...  相似文献   

6.
As a supplementary study, we used passive seismic data recorded by one ocean bottom seismometer (OBS) station (49°41.8′E) close to a hydrothermal vent (49°39′E) at the Southwest Indian Ridge to invert the crustal structure and mantle transition zone (MTZ) thickness by P-to-S receiver functions to investigate previous active seismic tomographic crustal models and determine the influence of the deep mantle thermal anomaly on seafloor hydrothermal venting at an ultra-slow spreading ridge. The new passive seismic S-wave model shows that the crust has a low velocity layer (2.6 km/s) from 4.0 to 6.0 km below the sea floor, which is interpreted as partial melting. We suggest that the Moho discontinuity at ~9.0 km is the bottom of a layer (2–3 km thick); the Moho (at depth of ~6–7 km), defined by active seismic P-wave models, is interpreted as a serpentinized front. The velocity spectrum stacking plot made from passive seismic data shows that the 410 discontinuity is depressed by ~15 km, the 660 discontinuity is elevated by ~18 km, and a positive thermal anomaly between 182 and 237 K is inferred.  相似文献   

7.
A seismic refraction study on old (110 Myr) lithosphere in the northwest Pacific Basin has placed constraints on crustal and uppermantle seismic structure of old oceanic lithosphere, and lithospheric aging processes. No significant lateral variation in structure other than azimuthally anisotropic mantle velocities was found, allowing the application of powerful amplitude modeling techniques. The anisotropy observed is in an opposite sense to that expected, suggesting the tectonic setting of the area may be more complex than originally thought. Upper crustal velocities are generally larger than for younger crust, supporting current theories of decreased porosity with crustal aging. However, there is no evidence for significant thickening of the oceanic crust with age, nor is there any evidence of a lower crustal layer of high or low velocity relative to the velocity of the rest of Layer 3. The compressional and shear wave velocities rule out a large component of serpentinization of mantle materials. The only evidence for a basal crustal layer of olivine gabbro cumulates is a 1.5 km thick Moho transition zone. In the slow direction of anisotropy, upper mantle velocities increase from 8.0 km s-1 to 8.35 km s-1 in the upper 15 km below the Moho. This increase is inconsistent with an homogeneous upper mantle and suggests that compositinal or phase changes occur near the Moho.  相似文献   

8.
The Moho interface provides critical evidence for crustal thickness and the mode of oceanic crust accretion. The seismic Moho interface has not been identified yet at the magma-rich segments (46°-52°E) of the ultra- slow spreading Southwestern Indian Ridge (SWIR). This paper firstly deduces the characteristics and do- mains of seismic phases based on a theoretical oceanic crust model. Then, topographic correction is carried out for the OBS record sections along Profile Y3Y4 using the latest OBS data acquired from the detailed 3D seismic survey at the SWIR in 2010. Seismic phases are identified and analyzed, especially for the reflected and refracted seismic phases from the Moho. A 2D crustal model is finally established using the ray tracing and travel-time simulation method. The presence of reflected seismic phases at Segment 28 shows that the crustal rocks have been separated from the mantle by cooling and the Moho interface has already formed at zero age. The 2D seismic velocity structure across the axis of Segment 28 indicates that detachment faults play a key role during the processes of asymmetric oceanic crust accretion.  相似文献   

9.
超慢速扩张洋中脊具有不同于其他扩张速率洋中脊的特征,表现为剧烈变化的洋壳厚度和典型的非岩浆段。本文对前人研究的洋中脊岩浆形成关键因素和迁移聚集模式进行综合分析,结合实际地球物理和地球化学的观测数据,探讨了超慢速扩张洋中脊岩浆从地幔源区形成、迁移汇聚、形成洋壳的整个地质过程,进一步指出了影响洋壳结构的关键控制因素。研究结果表明,超慢速扩张洋中脊沿轴洋壳厚度的变化受岩浆补给量和迁移汇聚的共同制约。其中,岩浆补给量受控于洋中脊的地幔潜热、地幔成分和扩张速率的变化;岩浆迁移和汇聚过程则与超慢速扩张洋中脊密集的分段特征和阻渗层的空间结构密切相关。  相似文献   

10.
This paper describes results from a geophysical study in the Vestbakken Volcanic Province, located on the central parts of the western Barents Sea continental margin, and adjacent oceanic crust in the Norwegian-Greenland Sea. The results are derived mainly from interpretation and modeling of multichannel seismic, ocean bottom seismometer and land station data along a regional seismic profile. The resulting model shows oceanic crust in the western parts of the profile. This crust is buried by a thick Cenozoic sedimentary package. Low velocities in the bottom of this package indicate overpressure. The igneous oceanic crust shows an average thickness of 7.2 km with the thinnest crust (5–6 km) in the southwest and the thickest crust (8–9 km) close to the continent-ocean boundary (COB). The thick oceanic crust is probably related to high mantle temperatures formed by brittle weakening and shear heating along a shear system prior to continental breakup. The COB is interpreted in the central parts of the profile where the velocity structure and Bouguer anomalies change significantly. East of the COB Moho depths increase while the vertical velocity gradient decreases. Below the assumed center for Early Eocene volcanic activity the model shows increased velocities in the crust. These increased crustal velocities are interpreted to represent Early Eocene mafic feeder dykes. East of the zone of volcanoes velocities in the crust decrease and sedimentary velocities are observed at depths of more than 10 km. The amount of crustal intrusions is much lower in this area than farther west. East of the Kn?legga Fault crystalline basement velocities are brought close to the seabed. This fault marks the eastern limit of thick Cenozoic and Mesozoic packages on central parts of the western Barents Sea continental margin.  相似文献   

11.
The Southwest Subbasin (SWSB) is an abyssal subbasin in the South China Sea (SCS), with many debates on its neotectonic process and crustal structure. Using two-dimensional seismic tomography in the SWSB, we derived a detailed P-wave velocity model of the basin area and the northern margin. The entire profile is approximately 311-km-long and consists of twelve oceanic bottom seismometers (OBSs). The average thickness of the crust beneath the basin is 5.3 km, and the Moho interface is relatively flat (10–12 km). No high velocity bodies are observed, and only two thin high-velocity structures (~7.3 km/s) in the layer 3 are identified beneath the northern continent-ocean transition (COT) and the extinct spreading center. By analyzing the P-wave velocity model, we believe that the crust of the basin is a typical oceanic crust. Combined with the high resolution multi-channel seismic profile (MCS), we conclude that the profile shows asymmetric structural characteristics in the basin area. The continental margin also shows asymmetric crust between the north and south sides, which may be related to the large scale detachment fault that has developed in the southern margin. The magma supply decreased as the expansion of the SWSB from the east to the west.  相似文献   

12.
Two long seismic refraction lines along the crest of the Iceland-Faeroe Ridge reveal a layered crust resembling the crust beneath Iceland but differing from normal continental or oceanic crust. The Moho was recognised at the south-eastern end of the lines at an apparent depth of 16–18 km. A refraction line in deeper water west of the ridge and south of Iceland indicates a thin oceanic type crust underlain by a 7.1 km/s layer which may be anomalous upper mantle.An extensive gravity survey of the ridge shows that it is in approximate isostatic equilibrium; the steep gravity gradient between the Norwegian Sea and the ridge indicates that the ridge is supported by a crust thickened to about 20 km rather than by anomalous low density rocks in the underlying upper mantle, in agreement with the seismic results. An increase in Bouguer anomaly of about 140 mgal between the centre of Iceland and the ridge is attributed to lateral variation in upper mantle density from an anomalous low value beneath Iceland to a more normal value beneath the ridge. Local gravity anomalies of medium amplitude which are characteristic of the ridge are caused by sediment troughs and by lateral variations in the upper crust beneath the sediments. A steep drop in Bouguer anomaly of about 80 mgal between the ridge and the Faeroe block is attributed partly to lateral change in crustal density and partly to slight thickening of the crust towards the Faeroe Islands; this crustal boundary may represent an anomalous type of continental margin formed when Greenland started to separate from the Faeroe Islands about 60 million years ago.We conclude that the Iceland-Faeroe Ridge formed during ocean floor spreading by an anomalous hot spot type of differentiation from the upper mantle such as is still active beneath Iceland. This suggests that the ridge may have stood some 2 km higher than at present when it was being formed in the early Tertiary, and that it has subsequently subsided as the spreading centre moved away and the underlying mantle became more normal; this interpretation is supported by recognition of a V-shaped sediment filled trough across the south-eastern end of the ridge, which may be a swamped sub-aerial valley.  相似文献   

13.
对跨南海西南次海盆及两侧陆缘的一条1050km长的、包括海底地震(OBS)、长排列多道地震和重磁在内的综合地球物理探测剖面(CFT)进行了构造成像和研究。在多道地震成像基础上建立了CFT剖面初始速度模型, 进而通过初至波层析成像方法反演了CFT剖面的速度结构模型, 在重力异常资料的约束下建立了CFT剖面的综合地壳结构模型。讨论了沿CFT剖面出现的下地壳高速体、龙门海山的低密度物质等地质问题。结果表明, 下地壳高速层在北部陆坡、西南海盆和南部南沙地块均有分布, 厚度在0~4km之间, 可能与陆缘下地壳物质和地幔物质熔融混合, 以及深海盆海底扩张期间构造拉伸导致地幔蛇纹岩化有关。  相似文献   

14.
The horizontal components from twenty Ocean Bottom Seismometers deployed along three profiles near the Kolbeinsey Ridge, North Atlantic, have been modelled with regard to S-waves, based on P-wave models obtained earlier. Two profiles were acquired parallel to the ridge, and the third profile extended eastwards across the continental Jan Mayen Basin. The modelling requires a thin (few 100 m) layer with very high V p/V s-ratio (3.5–9.5) at the sea-floor in the area lacking sedimentary cover. The obtained V p/V s-ratios for the remaining part of layer 2A, 2B, 3 and upper mantle, correspond to the following lithologies: pillow lavas, sheeted dykes, gabbro and peridotite, respectively. All crustal layers exhibit a decreasing trend in V p/V s-ratio away-from-the-axis, interpreted as decreasing porosity and/or crack density in that direction. A significant S-wave azimuthal anisotropy is observed within the thin uppermost layer of basalt near the ridge. The anisotropy is interpreted as being caused by fluid-filled microcracks aligned along the direction of present-day maximum compressive stress, and indicates crustal extension at the ridge itself and perpendicular-to-the-ridge compression 12 km off axis. Spreading along the Kolbeinsey Ridge has most likely been continuous since its initiation ca. 25 Ma: The data do not suggest the presence of an extinct spreading axis between the Kolbeinsey Ridge and the Aegir Ridge as has been proposed earlier. The V p/V s-ratios found in the Jan Mayen Basin are compatible with continental crust, overlain by a sedimentary section dominated by shale.  相似文献   

15.
Understanding the development from syn-rift to spreading in the South China Sea (SCS) is important in elucidating the western Pacific's tectonic evolution because the SCS is a major tectonic constituent of the many marginal seas in the region. This paper describes research examining the transition from rifting to spreading along the northern margin of the SCS, made possible by the amalgamation of newly acquired and existing geophysical data. The northernmost SCS was surveyed as part of a joint Japan-China cooperative project (JCCP) in two phases in 1993 and 1994. The purpose of the investigation was to reveal seismic and magnetic characteristics of the transitional zone between continental crust and the abyssal basin. Compilation of marine gravity and geomagnetic data of the South China Sea clarify structural characteristics of its rifted continental and convergent margins, both past and present. Total and three component magnetic data clearly indicate the magnetic lineations of the oceanic basin and the magnetic characteristics of its varied margins. The analyses of magnetic, gravity and seismic data and other geophysical and geological information from the SCS led up to the following results: (1) N-S direction seafloor spreading started from early Eocene. There were at least four separate evolutional stages. Directions and rates of the spreading are fluctuating and unstable and spreading continued from 32 to 17 Ma. (2) The apparent difference in the present tectonism of the eastern and western parts of Continent Ocean Boundary (COB) implies that in the east of the continental breakup is governed by a strike slip faulting. (3) The seismic high velocity layer in the lower crust seems to be underplated beneath the stretched continental crust. (4) Magnetic anomaly of the continental margin area seems to be rooted in the uppermost sediment and upper part of lower crust based on the tertiary volcanism. (5) Magnetic quiet zone (MQZ) anomaly in the continental margin area coincides with COB. (6) The non-magnetic or very weakly magnetized layer is probably responsible for MQZ. One of the causes of demagnetization of the layer is due to hydrothermal alteration while high temperature mantle materials being underplated. Another explanation is that horizontal sequences of basalt each with flip-flop magnetization polarity cancel out to the resultant magnetic field on the surface. We are currently developing a synthetic database system containing datasets of seismicity, potential field data, crustal and thermal structures, and other geophysical data to facilitate the study of past, contemporary and future changes in the deep sea environment around Japan; i.e. trench, trough, subduction zones, marginal basins and island arcs. Several special characteristics are an object-oriented approach to the collection and multi-faceted studies of global data from a variety of sources.  相似文献   

16.
The Sardinia Channel dataset was collected as part of the European Geotraverse (EGT)—a 4000 km seismic refraction line running from Northern Norway to the Sahara, designed to investigate the structure of the lithosphere beneath Europe. Wideangle seismic data recorded by ocean bottom seismometers deployed in the Sardinia Channel as part of the Southern Segment of the EGT, together with gravity data, were used to constrain the final crustal model. In the centre of the Channel the crust is identified as thinned continental in nature, with a crystalline thickness of 10 km overlain by 4 km of sediments and 2.5 km of water in the most extended region. High velocities in the lower crust in the central region are thought to represent an area of underplating or intrusion by igneous material caused by extension related to the opening of the Tyrrhenian Sea. The crust overlies an anomalously low velocity upper mantle.  相似文献   

17.
Results of the analysis and interpretation of the records of 17 ocean bottom seismometers designed at the Shirshov Institute of Oceanology, Russian Academy of Sciences (a three-component geophone and a hydrophone), installed with an interval of 10–20 km along a profile in the transition zone from the Baltic shield to the Barents Sea basin are presented. The studies were carried out in 1995 from R/V Professor Kurentsov. An air gun with a chamber volume of 80 1 was used as the source of seismic waves with a shooting interval of 250 m. The longest range of records of deep refracted and wide-angle reflected waves (up to 300 km) was reached with the hydrophones. Two-dimensional seismic modeling allowed us to refine the earlier versions of the seismic cross section of the earth’s crust and uppermost mantle in the study region. New data confirmed that, in the central area of the Barents Sea, the “granitic-metamorphic” layer of the crust with a seismic velocity of 6.2 km/s typical of the Baltic Shield is absent. In this region, a thin consolidated crust with a seismic velocity of 6.8 km/s is covered with a thick (more than 25 km) sedimentary layer. In this layer, a local low-velocity zone probably exists, which causes a strong attenuation of the “crustal” waves.  相似文献   

18.
The South China Sea is the largest marginal basin of SE Asia, yet its mechanism of formation is still debated. A 1000-km long wide-angle refraction seismic profile was recently acquired along the conjugate margins of the SW sub-basin of the South China Sea, over the longest extended continental crust. A joint reflection and refraction seismic travel time inversion is performed to derive a 2-D velocity model of the crustal structure and upper mantle. Based on this new tomographic model, northern and southern margins are genetically linked since they share common structural characteristics. Most of the continental crust deforms in a brittle manner. Two scales of deformation are imaged and correlate well with seismic reflection observations. Small-scale normal faults (grabens, horsts and rotated faults blocks) are often associated with a tilt of the velocity isocontours affecting the upper crust. The mid-crust shows high lateral velocity variation defining low velocity bodies bounded by large-scale normal faults recognized in seismic reflection profiles. Major sedimentary basins are located above low velocity bodies interpreted as hanging-wall blocks. Along the northern margin, spacing between these velocity bodies decreases from 90 to 45 km as the total crust thins toward the Continent–Ocean Transition. The Continent–Ocean Transitions are narrow and slightly asymmetric – 60 km on the northern side and no more than 30 km on the southern side – indicating little space for significant hyper-stretched crust. Although we have no direct indication for mantle exhumation, shallow high velocities are observed at the Continent–Ocean Transition. The Moho interface remains rather flat over the extended domain, and remains undisturbed by the large-scale normal faults. The main décollement is thus within the ductile lower crust.  相似文献   

19.
南海区域岩石圈的壳-幔耦合关系和纵向演化   总被引:11,自引:2,他引:11  
南海区域岩石圈由地壳层和上地幔固结层两部分组成。具典型大洋型地壳结构的南海海盆区莫霍面深度为9~13km,并向四周经陆坡、陆架至陆区逐渐加深;陆缘区莫霍面一般为15~28km,局部区段深达30~32km,总体呈与水深变化反相关的梯度带;东南沿海莫霍面深约28~30km,往西北方向逐渐增厚,最大逾36km。南海区域上地幔天然地震面波速度结构明显存在横向分块和纵向分层特征。岩石圈底界深度变化与地幔速度变化正相关;地幔岩石圈厚度与地壳厚度呈互补性变化,莫霍面和岩石圈底界呈立交桥式结构,具有陆区厚壳薄幔—洋区薄壳厚幔的岩石圈壳-幔耦合模式。南海区域白垩纪末以来的岩石圈演化主要表现为陆缘裂离—海底扩张—区域沉降的过程,现存的壳-幔耦合模式显然为岩石圈纵向演化产物,其过程大致可分为白垩纪末至中始新世的陆缘裂离、中始新世晚期至中新世早期的海底扩张和中新世晚期以来的区域沉降等三个阶段。  相似文献   

20.
This study presents the results of a seismic refraction experiment that was carried out off Dronning Maud Land (East Antarctica) along the Explora Escarpment (14° W–12° W) and close to Astrid Ridge (6°E). Oceanic crust of about 10 km thickness is observed northwest of the Explora Escarpment. Stretched continental crust, observed southeast of the escarpment, is most likely intruded by volcanic material at all crustal levels. Seismic velocities of 7.0–7.4 km/s are modelled for the lower crust. The northern boundary of this high velocity body coincides approximately with the Explora Escarpment. The upper crystalline crust is overlain by a 4-km thick and 70-km wide wedge of volcanic material: the Explora Wedge. Seismic velocities for the oceanic crust north of the Explora Escarpment are in good agreement with global studies. The oceanic crust in the region of the Lazarev Sea is also up to 10-km thick. The lower crystalline crust shows seismic velocities of up to 7.4 km/s. This, together with the larger crustal thickness might point to higher mantle temperatures during the formation of the oceanic crust. The more southerly rifted continental crust is up to 25-km thick, and also has seismic velocities of 7.4 km/s in the lower crystalline crust. This section is interpreted to consist of stretched continental crust, which is heavily intruded by volcanic material up to approximately 8-km depth. Multichannel seismic data indicate that, in this region, two volcanic wedges are present. The wedges are interpreted to have evolved during different time/rift periods. The wedges have a total width of at least 180 km in the Lazarev Sea. Our results support previous findings that the continental margin off Dronning Maud Land between ≈2°E and ≈13°E had a complex and long-lived rift history. Both continental margins can be classified as rifted volcanic continental margins that were formed during break-up of Gondwana.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号