首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work proposes a method for detecting inundation between semi‐diurnal low and high water conditions in the northern Gulf of Mexico using high‐resolution satellite imagery. Radarsat 1, Landsat imagery and aerial photography from the Apalachicola region in Florida were used to demonstrate and validate the algorithm. A change detection approach was implemented through the analysis of red, green and blue (RGB) false colour composites image to emphasise differences in high and low tide inundation patterns. To alleviate the effect of inherent speckle in the SAR images, we also applied ancillary optical data. The flood‐prone area for the site was delineated a priori through the determination of lower and higher water contour lines with Landsat images combined with a high‐resolution digital elevation model. This masking technique improved the performance of the proposed algorithm with respect to detection techniques using the entire Radarsat scene. The resulting inundation maps agreed well with historical aerial photography as the probability of detection reached 83%. The combination of SAR data and optical images, when coupled with a high‐resolution digital elevation model, was shown to be useful for inundation mapping and have a great potential for evaluating wetting/drying algorithms of inland and coastal hydrodynamic models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Remote sensing of discharge and river stage from space provides us with a promising alternative approach to monitor watersheds, no matter if they are ungauged, poorly gauged, or fully gauged. One approach is to estimate river stage from satellite measured inundation area based on the inundation area – river stage relationship (IARSR). However, this approach is not easy to implement because of a lack of data for constructing the IARSR. In this study, an innovative and robust approach to construct the IARSR from digital elevation model (DEM) data was developed and tested. It was shown that the constructed IARSR from DEM data could be used to retrieve water level or river stage from satellite‐measured inundation area. To reduce the uncertainty in the estimated inundation area, a dual‐thresholding method was proposed. The first threshold is the lower limit of pixel value for classifying water body pixels with a relatively high‐level certainty. The second threshold is the upper limit of pixel value for classifying potentially flooded pixels. All pixels with values between the first threshold and the second threshold and adjacent to the classified water body pixels may be partially flooded. A linear interpolation method was used to estimate the wetted area of each partially flooded pixel. In applying the constructed IARSR to the estimated inundation areas from 11 Landsat TM images, 11 water levels were obtained. The root mean square error (RMSE) of the estimated water levels compared with the observed water levels at the US Geological Survey (USGS) gauging station on the Trinity River at Liberty in Liberty County, Texas, is about 0.38 m. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Field observations of flow and sediment transport in a tributary channel through intertidal mudflats indicate that suspended sediment was closely linked to advection and dispersion of a tidal salinity front. During calm weather when tidal forcing was dominant, high concentrations of suspended sediment advected up the mudflat channel in the narrow region between salty water from San Francisco Bay and much fresher runoff from the small local watershed. Salinity and suspended sediment dispersed at similar rates through each tidal inundation, such that during receding ebbs the sediment pulse had spread spatially and maximum concentrations had decreased. Net sediment transport was moderately onshore during the calm weather, as asymmetries in stratification due to tidal straining of the salinity front enhanced deposition, particularly during weaker neap tidal forcing. Sediment transport by tidal forcing was periodically altered by winter storms. During storms, strong winds from the south generated wind waves and temporarily increased suspended sediment concentrations. Increased discharge down the tributary channels due to precipitation had more lasting impact on sediment transport, supplying both buoyancy and fine sediment to the system. Net sediment transport depended on the balance between calm weather tidal forcing and perturbations by episodic storms. Net transport in the tributary channel was generally off-shore during storms and during calm weather spring tides, and on-shore during calm weather neap tides.  相似文献   

4.
The Mekong Delta is one of the largest and most intensively used estuaries in the world. Each year it witnesses widespread flooding which is both the basis of the livelihood for more than 17 million people but also the major hazard. Therefore, a thorough understanding of the hydrologic and hydraulic features is urgently required for various planning purposes. While the general causes and characteristics of the annual floods are understood, the inundation dynamics in the floodplains in Vietnam which are highly controlled by dikes and other control structures have not been investigated in depth. Especially, quantitative analyses are lacking, mainly due to scarce data about the inundation processes in the floodplains. Therefore, a comprehensive monitoring scheme for channel and floodplain inundation was established in a study area in the Plain of Reeds in the northeastern part of the Vietnamese Delta. This in situ data collection was complemented by a series of high‐resolution inundation maps derived from the TerraSAR‐X satellite for the flood seasons 2008 and 2009. Hence, the inundation dynamics in the channels and floodplains, and the interaction between channels and floodplains, could be quantified for the first time. The study identifies the strong human interference which is governed by flood protection levels, cropping patterns and communal water management. In addition, we examine the tidal influence on the inundation in various parts of the Delta, since it is expected that climate change‐induced sea level rise will increase the tidal contribution to floodplain inundation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Recent years have been marked by a continuous availability of spatial SAR data since the launch of the European remote sensing satellite (ERS-1) in 1991. Consequently, remote sensing techniques now offer an opportunity to map flood inundation fields caused by river overflow or waterlogging in environments characterized by frequent cloud cover. Indeed, inundation fields can clearly be seen on ERS-1 SAR images taken during flooding periods. However, such an identification can be constrained by the similarity in behaviour between water surfaces and other features of the landscape such as extended asphalt areas, permanent water bodies and less illuminated slopes. For consistent flood inundation extent mapping a more robust approach is required. This is provided by a conceptual flood inundation index that is physically sound in relation to radar imaging. Moreover, this index has proved to be useful for highlighting soils located within inundation fields and having significantly different internal drainage. The results achieved in the framework of the research must be seen in the context of intensive use of remote sensing data to support decision methods for sustainable management of land and water resources. Such decision support methods could be provided by river hydraulic models aimed at assessing environmental effects of inundation floods and at early flood warning systems. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
The performances of a finite volume model (SFV) and finite element model (TELEMAC‐2D) in reproducing inundation on a 16 km reach of the river Severn, United Kingdom, are compared. Predicted inundation extents are compared with 4 airborne synthetic aperture radar images of a major flood event in November 2000, and these are used to calibrate 2 values of Manning's n for the channel and floodplain. The four images are shown to have different capacities to constrain roughness parameters, with the image acquired at low flow rate doing better in determining these parameters than the image acquired at approximately peak flow. This is assigned to the valley filling nature of the flood and the associated insensitivity of flood extent to changes in water level. The level of skill demonstrated by the models, when compared with inundation derived using a horizontal water free surface, also increases as flow rate drops. The two models show markedly different behaviours to the calibration process, with TELEMAC showing less sensitivity and lower optimum values for Manning's n than SFV. When the models are used in predictive mode, calibrated against one image and predicting another, SFV performs better than TELEMAC. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
This paper employs a numerical model of tsunami propagation together with documented observations and field measurements of the evidence left behind by the tsunami in December 2004, to identify and interpret the factors that have contributed to the significant spatial variability of the level of tsunami impact along the coastal belt of the eastern province of Sri Lanka. The model results considered in the present analysis include the distribution of the amplitude of the tsunami and the pattern of wave propagation over the continental shelf off the east coast, while the field data examined comprise the maximum water levels measured at or near the shoreline, the horizontal inundation distances and the number of housing and other buildings damaged. The computed maximum amplitude of the tsunami at water points nearest the shoreline along the east coast shows considerable variation ranging from 2.2 m to 11.4 m with a mean value of 5.7 m; moreover, the computed amplitudes agree well with the available field measurements. We also show that the shelf bathymetry off the east coast, particularly the submarine canyons at several locations, significantly influences the near-shore transformation of tsunami waves, and consequently, the spatial variation of the maximum water levels along the coastline. The measured values of inundation also show significant variation along the east coast and range from 70 m to 4560 m with a median value of 700 m. Our analyses of field data also show the dominant influence of the coastal topography and geomorphology on the extent of tsunami inundation. Furthermore, the measured inundation distances indicate no apparent correlation with the computed tsunami heights at the respective locations. We also show that both the computed tsunami heights and the measured inundation distances for the east coast closely follow the log-normal statistical distribution.  相似文献   

8.
Space monitoring of Aral Sea degradation   总被引:1,自引:0,他引:1  
The results of remote sensing survey of the Aral Sea in its degradation period are given. Satellite images are used to map shoreline retreat from 1961 to 2008 and to measure the decrease in the area. Seasonal variations in shoreline and water area are identified, suggesting seasonal level variations and correlating well with data of satellite altimetry surveys of sea level. Observations covered surge phenomena, seasonal dynamics of landscapes, and the seasonal salinization rhythm in coastal territories with the subsequent formation and weathering of salt crusts. The character of river runoff input into the Great Sea resulting from overbank flooding in artificial water bodies in the Amu Darya delta is identified.  相似文献   

9.
We have developed a flood water level estimation method that only employs satellite images and a DEM. The method involves three steps: (1) discriminating flood areas and identifying clumps of each flood area, (2) extracting the edges of the identified flood area using a buffering technique, and (3) performing spatial interpolation to transform the extracted elevation to flood water levels. We compared the estimated flood water levels with the observed ones. The RMSE using the RADARSAT was 1.99 and 1.30 m at river and floodplain points, respectively, whereas the RMSE using the MODIS was 4.33 and 1.33 m at the river and floodplain points, respectively. Given that most errors are attributed to the DEM, the method exhibited good performance. Furthermore, the method reproduced the flow directions and flood water level changes during the flooding period. Thus, we demonstrated that the characteristics of flood inundation can be understood even when ground observation data cannot be obtained.  相似文献   

10.
A forward modeling approach is proposed to simulate the preservation potential of tidal flat deposits. The preservation potential is expressed as a function of net deposition rate and a factor that represents the vertical flux of suspended load, or seabed lowering during erosion periods associated with bedload transport. The model takes into account a number of geometric parameters of a tidal flat sediment system and sediment dynamic processes. The former includes high water level, total sediment supply, the annual rate of the supply, the ratio of mud to bilk sediment in the supply, the bed slope of the tidal flat profile, as well as the slope of the stratigraphic boundary; the latter includes spring-neap cycles of tidal water level changes, boundary layer processes, resuspension of fine-grained sediments, bedload transport due to tidal currents, and bed elevation changes in response to sediment movement. Using this model, numerical experiments are carried out for a tidal flat system on the Jiangsu coast, eastern China, with the input data being derived from literature and from a series of sediment cores collected along an onshore–offshore transect. The results show that the preservation potential is highest over the upper part of the inter-tidal zone and in the lower part of the sub-tidal zone, and lowest near mean sea level and at low water on springs. The preservation potential tends to decrease with the advancement of the shoreline. The bed slope, tidal current direction and resuspension intensity influence the spatial distributions of the preservation potential. An implication of these results is that the temporal resolution of the tidal flat record depends upon the location and depth within the deposit; this should be taken into account in the interpretation of sedimentary records. Further studies are required to improve the model, on the hydrodynamic processes associated with extremely shallow water depths, sediment dynamic modeling of bed slope and profile shape, and the combined action of tides and waves for sediment transport on tidal flats.  相似文献   

11.
During a one‐year period temporal and spatial variations in suspended sediment concentration (SSC) and deposition were studied on a salt and freshwater tidal marsh in the Scheldt estuary (Belgium, SW Netherlands) using automatic water sampling stations and sediment traps. Temporal variations were found to be controlled by tidal inundation. The initial SSC, measured above the marsh surface at the beginning of inundation events, increases linearly with inundation height at high tide. In accordance with this an exponential relationship is observed between inundation time and sedimentation rates, measured over 25 spring–neap cycles. In addition both SSC and sedimentation rates are higher during winter than during summer for the same inundation height or time. Although spatial differences in vegetation characteristics are large between and within the studied salt and freshwater marsh, they do not affect the spatial sedimentation pattern. Sedimentation rates however strongly decrease with increasing (1) surface elevation, (2) distance from the nearest creek or marsh edge and (3) distance from the marsh edge measured along the nearest creek. Based on these three morphometric parameters, the spatio‐temporal sedimentation pattern can be modelled very well using a single multiple regression model for both the salt and freshwater marsh. A method is presented to compute two‐dimensional sedimentation patterns, based on spatial implementation of this regression model. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Groundwater seepage is known to influence beach erosion and accretion processes. However, field measurements of the variation of the groundwater seepage line (GWSL) and the vertical elevation difference between the GWSL and the shoreline are limited. We developed a methodology to extract the temporal variability of the shoreline and the wet-dry boundary using video imagery, with the overarching aim to examine elevation differences between the wet-dry boundary and the shoreline position in relation to rainfall and wave characteristics, during a tidal cycle. The wet-dry boundary was detected from 10 min time-averaged images collected at Ngaranui Beach, Raglan, New Zealand. An algorithm discriminated between the dry and wet cells using a threshold related to the maximum of the red, green, and blue intensities in Hue-Saturation-Value. Field measurements showed this corresponded to the location where the water table was within 2 cm of the beachface surface. Time stacks and time series of pixels extracted from cross-shore transects in the video imagery, were used to determine the location of the shoreline by manually digitizing the maximum run-up and minimum run-down location for each swash cycle, and averaging the result. In our test data set of 14 days covering a range of wave and rainfall conditions, we found 6 days when the elevation difference between the wet-dry boundary and the shoreline remained approximately constant during the tidal cycle. For these days, the wet-dry boundary corresponded to the upper limit of the swash zone. On the other 8 days, the wet-dry boundary and the shoreline decoupled with falling tide, leading to elevation differences of up to 2.5 m at low tide. Elevation differences between the GWSL and the shoreline at low tide were particularly large when the cumulative rainfall in the preceding month was greater than 200 mm. This research shows that the wet-dry boundary (such as often used in video shoreline-finding algorithms) is related to groundwater seepage on low-sloped, medium to fine sand beaches such as Ngaranui Beach (mean grain size ∼0.27 mm, beach slope ∼1:70) and may not be a good indicator of the position of the shoreline.  相似文献   

13.
Regional source tsunamis pose a potentially devastating hazard to communities and infrastructure on the New Zealand coast. But major events are very uncommon. This dichotomy of infrequent but potentially devastating hazards makes realistic assessment of the risk challenging. Here, we describe a method to determine a probabilistic assessment of the tsunami hazard by regional source tsunamis with an “Average Recurrence Interval” of 2,500-years. The method is applied to the east Auckland region of New Zealand. From an assessment of potential regional tsunamigenic events over 100,000 years, the inundation of the Auckland region from the worst 100 events is modelled using a hydrodynamic model and probabilistic inundation depths on a 2,500-year time scale were determined. Tidal effects on the potential inundation were included by coupling the predicted wave heights with the probability density function of tidal heights at the inundation site. Results show that the more exposed northern section of the east coast and outer islands in the Hauraki Gulf face the greatest hazard from regional tsunamis in the Auckland region. Incorporating tidal effects into predictions of inundation reduced the predicted hazard compared to modelling all the tsunamis arriving at high tide giving a more accurate hazard assessment on the specified time scale. This study presents the first probabilistic analysis of dynamic modelling of tsunami inundation for the New Zealand coast and as such provides the most comprehensive assessment of tsunami inundation of the Auckland region from regional source tsunamis available to date.  相似文献   

14.
A wetting and drying (WAD) algorithm is implemented in a baroclinic three-dimensional ocean circulation model of Cook Inlet, Alaska, where large tidal ranges (≈10 m) regularly expose extensive mudflats. The model includes tides and wind- and buoyancy-induced flows. In the upper Inlet, the model successfully simulates large amplification of tides and propagation of fast (3 ∼ 4 m s−1) tidal bores over shallow mudflats. The simulated return flows during ebb expose large areas (∼100 km2) of the mudflats. Medium-resolution (250- and 500-m) images obtained from the moderate resolution imaging spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites were used to verify the model results by identifying the location, extent, and temporal changes of the exposed mudflat regions. The results demonstrate the value of operational, medium-resolution remote sensing data in evaluating the WAD model. Sensitivity tests show that WAD produces approximately 20% larger tidal amplitude and 10% slower phase than the corresponding experiment without WAD. In the deep channel of the central Inlet, the confluence of saline water of the lower Inlet with brackish water from rivers and melting ice from land around the upper Inlet produces a salinity front. At the simulated front, strong vertical circulation cells and surface convergence and currents develop, especially during the flood. The characteristics resemble those of “rip tides” often observed in this region.  相似文献   

15.
Previously we have detailed an application of the generalized likelihood uncertainty estimation (GLUE) procedure to estimate spatially distributed uncertainty in models conditioned against binary pattern data contained in flood inundation maps. This method was applied to two sites where a single consistent synoptic image of inundation extent was available to test the simulation performance of the method. In this paper, we extend this to examine the predictive performance of the method for a reach of the River Severn, west‐central England. Uniquely for this reach, consistent inundation images of two major floods have been acquired from spaceborne synthetic aperture radars, as well as a high‐resolution digital elevation model derived using laser altimetry. These data thus allow rigorous split sample testing of the previous GLUE application. To achieve this, Monte Carlo analyses of parameter uncertainty within the GLUE framework are conducted for a typical hydraulic model applied to each flood event. The best 10% of parameter sets identified in each analysis are then used to map uncertainty in flood extent predictions using the method previously proposed for both an independent validation data set and a design flood. Finally, methods for combining the likelihood information derived from each Monte Carlo ensemble are examined to determine whether this has the potential to reduce uncertainty in spatially distributed measures of flood risk for a design flood. The results show that for this reach and these events, the method previously established is able to produce sharply defined flood risk maps that compare well with observed inundation extent. More generally, we show that even single, poor‐quality inundation extent images are useful in constraining hydraulic model calibrations and that values of effective friction parameters are broadly stationary between the two events simulated, most probably reflecting their similar hydraulics. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
LAURENCE C. SMITH 《水文研究》1997,11(10):1427-1439
The growing availability of multi-temporal satellite data has increased opportunities for monitoring large rivers from space. A variety of passive and active sensors operating in the visible and microwave range are currently operating, or planned, which can estimate inundation area and delineate flood boundaries. Radar altimeters show great promise for directly measuring stage variation in large rivers. It also appears to be possible to obtain estimates of river discharge from space, using ground measurements and satellite data to construct empirical curves that relate water surface area to discharge. Extrapolation of these curves to ungauged sites may be possible for the special case of braided rivers. Where clouds, trees and floating vegetation do not obscure the water surface, high-resolution visible/infrared sensors provide good delineation of inundated areas. Synthetic aperture radar (SAR) sensors can penetrate clouds and can also detect standing water through emergent aquatic plants and forest canopies. However, multiple frequencies and polarizations are required for optimal discrimination of various inundated vegetation cover types. Existing single-polarization, fixed-frequency SARs are not sufficient for mapping inundation area in all riverine environments. In the absence of a space-borne multi-parameter SAR, a synergistic approach using single-frequency, fixed-polarization SAR and visible/infrared data will provide the best results over densely vegetated river floodplains. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
To model currents in a fjord accurate tidal forcing is of extreme importance. Due to complex topography with narrow and shallow straits, the tides in the innermost parts of a fjord are both shifted in phase and altered in amplitude compared to the tides in the open water outside the fjord. Commonly, coastal tide information extracted from global or regional models is used on the boundary of the fjord model. Since tides vary over short distances in shallower waters close to the coast, the global and regional tidal forcings are usually too coarse to achieve sufficiently accurate tides in fjords. We present a straightforward method to remedy this problem by simply adjusting the tides to fit the observed tides at the entrance of the fjord. To evaluate the method, we present results from the Oslofjord, Norway. A model for the fjord is first run using raw tidal forcing on its open boundary. By comparing modelled and observed time series of water level at a tidal gauge station close to the open boundary of the model, a factor for the amplitude and a shift in phase are computed. The amplitude factor and the phase shift are then applied to produce adjusted tidal forcing at the open boundary. Next, we rerun the fjord model using the adjusted tidal forcing. The results from the two runs are then compared to independent observations inside the fjord in terms of amplitude and phases of the various tidal components, the total tidal water level, and the depth integrated tidal currents. The results show improvements in the modelled tides in both the outer, and more importantly, the inner parts of the fjord.  相似文献   

18.
A series of airborne topographic LiDAR data were obtained from May 2008 to January 2014 over two coastal sites of northern France (Bay of Wissant and east of Dunkirk). These data were used with wind and tide gauge measurements to assess the impacts of storms on beaches and coastal dunes, and particularly of the series of major storms that hit western Europe during the fall and early winter of 2013. Our results show a high variability in shoreline response from one site to the other, but also within each coastal site. Coastal dune erosion and shoreline retreat occurred at both sites, particularly on the coast of the Bay of Wissant where shoreline retreat up to about 40 m was measured. However, stability or even shoreline advance were also observed despite the occurrence of an extreme water level with a return period >100 years during the storm Xaver in early December 2013. Comparison of shoreline change with variations of coastal dune and upper beach volumes revealed only weak relationships. Our results nevertheless showed that shoreline behavior seems to strongly depend on the initial sediment volume on the upper beach before the occurrence of the storms. According to our measurements, an upper beach volume of about 30 m3 m?1 between the dune toe and the mean high water level is sufficient at these sites to protect the coastal dunes from storm waves associated with high water levels with return periods >10 years. The identification of such thresholds in terms of upper beach width or sediment volume may represent valuable information for improving the management of shoreline change by providing an estimate of the minimum quantity of sand on the upper beach necessary to ensure shoreline stability in this region. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
Organized spatial distribution of plants (plant zonation) in salt marshes has been linked to the soil aeration condition in the rhizosphere through simplistic tidal inundation parameters. Here, a soil saturation index (ratio of saturation period to tidal period at a soil depth) is introduced to describe the soil aeration condition. This new index captures the effects of not only the tidal inundation period and frequency but also the flow dynamics of groundwater in the marsh soil. One‐dimensional numerical models based on saturated flow with the Boussinesq approximations and a two‐dimensional variably saturated flow model were developed to explore the behaviour of this new soil aeration variable under the influence of spring‐neap tides. Simulations revealed two characteristic zones of soil aeration across the salt marsh: a relatively well aerated near‐creek zone and a poorly aerated interior zone. In the near‐creek zone, soils undergo periodic wetting and drying as the groundwater table fluctuates throughout the spring‐neap cycle. In the interior, the soil remains largely water saturated except for neap tide periods when limited drainage occurs. Although such a change of soil aeration condition has been observed in previous numerical simulations, the soil saturation index provides a clear delineation of the zones that are separated by an ‘inflexion point’ on the averaged index curve. The results show how the saturation index represents the effects of soil properties, tidal parameters and marsh platform elevation on marsh soil aeration. Simulations of these combined effects have not been possible with traditional tidal inundation parameters. The saturation index can be easily derived using relatively simple models based on five non‐dimensional variables. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
“引江济淮”工程调度运行后,水位抬升将影响越冬候鸟适宜生境(泥滩地和草本沼泽)的出露,并进而影响湿地植物和底栖生物出露程度,对越冬候鸟的栖息环境和食物可及性产生不利影响,尤其是影响到挖掘啄取集团和浅水取食集团的越冬水鸟.基于安徽菜子湖不同水位对应的遥感影像解译结果,分析了水位变化对菜子湖泥滩地和草本沼泽出露的影响,并构建了菜子湖主要湿地类型的面积对水位响应的函数关系.结果表明:候鸟越冬期菜子湖泥滩地和草本沼泽面积与水位均呈极显著负相关.当水位到达8.1和8.6 m时,菜子湖将分别减少约16.8%和10.0%以及30.4%和22.2%的泥滩地和草本沼泽.1956-2015年候鸟越冬期各月水位的变化趋势及水位大于8.1 m的机率分析表明,工程调度运行会对菜子湖生态水文过程产生一定影响.结果可为模拟不同水位对菜子湖主要湿地类型及面积的影响提供依据,并从工程的角度为菜子湖水位优化调度提供科学依据.但由于数据缺乏,未全面阐述湿地类型面积和生境的关系,研究存在一定的局限性.建议加强菜子湖候鸟越冬期生境适应性调度研究及生态环境监测,进一步掌握菜子湖越冬候鸟适宜生境及重要越冬水鸟种群数量和分布格局对水位变化的响应,用科学实验和生态环境监测数据来加强菜子湖水位优化调度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号