首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When modeling sound propagation through the uppermost layers of the ocean, the presence of bubble clouds cannot be ignored. Their existence can convert a range-independent sound propagation problem into a range-dependent one. Measurements show that strong changes in sound speed and attenuation are produced by the presence of swarms of microbubbles which can be depicted as patchy clouds superimposed on a very weak background layer. While models suitable for use in acoustic calculations are available for the homogeneous bubble layer (which results from long time averages of the total bubble population), no similar parameterizations are available for the more realistic inhomogeneous bubble layer. Based on available information and within the framework of a classification scheme for bubble plumes proposed by Monahan, a model for the range and depth dependence of the bubbly environment is developed to fill this void. This model, which generates a possible realization of the bubbly environment, is then used to calculate the frequency-dependent change in the sound speed and attenuation induced by the presence of the bubble plumes. Time evolution is not addressed in this work  相似文献   

2.
Numerical models of the ocean play an important role in efforts to understand past climate variability and predict future climate changes. In many studies, ocean models are driven by forcings that are either time-independent or vary periodically (seasonally) and it is often highly desirable or even essential to obtain equilibrium solutions of the model. Existing methods, based on the simple, expedient idea of integrating the model until the transients have died out, are too expensive to use routinely because the ocean takes several thousand years to equilibrate. Here, we present a novel approach for efficiently computing equilibrium solutions of ocean models. Our general approach is to formulate the problem as a large system of nonlinear algebraic equations to be solved with a class of methods known as matrix-free Newton–Krylov, a combination of Newton-type methods for superlinearly convergent solution of nonlinear equations, and Krylov subspace methods for solving the Newton correction equations. As an initial demonstration of the feasibility of this approach, we apply it to find the equilibrium solutions of a quasi-geostrophic ocean model for both steady forcing and seasonally-varying forcing. We show that the matrix-free Newton–Krylov method converges to the solutions obtained by direct time integration of the model, but at a computational cost that is between 10 and 100 times smaller than direct integration. A key advantage of our approach is that it can be applied to any existing time-stepping code, including ocean general circulation models and biogeochemical models. However, effective preconditioning of the linear equations to be solved during the Newton iteration remains a challenge.  相似文献   

3.
In support of its acoustic risk mitigation policy, NATO SACLANT Undersea Research Centre (SACLANTCEN) is sponsoring a series of sea trials, entitled "Sirena" to collect a multiyear integrated oceanographic, biological, and hydrographic data set, the goal being to explain, based on these parameters, the distribution of marine mammals found in specific locations. By understanding how ocean dynamics affects the distribution and behavior of whales and the organisms forming the food web upon which the whales feed, it may be possible to conduct acoustic exercises in areas of low cetacean density. The first two Sirena multidisciplinary cruises were conducted in the Ligurian Sea in late summer time frame during 1999 and 2000. The focus of this analysis is to determine whether remotely sensed satellite data can indicate nutrient-rich regions in areas where the oceanography is known and to determine if these regions of higher productivity, coupled with knowledge of cetacean presence from all available sources, could be used as an indicator of marine mammal presence for acoustic risk mitigation purposes. For the two years of data examined, cooler sea-surface temperature data correlated with high levels of chlorophyll production as seen by remotely sensed images. This remotely sensed data correlated well with measured subsurface values of the same parameters. Coincident sightings of three species of marine mammals indicated that fin and sperm whales generally preferred the deep, nutrient-rich portion of the basin while Cuvier's beaked whales preferred a submarine canyon where there is a frontal influence, as indicated from satellite data and historical oceanography. This paper is intended as a contribution to the longer term objective of developing the means to accurately predict cetacean presence from physical oceanographic characteristics.  相似文献   

4.
A common problem in sonar system prediction is that the ocean environment is not well known. Utilizing probabilistic based results from geoacoustic inversions we characterize parameters relevant to sonar performance. This paper describes the estimation of transmission loss and its statistical properties based on posterior parameter probabilities obtained from inversion of ocean acoustic array data. This problem is solved by first finding an ensemble of relevant environmental model parameters and the associated posterior probability using a likelihood based inversion of the acoustic array data. In a second step, each realization of these model parameters is weighted with their posterior probability to map into the transmission loss domain. This approach is illustrated using vertical-array data from a recent benchmark data set and from data acquired during the Asian Seas International Acoustics Experiment (ASIAEX) 2001 in the East China Sea. The environmental parameters are first estimated using a probabilistic-based geoacoustic inversion technique. Based on the posterior probability that each of these environmental models fits the ocean acoustic array data, each model is mapped into transmission loss. This enables us to compute a full probability distribution for the transmission loss at selected frequencies, ranges, and depths, which potentially could be used for sonar performance prediction.  相似文献   

5.
The ocean acoustic tomographic (OAT) approach to sound speed field estimation is generalized to include a variety of sources of information of interest such as an oceanographic model of the sound speed field, direct local sound speed measurements, and a full field acoustic propagation model as well as measurements. The inverse problem is presented as a four-dimensional field estimation problem using a variational approach commonly used in oceanographic data assimilation. The current OAT approach is shown to be a special case of the general framework. The matched-field tomography (MFT) approach is also discussed within this context. A simple implementation of this novel approach is then investigated in the absence of a suitable oceanographic model, and acoustic propagation is accounted for using a standard parabolic equation model. The inverse equations derived are validated numerically through a simple inversion example, and some issues on environmental mismatch and computations are discussed. The developments then provide a basic framework for ongoing data-model melding in acoustically focused oceanographic sampling (AFOS) network  相似文献   

6.
The U.S. Navy has initiated a multidisciplinary research and development program to study the Effects of Sound on the Marine Environment (ESME). As part of this effort, the Naval Research Laboratory (NRL) is developing a software workbench for estimating the effects of cumulative sound exposure on marine mammals. This paper describes the workbench, and presents some preliminary simulation results. The workbench integrates data sets and computer models contributed by researchers in the areas of oceanography, underwater acoustic propagation, and marine mammal physiology and behavior. Models are incorporated for simulating animal movement, for estimating the received acoustic time series along an animal's track, and for predicting temporary threshold shifts (TTSs) induced by acoustic exposure. TTS predictions are shown to be highly dependent upon both the environmental variables and the movement of the marine mammals.  相似文献   

7.
Abstract

For high frequency ocean acoustic modeling applications, seabed reflection loss is a useful alternative input compared to conventional geoacoustic model parameters. Reflection loss can be estimated by comparing the noise intensity of the up and down components of the ambient noise vertical directionality pattern. The potential of this method is demonstrated with experimental data spanning one week, collected off shallow east coast of India using a 21 element vertical hydrophone array. The compact and easily operable vertical array has been designed for high frequency directionality estimation in the band 2–10?kHz. The ambient noise data are beam formed to arrive at the vertical directionality pattern. Further reflection loss values as a function of frequency and grazing angle have been estimated for 1/3 octave bands for a sandy sea bed in warm tropical waters. This has been compared with modeled reflection loss estimates using OASR reflection loss module of OASES. This will serve as inputs to propagation models for applications such as inverse techniques, ambient noise modelling, and sonar system performance prediction.  相似文献   

8.
The most commonly used continuous-wave (CW) propagation models are presented and their areas of applicability indicated. Furthermore, it is shown how these numerical codes can be extended to provide pulse results by Fourier synthesis of CW solutions. The ability of the acoustic models to describe sound propagation accurately in complicated ocean environments is demonstrated through a sequence model/date comparisons involving both CW and pulse-propagation results. It is also shown that the full complexity of real ocean environments must be considered in the numerical models to accurately predict the propagation conditions for a broad range of source frequencies. In conclusion, it is noted that the biggest difficulty today in sonar performance prediction modelling is not associated with the modelling tools themselves, but rather with the lack of environmental information to be used as input to the models  相似文献   

9.
Matched-fieId inversion (MFI) undertakes to estimate the geometric and geoacoustic parameters in an ocean acoustic scenario by matching acoustic field data recorded at hydrophone array with numerical calculations of the field. The model which provides the best fit to the data is the estimate of the actual experimental scenario. MFI provides a comparatively inexpensive method for estimating ocean bottom parameters over an extensive area. The basic components of the inversion process are a sound propagation model and matching (minimization) algorithm. Since a typical MFI problem requires a large number of computationally intensive sound propagation calculations, both of these components have to be efficient. In this study, a hybrid inversion algorithm which uses a parabolic equation propagation model and combines the downhill simplex algorithm with genetic algorithms is introduced. The algorithm is demonstrated on synthetic range-dependent shallow-water data generated using the parabolic equation propagation model. The performance for estimating the model parameters is compared for realistic signal-to-noise ratios in the synthetic data  相似文献   

10.
Predicting sonar detection performance is important for the development of sonar systems. The classical sonar equation cannot accurately predict sonar detection performance because it does not incorporate the effect of ocean environmental and source position uncertainty. We propose an analytical receiver operating characteristic (ROC) expression that characterizes the performance of the optimal Bayesian detector in the presence of ocean environmental and source position uncertainty. The approach is based on a statistical model of the environment and a physical model of acoustic propagation, which translates ocean environmental and source position uncertainty to signal wavefront uncertainty. The analytical ROC expression developed in this paper is verified for source position uncertainty due to source motion using both simulated data and real data collected during the Shallow Water Evaluation Cell Experiment (SWellEx-96). The results showed that the primary effect of source position uncertainty on optimal sonar detection performance is captured by the rank that corresponds to the significant eigenvalues of the signal matrix, an ensemble of replica signal wavefronts (normalized acoustic pressure vector) at the receiving array. The results also showed that the proposed ROC expression provides a realistic detection performance prediction for the Bayesian detector for source position uncertainty using real data. The proposed approach to sonar detection performance prediction is much simpler and faster than those using conventional Monte Carlo approaches.  相似文献   

11.
A model-based approach to solve a deep water ocean acoustic signal processing problem based on a state-space representation of the normal-mode propagation model is developed. The design of a model-based processor (MBP) for signal enhancement employing an array consisting of a large number of sensors for a deep ocean surveillance operation is discussed. The processor provides enhanced estimates of the measured pressure-field, modes, and residual (innovations) sequence indicating the performance or adequacy of the propagation model relative to the data. It is shown that due to the structure of the normal-mode model the state-space propagator is not only feasible for this large scale problem, but in fact, can be implemented by a set of decoupled parallel second-order processors, implying a real-time capability. In the paper we discuss the design and application of the processor to a realistic set of simulated pressure-field data developed from a set of experiments and sound speed parameters  相似文献   

12.
本文设计了一套基于FPGA的鲸豚声信号实时数据采集与分析系统,在采集存储水族馆内声信号的同时,应用改进的HHT算法处理鲸豚叫声中的click信号,实现实时的甄别瓶鼻海豚和白鲸功能,可用于针对大型哺乳动物的远洋实时跟踪科考。  相似文献   

13.
Two physical parameters are introduced into the basic ocean equations to generalize numerical ocean models for various vertical coordinate systems and their hybrid features. The two parameters are formulated by combining three techniques: the arbitrary vertical coordinate system of Kasahara [Kasahara, A., 1974. Various vertical coordinate systems used for numerical weather prediction. Mon. Weather Rev. 102, 509–522], the Jacobian pressure gradient formulation of Song [Song, Y.T., 1998. A general pressure gradient formation for ocean models. Part I: Scheme design and diagnostic analysis. Mon. Weather Rev. 126 (12), 3213–3230], and a newly introduced parametric function that permits both Boussinesq (volume-conserving) and non-Boussinesq (mass-conserving) conditions. Based on this new formulation, a generalized modeling approach is proposed. Several representative oceanographic problems with different scales and characteristics––coastal canyon, seamount topography, non-Boussinesq Pacific Ocean with nested eastern Tropics, and a global ocean model––have been used to demonstrate the model’s capabilities for multiscale applications. The inclusion of non-Boussinesq physics in the topography-following ocean model does not incur computational expense, but more faithfully represents satellite-observed ocean-bottom-pressure data. Such a generalized modeling approach is expected to benefit oceanographers in solving multiscale ocean-related problems by using various coordinate systems on the same numerical platform.  相似文献   

14.
The availability of fast and relatively low-cost computing power has resulted in radical changes to the role of seismo-acoustic modeling. With the increase in the number of models available, there is the inevitable question of how can one go about validating all these numerical schemes. Recently, the issue of establishing reference solutions for range dependent ocean acoustic problems was addressed within the Acoustical Society of America. This has resulted in a set of well-defined benchmarks for range-dependent fluid problems. However, to date, there is no consistent set of benchmarks for the range-dependent seismo-acoustic codes. In this paper, we present a collection of problems intended for general use by the modeling community for validation of new computational schemes. A number of new seismo-acoustic codes are applied to produce reference solutions for these benchmarks  相似文献   

15.
水声宽带信号波形预报技术研究   总被引:1,自引:0,他引:1  
唐帅  笪良龙  谢骏 《海洋科学》2012,36(11):67-72
为了实现远程水下目标微弱信号检测,掌握远程传输后信号波形的特征,水声宽带信号波形预报技术是研究水下信号精细化特征研究的重要突破口之一.针对宽带信号,采用波束位移射线简正波(BDRM)频域合成波形预报算法和 BELLHOP 射线时域波形预报算法,获得宽带信号远程波形预报模型,并在浅海负跃层和深海声道两种典型海洋环境下,利用上述两种宽带波形预报算法,仿真计算了宽带信号远程波形,比较了两种波形预报算法精度.结果表明,在一定条件下,两种模型具有同等计算精度,可满足不同条件下的信号波形预报需求.  相似文献   

16.
A model-based approach is developed to solve an adaptive ocean-acoustic signal-processing problem. Model-based signal processing is a well-defined methodology enabling the inclusion of propagation models, measurement models, and noise models into sophisticated processing algorithms. Here, we investigate the design of a so-called model-based identifier (MBID) for a general nonlinear state-space structure and apply it to a shallow water ocean-acoustic problem characterized by the normal-mode model. In this problem, we assume that the structure of the model is known and we show how this parameter-adaptive processor can be configured to jointly estimate both the modal functions and the horizontal wave numbers directly from the measured pressure-field and sound speed. We first design the model-based identifier using a model developed from a shallow-water ocean experiment and then apply it to a corresponding set of experimental data demonstrating the feasibility of this approach. It is also shown that one of the benefits of this adaptive approach is a solution to the so-called “mismatch” problem in matched-field processing (MFP)  相似文献   

17.
A modal (full-wave) method has been developed to predict ocean sound speed profiles from propagated acoustic field data. The method assumes a point source of sound in the ocean and uses as data the values of the transmitted acoustic field at an array. The formalism for depth-dependent sound speeds consists of the standard Hankel integral transform of the depth solution. In the travel length coordinate, the latter is written exactly, using the Green's function, in terms of an integral equation whose kernel includes the sound speed profile correction. A Born approximation to this equation is used. This is just the WKB solution, and permits the use of a nontrivial input (or guess) profile, here chosen as bilinear. The use of asymptotic methods enables us to write the data as an integral transform over the profile correction. The transform can be inverted. An example is presented for full-bandwidth inversion.  相似文献   

18.
Acoustic telemetry--An overview   总被引:1,自引:0,他引:1  
Acoustic telemetry from underwater submersibles and sensors has been pursued ever since it was recognized that the ocean could support signal transmission. While it has been evident that some form of communication is possible, the ocean has proved to be a distressingly difficult medium in which to achieve high data rates. High data rate transmission requires a wide bandwidth which is severely constrained in the ocean because of the absorption of high-frequency energy. Moreover, the ocean is a very reverberant environment with both time and frequency spreading of signals; this further limits data transmission rates. The net effect of the bandwidth and reverberation constraints has led to either acoustic telemetry systems with low data rates or to the use of tethered systems. Over the years, various forms of acoustic communication systems have been developed. These have included direct AM and SSB for underwater telephones, FM for sensor data, FSK and DPSK for digital data, and parametric sonars for narrow-beam systems. As offshore operations have increased, several other systems have been proposed and/or built to respond to particular needs. In this paper, we review the underwater channel and the limitations that it imposes upon acoustic telemetry systems. We then survey some of the systems that have been built (excluding military systems) and indicate how they use various communication system principles to overcome these limitations.  相似文献   

19.
Additive as well as multiplicative noise may occur when acoustic waves propagate through the ocean. Second-order spectral methods fail to retrieve frequencies of such random amplitude modulated harmonic time series, especially when the multiplicative noise is broadband. An existing fourth-order method assumes real Gaussian multiplicative and additive noise. A novel approach is proved herein to impose no constraints on the distribution or the color of the disturbances. It relies on fourth-order special cumulant or moment slices. In particular, the fourth-order moment spectrum is shown to offer computational advantages. Extension to multicomponent models and generalizations to alternative higher order moments are also provided. Simulations corroborate the theoretical results  相似文献   

20.
Numerical calculation of acoustic field perturbation expressions can be used to predict fluctuations after propagation through ocean sound-speed structures, but before the onset of multipath. The general form of the expressions for signal spectra or correlation functions allow numerical evaluation for an unlimited quantity of vector wave-number spectral models of refractive index. In order to help define the bounds of applicability of the theory, log-intensity fluctuation variances have been calculated for three major situations: ocean internal waves, ocean turbulence, and continuous strong large-scale turbulence. Propagation through ocean thermocline internal waves, realistically weak thermocline turbulence, and unrealistically strong turbulence show that scintillations of intensity can be predicted and understood to first order up to ranges of tens of kilometers, given the proper transmission geometry. Internal wave effects dominate over any effects from expected microstructure. Nonhorizontal transmission yields small fluctuations, but eventually refractive effects of the sound channel will contribute some additional spatial variability and multipath, complicating the use of the theory. Multipath due to the sound channel can exist at ranges where the random small-scale structures would contribute only small perturbations (no multipath from small structures)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号