首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Southern Variscan Front in the Tinerhir area involves Palaeozoic allochthonous units (Ouaklim and Tilouine units) thrust onto the northern edge of the West African Craton during late Carboniferous time. Illite crystallinity data highlight an anchizonal grade for the Ouaklim Unit, and a diagenesis-anchizone transition for the Tilouine Unit during deformation phase D1. The tectonic stack is crosscut by major dextral reverse faults bounding E–W trending domains of dominant shortening deformation (central domain) and strike-slip deformation (northern and southern domains), later segmented by a network of post-Variscan faults. This complex deformation pattern is the result of kinematic partitioning of dextral transpression along the Southern Variscan Front, coeval with the Neovariscan (300–290 Ma) oblique convergence observed at the scale of the whole Moroccan Variscides. Partitioning of dextral transpression described in the Tinerhir area is consistent with dextral wrench faulting along the Tizi n’ Test Fault, and with Appalachian-style south-directed thrusting in the Tinerhir and Bechar-Bou Arfa areas.  相似文献   

2.
The distribution of hypocentres in the Upper Rhine Graben area is re-examined, and discussed with respect to the present day tectonic framework. Most earthquakes occur within a N60° striking wedge, located on top of a Moho dome. This wedge is limited by the surface and at depth, by a plane which, in the south of the dome, coincides with the SE dipping Conrad discontinuity. In depth, the seismicity shows a normal distribution the maximums of which are located on a surface dipping 6° towards SE, parallel to the south-eastward dipping Conrad and Moho. This surface outcrops along the north-western edge of the uplifted crystalline Vosges and Black-Forest. The main shocks in earthquake swarms in the region often occur in the vicinity of this surface and along pre-existing N–S to NE–SW Variscan or Tertiary faults and show focal mechanisms of strike-slip. In contrast, part of the aftershocks show focal mechanisms of reverse faulting associated with SE–NW striking compression. The seismic wedge and the north-westward rising seismic surface suggest initiation of crustal ramp, which starts at the south-eastern rim of the Conrad dome and which may become a thrust plane if SE–NW compression continues. In the south-eastern edge of the graben and above the south-eastern ridge of the Moho dome, where evidences for extension have been found, we identify clustering of hypocentres along a surface that strikes N150°, parallel to the main compression and dipping towards NE. Dominant normal faulting mechanisms along this surface suggests initiation of a normal, probably listric fault. At depth, the onset of the future fault plane is located on top of the NW–SE striking ridge of the lower crust and Moho, which act as a an indenter. In addition to thrusting of the whole wedge towards NW, increasing of NW–SE compression would lead to the formation of a half graben at the place of the present Sierentz depression.  相似文献   

3.
The Teplá–Barrandian unit (TBU) of Central Europe's Bohemian Massif exposes perhaps the best preserved fragment of an accretionary wedge in the Avalonian–Cadomian belt, which developed along the northern active margin of Gondwana during Late Neoproterozoic. In the central TBU, three NE–SW-trending lithotectonic units (Domains 1–3) separated by antithetic brittle faults differ in lithology, style and intensity of deformation, magnetic fabric (AMS), and degree of Cadomian regional metamorphism. The flysch-like Domain 1 to the NW is the most outboard (trenchward) unit which has never been significantly buried and experienced only weak deformation and folding. The central, mélange-like Domain 2 is characterized by heterogenous intense deformation developed under lower greenschist facies conditions, and was thrust NW over Domain 1 along a SE-dipping fault. To the SE, the most inboard (arcward) Domain 3 is lithologically monotonous (dominated by graywackes and slates), was buried to depths corresponding up to the lower greenschist facies conditions, where it was overprinted by a pervasive SE-dipping cleavage and then was exhumed along a major NW-dipping normal fault.We interpret these domains to represent allochtonous tectonic slices that were differentially buried and then exhumed from various depths within the accretionary wedge during Cadomian subduction. The NW-directed thrusting of Domain 2 over Domain 1 may have been caused by accretion at the wedge front, whereas the SE-dipping cleavage and SE-side-up exhumation of Domain 3 may record inclined pervasive shortening during tectonic underplating and subsequent horizontal extension of the rear of the wedge. The boundary faults were later reactivated during Cambro–Ordovician extension and Variscan compression.Compared to related terranes of the Cadomian belt, the TBU lacks exposed continental basement, evidence for regional strike-slip shearing, and extensive backarc magmatism and LP–HT metamorphism, which could be interpreted to reflect flat-slab Cadomian subduction. This, in turn, suggests that Cadomian accretionary wedges developed in a manner identical to those of modern settings, elevating the TBU to a key position for understanding the style, kinematics, and timing of accretionary processes along the Avalonian–Cadomian belt.  相似文献   

4.
The nearly E-W-trending Aqqikkudug-Weiya zone, more than 1000 km long and about 30 km wide, is an important segment in the Central Asian tectonic framework. It is distributed along the northern margin of the Central Tianshan belt in Xinjiang, NW China and is composed of mylonitized Early Palaeozoic greywacke, volcanic rocks, ophiolitic blocks as a mélange complex, HP/LT-type bleuschist blocks and mylonitized Neoproterozoic schist, gneiss and orthogneiss. Nearly vertical mylonitic foliation and sub-horizontal stretching lineation define its strike-slip feature; various kinematic indicators, such as asymmetric folds, non-coaxial asymmetric macro- to micro-structures and C-axis fabrics of quartz grains of mylonites, suggest that it is a dextral strike-slip ductile shear zone oriented in a nearly E-W direction characterized by "flower" strusture with thrusting or extruding across the zone toward the two sides and upright folds with gently plunging hinges. The Aqqikkudug-Weiya zone experienced at least two stages of ductile shear tectonic evolution: Early Palaeozoic north vergent thrusting ductile shear and Late Carboniferous-Early Permian strike-slip deformation. The strike-slip ductile shear likely took place during Late Palaeozoic time, dated at 269(5 Ma by the40Ar/39Ar analysis on neo-muscovites. The strike-slip deformation was followed by the Hercynian violent S-type granitic magmatism. Geodynamical analysis suggests that the large-scale dextral strike-slip ductile shearing is likely the result of intracontinental adjustment deformation after the collision of the Siberian continental plate towards the northern margin of the Tarim continental plate during the Late Carboniferous. The Himalayan tectonism locally deformed the zone, marked by final uplift, brittle layer-slip and step-type thrust faults, transcurrent faults and E-W-elongated Mesozoic-Cenozoic basins.  相似文献   

5.
The Teisseyre-Tornquist Zone that separates the East European Craton from the Palaeozoic Platform forms one of the most fundamental lithospheric boundaries in Europe. Devonian to Cretaceous-Paleogene evolution of the SE segment of this zone was analyzed using high-quality seismic reflection data that provided detailed information regarding entire Palaeozoic and Mesozoic sedimentary cover, with particular focus on problems of Late Carboniferous and Late Cretaceous-Paleogene basin inversion and uplift. Two previously proposed models of development and inversion of the Devonian-Carboniferous Lublin Basin seem to only partly explain configuration of this sedimentary basin. A new model includes Late Devonian-Early Carboniferous reverse faulting within the cratonic area NE from the Kock fault zone, possibly first far-field effect of the Variscan orogeny. This was followed by Late Carboniferous inversion of the Lublin Basin. Inversion tectonics was associated with strike-slip movements along the Ursynów-Kazimierz fault zone, and thrusting along the Kock fault zone possibly triggered by deeper strike-slip movements. Late Carboniferous inversion-related deformations along the NE boundary of the Lublin Basin were associated with some degree of ductile (quasi-diapiric) deformation facilitated by thick series of Silurian shales. During Mesozoic extension and development of the Mid-Polish Trough major fault zones within the Lublin Basin remained mostly inactive, and subsidence centre moved to the SW, towards the Nowe Miasto-Zawichost fault zone and further to the SW into the present-day Holy Cross Mts. area. Late Cretaceous-Paleogene inversion of the Mid-Polish Trough and formation of the Mid-Polish Swell was associated with reactivation of inherited deeper fault zones, and included also some strike-slip faulting. The study area provides well-documented example of the foreland plate within which repeated basin inversion related to compressive/transpressive deformations was triggered by active orogenic processes at the plate margin (i.e. Variscan or Carpathian orogeny) and involved important strike-slip reactivation of crustal scale inherited fault zones belonging to the Teisseyre-Tornquist Zone.  相似文献   

6.
A series of regional deformation phases is described for the metamorphic basement and the Permian cover in an area in the central Orobic Alps, northern Italy. In the basement deformation under low-grade amphibolite metamorphic conditions is followed by a second phase during retrograde greenschist conditions. These two phases predate the deposition of the Permian cover and are of probable Variscan age. An extensional basin formed on the eroded basement during the Late Carboniferous, filled with fan conglomerates and sandstones, and rhyolitic volcanic rocks. Well-preserved brittle extensional faults bound these basins. Further extension deformed basement and cover before the onset of Alpine compressional tectonics. Cover and basement were deformed together during two phases of compressional deformation of post-Triassic age, the first giving rise to tectonic inversion of the older extensional faults, the second to new thrust faults, both associated with south-directed nappe emplacement and regional folding. Foliations develop in the cover only during the first phase of deformation as part of the activity on “shortening faults”. Main activity on the Orobic thrust actually postdates the first phase of thrusting and foliation development in the cover.  相似文献   

7.
In the Central Dinarides and South Tisia different Paleozoic complexes occur in four geotectonic zones: (1) comparatively autochthonous units located in the cores of disrupted anticlines of the External Dinarides; (2) allochthonous disrupted units accompanied by more predominant Triassic formations in the Sava Nappe, which is thrust onto the northeastern margin of the External Dinarides; (3) allochthonous disrupted units, also together with Triassic formations, in the Pannonian and Durmitor nappes of the Internal Dinarides; and (4) polymetamorphic sequences in basement of the Pannonian Basin and South Tisia, respectively. This paper presents basic geological features for the main Paleozoic areas included in these four zones. The tectonostratigraphic units of the first two zones were related to the Gondwana passive continental margin, those of the third zone to the Paleotethyan oceanic realm, and those of Tisia to the active Laurussia margin. Geodynamic evolution of all these Paleozoic complexes was related to opening and closure of the Rheic and Paleotethys Oceans. Rifting processes along North Gondwana started in the Silurian, locally in the Cambrian-Ordovician, and were followed by the Late Silurian/Devonian opening of the Paleotethys. Subduction processes were active by the end of the Devonian and at the beginning of the Carboniferous along the Laurussia margin. They were followed during the Westphalian by main Variscan deformation during collision of Gondwana and Laurussia. Associated metamorphism was very low-grade in the Paleozoic units of the Sava Nappe, low-grade to epidote-amphibolite grade within the Paleozoic complexes of the Pannonian and Durmitor nappes in the Internal Dinarides, and poly-metamorphic with migmatites and granitoids in South Tisia. These processes gave rise to a Pangea stage with the Variscan basement disconformably overlain by Late Carboniferous and Permian sediments.  相似文献   

8.
《Journal of Structural Geology》2001,23(6-7):1015-1030
The Malpica–Lamego Line (MLL) is a deformation zone in the Variscan belt of NW Iberia (NW Spain and N Portugal) that runs parallel to the chain for at least 275 km, bearing I-type granodiorite plutons along most of its length. The MLL affects previous structures by which high pressure and ophiolitic rocks were exhumed and emplaced on the Iberian plate during earlier deformation phases. Correlation and reconstruction of the stratigraphy of these sheets or tectonic units at both sides of the shear zone allows a preliminary estimate of the accumulated vertical and horizontal offsets after the tectonic activity of the fault. The value of the separations, of crustal-scale proportions, reaches a maximum 15 km of vertical offset that decreases gradually to the south. The structural record found in the rocks indicates a strike-slip regime that, in general, does not fit the geometry of the offsets. We suggest that the MLL went through two different stages during the same orogenic cycle: a first dip-slip episode, a reverse faulting event, overprinted by a later strike-slip reactivation.  相似文献   

9.
Abstract Regional metamorphism in the external Variscides of southwest England varied from diagenetic level to greenschist facies. There is a fundamental difference in the metamorphic character between the northern and southern regions of the area. In the north, M1 metamorphism is of a sedimentary burial character associated with high heat flow, whilst to the south it is related to tectonic burial during thrust thickening processes, with lower geothermal gradients. This pattern appears to be related to the character of basin development and its subsequent tectonic evolution. The northern region has features that accord with a diastathermal (extensional) origin for the very low-grade metamorphism whilst in the southern region the very low-grade metamorphism is linked to thrusting as a consequence of Variscan compression. The Tintagel High-Strain Zone presents an anomaly in this regional pattern where an M2 metamorphic phase is attributed to localized D2 thrust stacking along the southern margin of the Culm Basin.
There is no extensive overprint of the regional metamorphic pattern by the contact aureoles surrounding the granite plutons of the region. However, there is a noticeable coincidence between the areas of regional epizone grade and the extent of the geophysically defined subsurface limit of the granite batholith (excluding the North Devon area). This link is attributed largely to the late-stage structural up-doming of the higher grade areas over the roof of the batholith.  相似文献   

10.
东天山北部哈尔里克晚古生代推覆构造与岩浆作用研究   总被引:9,自引:1,他引:9  
东天山北部哈尔里地荀晚古生代火山弧,石炭纪末发生区域性逆冲推覆作用,研究表明,在晚石炭世碰撞造山过程中,哈尔里克地区国三个不同阶段屿性质的构造变形,变民岩浆作用;即346-312Ma从南向北的推覆作用,对应于这期从北向南的俯冲事件;312-260Ma从北向南的推覆作用,对应于晚石炭世的陆-陆碰撞陆内变形事件:260-230Ma洞东西方向的右旋走滑作用,对应于造山期末发生在边界断裂附近的变形事件,大  相似文献   

11.
自中三叠世扬子与华北板块发生碰撞—深俯冲作用以来,大别造山带南界上的襄樊—广济断裂带主要经历过两次变形事件: 1)早期变形事件发生在中三叠世末—晚三叠世初的造山带折返阶段,表现为造山带南边界上的韧性剪切带。这期北西—南东走向的剪切带向南西陡倾,发育北西—南东向的矿物拉伸线理,主要为右行走滑的运动性质,属于造山带斜向折返的侧边界走滑剪切带。造山带折返过程中将前陆褶断带北缘原先东西向褶皱改造为北西—南东走向。2)晚期变形事件发生在晚侏罗世,表现为脆性逆冲断层,使得前陆褶断带向北东逆冲在造山带南缘之上,同时在前陆上形成了一系列的逆冲断层。该断裂带的晚期逆冲活动与郯庐断裂带左行平移同时发生,代表了滨太平洋构造活动的开始。  相似文献   

12.
Abstract Syn-metamorphic re-imbrication of the internal part of thrust belts can result in distinct pressure–temperature–time–deformation ( P–T–t–d ) pathways for different structural–metamorphic domains. In the early Proterozoic Cape Smith Thrust Belt (Canada), an external (piggyback-sequence thrusting) domain is characterized by thermal peak metamorphism occurring after deformation. In contrast, thermal peak metamorphism in an internal domain occurred during re-imbrication by out-of-sequence thrusting. The interactions of tectonic and thermal processes have been studied using three methods: (i) qualitative evaluation of the timing between mineral growth and deformation; (ii) analytical P–T paths from growth-zoned garnet porphyroblasts; and (iii) numerical modelling of vertical heat conduction. Derived P–T–t–d pathways suggest that uplift in the external domain resulted in part from erosion and isostatic unloading. In contrast, paths for the internal domain indicate that the out-of-sequence portion of the thrust belt may have experienced faster unroofing relative to the external domain. This is attributed to thickening by out-of-sequence thrusting and possibly to extensional faulting at (now eroded) higher structural levels. Observations on the timing of metamorphism, coupled with numerical modelling, suggest that the thermal peak metamorphism documented in the external domain is a consequence of the emplacement of the out-of-sequence thrusts stack in the internal portion of the thrust belt.  相似文献   

13.
Polydeformed and metamorphosed Neoproterozoic rocks of the East African Orogen in the Negele area constituted three lithostructurally distinct and thrust-bounded terranes. These are, from west to east, the Kenticha, Alghe and Bulbul terranes. The Kenticha and Bulbul terranes are metavolcano-sedimentary and ultramafic sequences, representing parts of the Arabian-Nubian Shield (ANS), which are welded to the central Alghe gneissic terrane of the Mozambique Belt affinity along N-S-trending sheared thrust contacts. Structural data suggest that the Negele basement had evolved through three phases of deformation. During D1 (folding) deformation, north-south upright and inclined folds with north-trending axes were developed. East and west-verging thrusts, right-lateral shearing along the north-oriented Kenticha and Bulbul thrust contacts and related structural elements were developed during D2 (thrusting) deformation. The pervasive D1 event is interpreted to have occurred at 620-610 Ma and the D2 event ended prior to 554 Ma. Right-lateral strike-slips along thrust contacts are interpreted to have been initiated during late D2. During D3, left-lateral strike-slip along the Wadera Shear Zone and respective strike-slip movements along conjugate set of shear zones were developed in the Alghe terrane, and are interpreted to have occurred later than 557 Ma. The structural data suggest that eastward thrusting of the Kenticha and westward tectonic transport of the Bulbul sequences over the Alghe gneissic terrane of the Mozambique Belt, during D2, were accompanied by right-lateral strike-slip displacements along thrust contacts. Right-lateral strike-slip movements along the Kenticha thrust contact, further suggest northward movement of the Kenticha sequence during the Pan-African orogeny in the Neoproterozoic. Left-lateral strike-slip along the orogen-parallel NNE-SSW Wadera Shear Zone and strike-slip movements along a conjugate set of shear zones completed final terrane amalgamation between the Arabian-Nubian Shield and the Mozambique Belt in Neoproterozoic southern Ethiopia.  相似文献   

14.
西准噶尔达拉布特断裂带中段晚古生代构造分析   总被引:2,自引:0,他引:2  
林伟  孙萍  薛振华  张仲培 《岩石学报》2017,33(10):2987-3001
走滑断裂构造在中亚造山带增生及演化过程的研究中扮演了重要角色,其主要构造单元均被走滑断裂带所分割。西准噶尔造山带是中亚增生型造山带的重要组成部分,达拉布特断裂是西准噶尔造山带中一条重要的走滑断裂,其复杂的构造表现吸引了大量研究者的关注。前人不仅在其构造解释上存在着走滑断层、逆冲断层或压扭性断层等诸多争议,且在其活动时代问题上也有不同的看法。本文依据在达拉布特断裂带中段开展的详细野外构造学工作,结合前人针对该地区石炭纪火山岩、浊积岩和造山后花岗岩侵入体所做的同位素年代学工作成果,对达拉布特断裂的活动性质和活动时代进行了讨论。结果确认在中二叠统沉积之前,达拉布特断裂带存在两期变形事件,分别对应于320Ma左右沿NE-SW的较深层次的左行走滑事件D1和表现为脆-韧性转换域的轴面倾向SE的褶皱作用构造事件D2。前者为主期变形事件,而后者发生在中二叠统沉积之前。本文同时报道了沿达拉布特断裂带出露右行走滑构造形迹,并讨论了其可能的成因。沿达拉布特断裂带的多期构造事件记录了西准噶尔地区造山后大规模走滑构造调整过程,是晚古生代晚期中亚各个陆块拼合后大规模陆内调整在西准噶尔造山带的具体体现。  相似文献   

15.
The key to comprehending the tectonic evolution of the Himalaya is to understand the relationships between large-scale faulting, anatexis, and inverted metamorphism. The great number and variety of mechanisms that have been proposed to explain some or all of these features reflects the fact that fundamental constraints on such models have been slow in coming. Recent developments, most notably in geophysical imaging and geochronology, have been key to coalescing the results of varied Himalayan investigations into constraints with which to test proposed evolutionary models. These models fall into four general types: (1) the inverted metamorphic sequences within the footwall of the Himalayan thrust and adjacent hanging wall anatexis are spatially and temporally related by thrusting; (2) thrusting results from anatexis; (3) anatexis results from normal faulting; and (4) apparent inverted metamorphism in the footwall of the Himalayan thrust is produced by underplating of right-way-up metamorphic sequences. We review a number of models and find that many are inconsistent with available constraints, most notably the recognition that the exposed crustal melts and inverted metamorphic sequences not temporally related. The generalization that appears to best explain the observed distribution of crustal melts and inverted metamorphic sequences is that, due to specific petrological and tectonic controls, episodic magmatism and out-of-sequence thrusting developed during continuous convergence juxtaposing allochthonous igneous and metamorphic rocks. This coincidental juxtaposition has proven to be something of a red herring, unduly influencing attention toward finding a causal relationship between anatexis and inverted metamorphism.  相似文献   

16.
塔拉斯费尔干纳断裂(TF)为中亚最大规模的断裂,其向南是否贯穿塔里木盆地西部研究较少,带来对其新生代运动性质的争论。研究表明,TF断裂在喀什凹陷以小规模的右旋走滑断裂逐渐消失,断层东盘以逆冲断层系的水平缩短变形,调节新生代右旋走滑位移,与巴楚隆起的阻挡作用相关。区域构造分析表明,随着帕米尔北缘逆冲断层系向北扩展,喀什凹陷中新生代沉积形成密集分布的线性褶皱和逆冲断层带。帕米尔高原向北仰冲触发TF不同区段在新生代差异性构造复活,发生大规模右旋位移及其南端构造转换(逆冲带隆升和前陆盆地发育)。新生代大断裂差异性复活及其构造调节,造成帕米尔构造节东西两侧不对称的构造样式。  相似文献   

17.
In a sector placed in the SE part of the Alps–Apennine junction, a kilometre-scale shear zone has been identified as the Grognardo thrust zone (GTZ), which caused the NE-directed thrusting of metaophiolites (Voltri Group) and polymetamorphic continental crust slices (Valosio Unit) of Ligurian Alps onto Oligocene sediments of an episutural basin known as “Tertiary Piemonte Basin”. The structural setting of the GTZ is due to syn- to late-metamorphic deformation, followed by a brittle thrusting that occurred in the Late Aquitanian times and can thus be related to one of the main contractional tectonic events suffered by northern Apennines. The GTZ was then sealed by Lower Burdigalian carbonate platform sediments (Visone Formation). Transtensive faulting followed in post-Burdigalian times along NW–SE regional faults and displaced the previously coupled sedimentary and metamorphic units. The GTZ thus underwent a plastic-to-brittle evolution, during which carbonate-rich fluids largely sustained the deformation. In these stages, a complex vein network originated within both the metamorphic and sedimentary rocks. Field data and stable isotopic analyses (13C and 18O) of bulk rocks and veins show that fluid–rock interaction caused the carbonatisation of the rocks in the late-metamorphic stages and the cataclasis and recementation, by the action of isochemical cold carbonate groundwater during the thrusting events. Carbonate veins largely developed also during the transtensive faulting stages, with composition clearly different from that of the veins associated to thrust faults, as indicated by the strong depletion in 13C of carbonate fillings, suggesting the presence of exotic fluids, characterised by a high content of organic matter.  相似文献   

18.
天山东段推覆构造研究   总被引:16,自引:1,他引:16       下载免费PDF全文
舒良树  孙家齐 《地质科学》1997,32(3):337-350
本文概括性总结了天山东段大型推覆构造的基本特征。根据地质证据和同位素年龄,东天山存在早古生代末,晚古生代晚期和新生代三期推覆构造;根据推覆构造分布规律及构造背景,在平面上划分为五大推覆带、9个大型韧剪带;根据出露岩石的矿物变形相将东天山推覆构造划分为深、中深和浅三个深度层次;通过韧剪变形组构的观察分析,确定了多期韧性变形性质与运动方向。糜棱岩中超微构造、古应力及小构造变形缩短率测量统计,证明东天山推覆变形具有显著的地壳缩短增厚作用。新生代板块碰撞导致本区中新生代盆地基底向造山带A型俯冲,造山带向盆地推覆,其结果就构成了今日看到的镶嵌状盆地-山脉构造地貌景观。  相似文献   

19.
The Lesser Himalaya in central Nepal consists of Precambrian to early Paleozoic, low- to medium-grade metamorphic rocks of the Nawakot Complex, unconformably overlain by the Upper Carboniferous to Lower Miocene Tansen Group. It is divided tectonically into a Parautochthon, two thrust sheets (Thrust sheets I and II), and a wide shear zone (Main Central Thrust zone) from south to north by the Bari Gad–Kali Gandaki Fault, the Phalebas Thrust and the Lower Main Central Thrust, respectively. The Lesser Himalaya is overthrust by the Higher Himalaya along the Upper Main Central Thrust (UMCT). The Lesser Himalaya forms a foreland-propagating duplex structure, each tectonic unit being a horse bounded by imbricate faults. The UMCT and the Main Boundary Thrust are the roof and floor thrusts, respectively. The duplex is cut-off by an out-of-sequence fault. At least five phases of deformation (D1–D5) are recognized in the Lesser Himalaya, two of which (D1 and D2) belong to the pre-Himalayan (pre-Tertiary) orogeny. Petrographic, microprobe and illite crystallinity data show polymetamorphic evolution of the Lesser and Higher Himalayas in central Nepal. The Lesser Himalaya suffered a pre-Himalayan (probably early Paleozoic) anchizonal prograde metamorphism (M0) and a Neohimalayan (syn- to post-UMCT) diagenetic to garnet grade prograde inverted metamorphism (M2). The Higher Himalaya suffered an Eohimalayan (pre or early-UMCT) kyanite-grade prograde metamorphism (M1) which was, in turn, overprinted by Neohimalayan (syn-UMCT) retrograde metamorphism (M2). The isograd inversion from garnet zone in the Lesser Himalaya to kyanite zone in the Higher Himalaya is only apparent due to post-metamorphic thrusting along the UMCT. Both the Lesser and Higher Himalayas have undergone late-stage retrogression (M3) during exhumation.  相似文献   

20.
Four polymetamorphic complexes in the vicinity of regional faults in the Trans-Angarian region of the Yenisey Ridge were studied to determine their metamorphic evolution and to elucidate distinctive features of the regional geodynamic processes. Based on our geological and petrological studies using geothermobarometry and P–T path calculations, we show that a Neoproterozoic medium-pressure metamorphism of the kyanite-sillimanite type at c. 850 Ma overprinted regionally metamorphosed low-pressure andalusite-bearing rocks. A positive correlation between rock ages and P–T estimates for the kyanite-sillimanite metamorphism provides evidence for regional structural and tectonic heterogeneity. The medium-pressure recrystallization was characterized by (1) localized distribution of metamorphic zones in the area directly underlying thrust faults with a measured thickness of 2.5–8 km; (2) syntectonic formation of kyanite-bearing mineral assemblages related to thrusting; (3) gradual increase in metamorphic pressure towards the thrust faults associated with a low metamorphic field gradient (from 1–7 to 12°C/km); and (4) equally steep burial P–T paths recorded for the highest grade rocks. These specific features are typical of collisional metamorphism during overthrusting of continental blocks and are evidence of near-isothermal loading in accordance with the transient emplacement of thrust sheets. The proposed model for tectono-metamorphic evolution of the study areas due to crustal thickening at high thrusting rates and subsequent rapid exhumation explains these tectonic features. Data analysis allowed us to consider the medium-pressure kyanite-bearing metapelites as a product of collisional metamorphism, reflecting unidirectional thrusting of Siberian cratonal blocks onto Yenisey Ridge along regional deep faults (Angara, Mayakon, and Chapa areas) and by opposite movements in the zone of secondary splay faults (Garevka area).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号