首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study tracks changes in metal distribution in estuarine sediments as a result of leakage from acid sulphate (AS) soil landscapes in the Boreal Zone (Finland). The main objective was to identify the impact of these nasty soils on sediment geochemistry in a biologically sensitive and shallow brackish-water estuary. In order to do this four sediment cores were sampled in a profile extending seawards from the mouth of the Vörå River, which is one of the most heavily AS soil-impacted rivers in Finland and Europe. Two of the cores were rather deep (2.5 m and 4.0 m) and the others were shallow (0.4 m and 0.8 m). The results showed that an appreciable amount of aluminium (Al), cobalt (Co), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn) were elevated in the surface and sub-surface of the sampled bottom sediments compared to the deeper sediment background levels. These metals are all known to be abundantly leached from the AS soils. At the site approximately 4 km away from the river mouth, the concentrations of Cd, Co, Mn, Ni and Zn were elevated 5–100 times as compared to the background levels and showed an intriguing cyclic pattern, most likely reflecting seasonal leaching dynamics in the AS soil landscapes. In contrast, metals that are not abundantly leached from AS soils, i.e. chromium (Cr), iron (Fe) and vanadium (V) had consistently low concentrations throughout all sediment cores. The elevated metal concentrations in the top layers of the sediments in the estuary are alarming. The continuous land uplift of the region combined with the episodic rapid declines in pH may result in short and long term extensive release of metals. This, in turn, may have significant effects on the trace-metal contents in the Gulf of Bothnia and the entire Baltic Sea.  相似文献   

2.
This Florida Geological Survey U.S. Department of the Interior, Minerals Manage ment Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Follow ing these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (0.062 mm). Concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulo metric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X-ray diffraction was used to deter mine clay mineralogy. Trace-metal concentrations were best correlated when normalized with respect to sediment aluminum concentrations. Normalizations indicate that most major and trace-metal concentrations fall within 95 % prediction limits of the expected value. This finding suggests that little significant metal contamination occurred within this system prior to 1994 sediment sampling. Exceptions include lead, mercury, copper, zinc, potassium, and phosphorous. Lead and mercury are elements that generally enter this watershed through atmospheric deposition; thus, anomalous levels of these metals are not necessarily associated with activities within the watershed of the Steinhatchee River estuary. Anomalous concentrations of other metals such as zinc, copper, and phosphorous probably do originate within the Steinhatchee watershed. Copper failed to correlate well with any geochemical or granulometric normalizer, and this condition was not limited to a single facies or area within the estuary. This finding may indicate copper contamination in the system. Increased zinc and copper levels may be attributed to marine paints. Phosphorous levels also appeared to be elevated in a few locations in the two marsh facies sampled. This may be due to nutrient loading from two small communities, Jena and Steinhatchee, or from the application of this element in fertilizer to reduce moisture stress to young planted pines on tree farms within the watershed.  相似文献   

3.
This Florida Geological Survey U.S. Department of the Interior, Minerals Manage ment Service Cooperative Study provides baseline data for major and trace metal concentrations in the sediments of the Steinhatchee River estuary. These data are intended to provide a benchmark for comparison with future metal concentration data measurements. The Steinhatchee River estuary is a relatively pristine bay located within the Big Bend Wildlife Management Area on the North Central Florida Gulf of Mexico coastline. The river flows 55 km through woodlands and planted pines before emptying into the Gulf at Deadman Harbor. Water quality in the estuary is excellent at present. There is minimal development within the watershed. The estuary is part of an extensive system of marshes that formed along the Florida Gulf coast during the Holocene marine transgression. Sediment accretion rate measurements range from 1.4 to 4.1 mm yr on the basis of lead-210 measurements. Seventy-nine short cores were collected from 66 sample locations, representing four lithofacies: clay- and organic-rich sands, organic-rich sands, clean quartz sands, and oyster bioherms. Samples were analyzed for texture, total organic matter, total carbon, total nitrogen, clay mineralogy, and major and trace-metal content. Follow ing these analyses, metal concentrations were normalized against geochemical reference elements (aluminum and iron) and against total weight percent organic matter. Metals were also normalized granulometrically against total weight percent fines (0.062 mm). Concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES) for all metals except mercury. Mercury concentrations were determined by cold-flameless atomic absorption spectrometry (AAS). Granulo metric measurements were made by sieve and pipette analyses. Organic matter was determined by two methods: weight loss upon ignition and elemental analysis (by Carlo-Erba Furnace) of carbon and nitrogen. X-ray diffraction was used to deter mine clay mineralogy. Trace-metal concentrations were best correlated when normalized with respect to sediment aluminum concentrations. Normalizations indicate that most major and trace-metal concentrations fall within 95 % prediction limits of the expected value. This finding suggests that little significant metal contamination occurred within this system prior to 1994 sediment sampling. Exceptions include lead, mercury, copper, zinc, potassium, and phosphorous. Lead and mercury are elements that generally enter this watershed through atmospheric deposition; thus, anomalous levels of these metals are not necessarily associated with activities within the watershed of the Steinhatchee River estuary. Anomalous concentrations of other metals such as zinc, copper, and phosphorous probably do originate within the Steinhatchee watershed. Copper failed to correlate well with any geochemical or granulometric normalizer, and this condition was not limited to a single facies or area within the estuary. This finding may indicate copper contamination in the system. Increased zinc and copper levels may be attributed to marine paints. Phosphorous levels also appeared to be elevated in a few locations in the two marsh facies sampled. This may be due to nutrient loading from two small communities, Jena and Steinhatchee, or from the application of this element in fertilizer to reduce moisture stress to young planted pines on tree farms within the watershed.  相似文献   

4.
This paper examines disposal of metals and the origin, characteristics, and distribution of sedimentary organic matter (SOM) in a Mediterranean karstic estuary in the north-eastern Adriatic. This environment offers a real-time, small model system for studies of geochemical processes in microtidal Mediterranean estuaries that are infilling with sediments and classified as river-dominated disequilibrium estuaries. The results have shown that the longitudinal distribution of heavy metals in sediments follows the sedimentation dynamics and deposition pattern of river-borne, clay mineral particles. The highest concentration of metals was found in the restricted upper part of the estuary, characterized by rapid deposition of clay particles and terrestrial sedimentary organic matter, and decreases toward the open sea. The vertical distribution of metals in sediment cores depends on the prevailing pH and Eh conditions. Significant increases of the concentrations of metals in the uppermost strata are the result of recent anthropogenic inputs. The share of the terrestrial component in SOM, estimated by N/Corg atomic ratios and δ13C values, decreases with distance from the river mouth. The small vertical variation in δ13C values of SOM indicates that a fast sedimentation rate overrides the diagenetically determined decomposition. The results obtained indicate that river-borne inorganic particles, natural terrigenous organic material, and anthropogenic metal loads are trapped in sediments of the estuarine system. Under the prevailing conditions, there is negligible transport towards the open sea.  相似文献   

5.
黄河口沉积物重金属含量变化特征研究   总被引:11,自引:0,他引:11  
在黄河口的平水期、枯水期和丰水期采集沉积物样品。分析了铜、铅、锌、镉、铬、砷、汞浓度.结果表明,黄河口沉积物样品中的重金属含量由河到海呈现先上升后下降的趋势,平水期和枯水期Cd、Cr、As呈显著相关(0.01水平)。重金属含量为平水期>枯水期>丰水期。水文特征严重影响到沉积物中重金属的迁移。沉积物中重金属含量和沉积物的粒度密切相关.粒度越小重金属含量越高,反映了河流沉积的特征。沉积物中重金属浓度较低。各项目基本上都符合海洋沉积物质量一类标准。  相似文献   

6.
High absolute concentrations of metals associated to sulfide deposits located at the river source (Fe, Cu, Zn, Pb, Cd, and As) have been determined from the study of major and trace element concentrations in sediment samples obtained in two vibracores in the Tinto River estuary. In most cases, the enrichment factor (EF) for these metals is over 2. Cu, Zn and As have much higher EF, over 10 in surficial samples. Fe oxy-hydroxide precipitation in high-chlorinity zones and its scavenging effect on metals is the main control process on the chemical composition of sediment. Vertical evolution of the sedimentary and geochemical characteristics of the cores show that the estuary has undergone a process of progressive shallowness and a relative increase in acidic river water volume with respect to seawater. This effect has originated a downstream displacement of acid mixing processes affecting the estuary, which is reflected in higher metal concentrations in sediments of the outer zones of the system.  相似文献   

7.
黄河口河海混合过程水中重金属的变化特征   总被引:2,自引:0,他引:2  
在枯水期、丰水期采集黄河口的表底层水样,分析全水样铜、铅、锌、镉、铬、砷、汞浓度.结果表明黄河口水中重金属浓度:丰水期>枯水期,且底层水总重金属浓度要高于表层.在从河入海过程中,总重金属浓度在河海混合过程阶段浓度变化较大,在枯水期整体上是由河向海的总重金属浓度逐渐降低,但部分金属在距离A03站位12.5 km附近有明显低值区,随后又有升高,主要原因为沉积物的再悬浮;在丰水期距离A03站点11.5~15 km,重金属浓度有低谷河段,随后又有一峰值,该位置比枯水期推后了约1.3 km.主成分分析表明,河水流量的大小和咸淡水的混合导致的泥沙的再悬浮和盐度影响到河海混合过程及河口重金属的浓度变化趋势.  相似文献   

8.
灌河是苏北地区最大、航运条件最好的入海河流。重金属元素分析显示,灌河口表层沉积物中Hg、As和Cu的含量高于背景值;Pb和Zn的含量接近背景值;Cd的含量低于背景值。其中Hg元素出现了中等程度的生态危害性,而Cr、As、Cu、Pb、Zn和Cd等元素的生态危害系数均极低,整个灌河口潮滩地区并没有出现较为严重的重金属生态危害。  相似文献   

9.
The relative impacts of tidal (neap, spring) and river discharge (including a flood event) forcing upon water and sediment circulation have been examined at the rock-bound Guadiana estuary. Near-bed and vertical profiles of current, salinity, turbidity, plus surface suspended sediment concentrations (SSC, at some stations only), were collected at the lower and central/upper estuary during tidal and fortnightly cycles. In addition, vertical salinity and turbidity profiles were collected around high and low water along the estuary. Tidal asymmetry produced faster currents on the ebb than on the flood, especially at the mouth. This pattern of seaward current dominance was enhanced with increasing river flow, due to horizontal advection that was confined within the narrow estuarine channel. The freshwater inputs and, at a degree less, the tidal range controlled the vertical mixing and stratification importance. Well-mixed (spring) and partially stratified (neap) conditions alternated during periods of low river flows, with significant intratidal variations induced by tidal straining (especially at the partially stratified estuary). Highly stratified conditions developed with increasing river discharge. Intratidal variability in the pycnocline depth and thickness resulted from current shear during the ebb. A salt wedge with tidal motion was observed at the lower estuary during the flood event. Depending on the intensity of turbulent mixing, the residual water circulation was dominantly controlled either by tidal asymmetry or gravitational circulation. The SSC was governed by cyclical local processes (resuspension, deposition, mixing, advection) driven by the neap-spring fluctuations in tidal current velocities. More, intratidal variability in stratification indicated the significance of tidal pumping at the partially and highly stratified estuary. The estuary turbidity maximum (ETM) was enhanced with increasing current velocities, and displaced downstream during periods of high river discharge. During the flood event, the ETM was expelled out of the estuary, and the SSC along the estuary was controlled by the sediment load from the drainage basin. Under these highly variable river flow conditions, our observations suggest that sand is exported to the nearshore over the long-term (>years).  相似文献   

10.
珠江口受复杂径?潮动力耦合作用的影响,河口重金属迁移转化机制复杂多变。本文基于2018年夏季珠江口及其邻近海域海水和沉积物的调查资料,研究了珠江口多动力因子驱动下7种重金属元素汞、砷、锌、镉、铅、铜和铬的沉积、迁移和积累机制。结果表明:相比于溶解态重金属(水体中)的赋存状况,吸附态重金属(沉积物中)更稳定,污染也更严重;采用皮尔逊相关分析和主成分分析计算出重金属元素与环境因子之间的响应关系,溶解态重金属主要以稀释混合过程为主,吸附态重金属受有机碳和氧化还原作用的影响较大;沉积物?水界面重金属的分配系数显示出铅和铬易被吸附在颗粒物上,而镉和汞易溶解在水体中,揭示了河口复杂动力影响下元素在不同介质的形态转换特征;除了镉?铬、镉?铜和铬?砷这3组元素间不显著相关,其他元素间的显著相关性表明了重金属元素具有相似的来源,并采用主成分分析探讨了重金属元素的潜在来源,主要来源为工业废水,农业和大气沉降次之。研究结果可为有效控制重金属的排放和河口污染治理提供重要支撑。  相似文献   

11.
The concentrations of a number of trace metals (Co, Ni, Cu, Zn, Ag, Cd and Hg) have been determined in sediments from cores collected in the Southampton Water region. Measurements of total hydrocarbons were also made on several of the cores. Markedly elevated concentrations of copper, up to 362 μg/g dry wt, were found in sediments which were collected close to the discharge points of oil refinery outfalls and which also showed concentrations of total hydrocarbons considerably greater than the background levels for the estuary. The results of selective chemical extractions showed that much of the copper was present in the non-lattice fraction of the sediment. Although the concentrations of Co, Ni, Zn and Cd were significantly correlated with those of copper in the core showing the highest concentrations of this element, these metals were not enhanced in comparison with the levels found in several other parts of the estuary. Variations in concentrations of metals in sediments throughout the estuary were not correlated with differences in organic carbon content.  相似文献   

12.
The present study aimed to assess the sediment quality in a tropical estuary located in the northeast of Brazil under semi-arid conditions and multiple sources of contamination, using both toxicity bioassays and metal distribution. The metal distribution followed a concentration gradient decreasing one order of magnitude from the inner station toward the outer estuary, with amounts in the following order: Fe > Al > Zn > Cr > Pb > Cu. The index of geoaccumulation indicated a metal enrichment in the Ceará river sediment, mainly at inner sites, considered from moderately to strongly contaminated by Al, Cu, Cr and Zn. Sediment samples were considered toxic by means of whole sediment tests with copepods (reproduction) and amphipods (survival), and also elutriate fraction and sediment–water interface with sea urchin embryos (development). Acute and chronic toxicity did not exhibit a significant correlation with metals, emphasizing the influence of other contaminants mainly related to the pollution sources installed in the mid-estuary.  相似文献   

13.
Samples of 5 bivalve molluscs (Crassostrea rhizophorae, Mytella charruana, Anomalocardia brasiliana, Anadara ovalis, Phacoides pectinata), 2 barnacles (Fistulobalanus citerosum, Balanus amphitrite) and leaves of the mangrove tree Rhizophora mangle were collected from up to 11 sites in two estuaries in Natal, Brazil--the comparatively contaminated Potengi estuary and the comparatively uncontaminated Curimataú estuary. Specimens were analysed for the trace metals Zn, Cu, Cd, Fe, Mn and Ni, and a comparative assessment made of the power of the different species as trace metal biomonitors. Four of the 5 bivalves (not P. pectinata) take up metals from solution and suspended material (food source), while P. pectinata as a lucinid with symbiotic chemosynthetic bacteria takes up metals from dissolved sources only. The organisms with the strongest net accumulation of particular metals showed the greatest discrimination between trace metal bioavailabilities between sites. Barnacles (F. citerosum) showed the best discrimination, but oysters (C. rhizophorae) are particularly recommended as biomonitors given their strong accumulation patterns for many trace metals, their large size and their local abundance.  相似文献   

14.
The goal of this study was to assess the contamination of Honolua Bay using an ecotoxicological approach. First, the concentrations of 9 contaminants (metals and metalloid) were assessed in sediments and tropical marine organisms (alga Halimeda kanaloana, goatfish Parupeneus multifasciatus and urchin Tripneustes gratilla) sampled from Honolua and surrounding Bays. Then, the ecological parameters characterizing coral health (e.g. coral cover) were evaluated in Honolua Bay in the context of these contaminants. High concentrations of Co, Cr, Mn, Ni, and V in sediments from Honolua and Honokohau Bay were measured, but these concentrations were not mirrored in the organisms examined, except for Mn, suggesting that the metals are generally bound in chemically inert forms in these sediments. Moreover, few anthropogenic activities impact these bays and so the elevated Co, Cr, Mn, Ni and V concentrations in sediments appear to stem from their high natural background in Honolua and Honokohau watersheds. An analysis of the relationship between the ecological parameters and metal concentrations in Honolua Bay revealed a significant correlation between coral cover and Co, Cr, Mn, Ni, V, Zn concentrations in sediments, with coral cover decreasing with increasing metal concentration. Collectively, however, the data suggest that a complex mixture of land-based stressors (e.g. sediment, metals, nutrients) affect the coral health in Honolua Bay, rather than metal stress alone.  相似文献   

15.
In order to assess the adaptation to metals previously observed in the bioindicator organism, Macoma balthica, subjected to chronic contamination by silver and mercury in the French Loire estuary, the bioaccumulation potential of individual organisms originating from the contaminated Loire estuary and a relatively uncontaminated control estuary (Somme) was evaluated using both radiotracers and stable isotopes of Ag (80 μg Ag litre−1) and Hg (100 μg Hg litre−1). Clams from the contaminated estuary were more sensitive to Ag (LT50 = 9d) than those originating from the Somme estuary (LT50 > 15d), even though the former bioaccumulated Ag to a significantly lower degree. This is attributed to a consequence of the chronic stress induced by Ag while clams were living in their natural environment. Therefore, past history of trace metal contamination should be considered when evaluating the susceptibility of M. balthica to heavy metal exposure. Lower uptake rates obtained for Hg (during the initial uptake phase only) and for Ag in clams from the polluted estuary suggest the presence of an adaptive trait for survival in contaminated areas. However, the lower degree of bioconcentration observed for Ag was not sufficiently low to reduce the sensitivity of the organisms to Ag and allow them to resist the toxic stress. Clams that survived Ag or Hg exposure at LT50 did not protect themselves against metal toxicity by accumulating a significantly lesser amount of these metals than clams which did not survive metal stress. The results suggest that the bioaccumulation potential of each individual was not a factor which can explain the survival ability of M. balthica exposed to chronic Ag and Hg contamination in estuaries. In this case, cellular, biochemical and genetic levels of adaptation are presumed to be of greater importance.  相似文献   

16.
We examine the microchemistry of otoliths of cohorts of a fished population of the large catadromous fish, barramundi Lates calcarifer from the estuary of a large tropical river. Barramundi from the estuary of the large, heavily regulated Fitzroy River, north-eastern Australia were analysed by making transects of 87Sr/86Sr isotope and trace metal/Ca ratios from the core to the outer edge. Firstly, we examined the Sr/Ca, Ba/Ca, Mg/Ca and Mn/Ca and 87Sr/86Sr isotope ratios in otoliths of barramundi tagged in either freshwater or estuarine habitats that were caught by the commercial fishery in the estuary. We used 87Sr/86Sr isotope ratios to identify periods of freshwater residency and assess whether trace metal/Ca ratios varied between habitats. Only Sr/Ca consistently varied between known periods of estuarine or freshwater residency. The relationships between trace metal/Ca and river flow, salinity, temperature were examined in fish tagged and recaptured in the estuary. We found weak and inconsistent patterns in relationships between these variables in the majority of fish. These results suggest that both individual movement history within the estuary and the scale of environmental monitoring were reducing our ability to detect any patterns. Finally, we examined fish in the estuary from two dominant age cohorts (4 and 7 year old) before and after a large flood in 2003 to ascertain if the flood had enabled fish from freshwater habitats to migrate to the estuary. There was no difference in the proportion of fish in the estuary that had accessed freshwater after the flood. Instead, we found that larger individuals with of each age cohort were more likely to have spent a period in freshwater. This highlights the need to maintain freshwater flows in rivers. About half the fish examined had accessed freshwater habitats before capture. Of these, all had spent at least their first two months in marine salinity waters before entering freshwater and some did not enter freshwater until four years of age. This contrasts with the results of several previous studies in other parts of the range that found that access to freshwater swamps by larval barramundi was important for enhanced population productivity and recruitment.  相似文献   

17.
Dissolved and particulate lead were measured over an annual cycle (12 surveys between February 1998 and January 1999) in the Morlaix River estuary (Brittany, France). The concentrations were investigated in both the water column and the sediment of the river bottom in relation to hydrological conditions. In the water column, dissolved and particulate lead concentrations ranged from 0.1 to 4.4 nM and from 0.04 to 1.9 μmol g− 1, respectively. Lead concentrations in surface sediment varied from 0.04 to 0.19 μmol g− 1 and concentrations in the sediment pore water of the estuary were below the detection limit. Compared with the ranges known for pristine estuaries, concentrations of Pb in the water column of the Morlaix River estuary were found to be much higher. Concentrations of Pb also exceeded the lower range of those known for industrialized estuaries. Extensive agricultural activities in the drainage basin may be responsible for Pb levels above pristine conditions. Furthermore, the sediment appeared not to be contaminated. A mass balance was constructed quantifying all known sources and sinks for the Pb in the estuary. Riverine input accounts for most of the total annual metal flux. Burial in sediments was the major sink within the estuary, which acts as a trap especially for the particulate lead. The mass balance shows that the metal accumulation ranged between 414.6 and 446.0 kg year− 1.  相似文献   

18.
黄海及东海海域大气降水中的重金属   总被引:15,自引:0,他引:15  
于2000年5月至2002年5月在黄海的千里岩岛和东海的嵊泗群岛两个采样点共采集了120多个降水样品,测定了pH值和重金属Cu、Pb、Zn、Cd的含量。结果表明,两个采样点的降水样品中重金属的浓度有明显的季节变化,冬季的浓度高于夏季。千里岩岛降水中的重金属的浓度明显高于嵊泗群岛,尽管其降雨量小于嵊泗群岛,千里岩岛大气降水中重金属的沉降通量仍大于嵊泗群岛。在千里岩岛,Pb以干沉降为主,而Cu、Zn、Cd的湿沉降占明显优势,表明在黄海海域湿沉降对重金属元素向海洋的输送起重要的作用。  相似文献   

19.
Abstract. Samples of the polychaete Nereis diversicolor O.F. M üller and surficial sediments from a clean and a polluted estuary were taken during a year at monthly intervals to determine, by comparison, the range of temporal fluctuations in trace metal concentrations. Whereas metal variations in surficial sediments were more pronounced in the polluted estuary, concentrations in N. diversicolor in both estuaries showed a wide range of temporal variation that surpassed that of surficial sediments. A clear decline in all metals studied (except Mn) from polluted sediments was noted after episodes of strong rainfall. In the reference estuary the fluctuations were less pronounced. Metal body burdens in N. diversicolor from the two estuaries were usually quite similar even though total levels in sediments differed considerably, indicating a lack of worm-sediment relationship. The low level of Cu, Cr and Pb in the tissues of N. diversicolor suggest a mechanism which prevents the polychaete from being exposed to these metals in highly polluted sediments. Therefore, it is concluded that N. diversicolor cannot be considered to be an ideal biomonitor of metal contamination in the polluted Bilbao Estuary.  相似文献   

20.
The Konkouré Estuary in the Republic of Guinea is a poorly understood atypical mangrove system. Sediment dynamics in tropical estuaries are controlled by a combination of processes including river discharge, morphology, salinity, erosion and deposition processes, the settling of mud, physico-chemical processes and mangrove swamps. Here we present a consistent set of data aimed at characterising the estuary and thus, increasing our understanding of tropical systems, as well as studying the impact of human intervention in the region. Water elevations, current measurements, salinity, suspended sediment concentrations, bathymetry and sediment cover are presented following a 3 year survey of the Konkouré Estuary. Here we provide conclusive evidence that the Lower Konkouré is a shallow, funnel shaped, mesotidal, mangrove-fringed, tide dominated estuary, well mixed during low river discharge. The estuary becomes stratified during high river flows and spring tides whereas a salt wedge appears during neap tides. The Konkouré Estuary has been described as hypersynchronous, and has three terminal outlets, two of which are landward-directed, attesting to a tidal pumping effect, while the third one is seaward-directed, and is controlled by the mangrove. The suspended matter is transported by the tidal effect within the middle estuary and is therefore trapped in the Turbidity Maximum zone (TMZ). The location of the TMZ is river-controlled and is correlated with residual currents but not with salinity front. A dam, constructed 130 km upstream, impacts on the hydrodynamics, and reduces the salinity intrusion by about 25%. It causes an increased low river discharge whereas its efficiency over high river flows is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号