首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过改进海床阻力系数和设置合适的垂向紊动背景系数,应用FVCOM模型成功再现了钱塘江河口强涌潮的演进过程。海床阻力系数采用Manning公式形式,取值随水深、地形在0.000 2~0.002 9之间变化;垂向紊动背景系数取1×10-4 m2/s。模拟结果较好地复演了涌潮到达时刻、涌潮高度及涌潮抬升过程、涌潮水平流速以及其沿垂向分布规律,表明阻力系数及垂向紊动背景系数等关键参数的改进和处理是合理的,可应用于涌潮三维潮流运动特征模拟。  相似文献   

2.
本文将流速分解模型应用于作为超浅海风暴潮的渤海风潮,并讨论了变湍粘性系数的确定。作为一个初步的,但较为成功的数值试验例子,描述了实际风场作用下的渤海风潮,比较了变湍粘性系数模型与常湍粘性系数模型的计算结果间的差异。  相似文献   

3.
渤海垂直湍流混合强度季节变化的数值模拟   总被引:4,自引:1,他引:4  
渤海为极浅陆架海 ,其中湍流耗散作用显著。将三维斜压陆架海模式 HAMSOM应用于渤海 ,以渤海周边台站每天 4次的常规气象资料作为风和热驱动 ,渤海海峡开边界以 5个主要分潮调和常数计算水位强迫 ,计算了渤海 1982年水文要素和流场变化 ,并用模式以湍的局地平衡理论封闭计算出垂直湍流粘性的时空分布。结果表明 :渤海湍流混合冬强夏弱 ,变化幅度较大 ( 10~ 2 0 0 cm2 / s) ,这是风搅拌和潮混合的湍流输入在密度层化调整下的结果 ;风的作用在冬季强于潮的作用 ,而底层则由潮混合控制呈现半月周期 ;渤海湍粘性系数的空间分布十分复杂 ,这是在渤海地形和岸形轮廓限制下 ,由一定大气条件驱动的流场和密度场导致的湍流混合强度不同所致  相似文献   

4.
Widely applied in maintaining estuarial waterway depth, the spur dike has played an important role in currents and sediment exchange between channel and shoal and sediment back-silting in the channel. Through establishing a generalized physical model at a bifurcated estuary and conducting current tests under the joint action of runoff and tide, the influence of the spur dike length on current exchange between channel and shoal is analyzed. Results show that when the spur dike length reaches a certain value, the direction of the flow velocity shear front between the channel and shoal will change. The longer the spur dike, the larger the transverse fluctuating velocity at the peak of flood in the channel shoal exchange area, while the transport of the transverse hydrodynamics is obvious in the process of flood. There is an optimum length of spur dike when the shear stress in the channel and the longitudinal velocity in flood and ebb reach the maximum, and the flow velocity will decrease when the spur dike length is smaller or larger than the optimum. For a certain length of spur dike, the larger the channel shoal elevation difference, the larger the peak longitudinal flow velocity in the middle of the navigation channel in flood and ebb. However, the transverse flow velocity will first decrease and then increase. The transverse transportation is obvious when the channel shoal elevation difference increases.  相似文献   

5.
合理的人工鱼礁组合可以有效改善投放水域的流场效应,提高投放水域底层与上层水体之间的扰动。通过使用并行大涡模拟模式及被动示踪物模块,并通过调整人工鱼礁布设间距,研究了在不同背景流速条件(0.1、0.5、0.6和1.0 m/s)下,在不同的横向间距(1L、2L、3L)(L表示人工鱼礁的边长)或纵向间距(1L、2L、3L、4L、5L)情况下,方型人工鱼礁对上升流体积、营养盐的抬升和垂向涡黏系数的影响。研究结果表明,在同一布置条件下,单排布置下的三块人工鱼礁形成的上升流体积大小与来流速度成正相关,体积随来流流速增加而增大6.4%~80.5%;在同一流速条件下,上升流体积大小与纵向布置的间距成正比,与横向布置的间距成反比;在横向布置条件下,当来流速度为1.0 m/s、布设间距为1L时,上升流体积参数最佳。总体来说,上升流体积参数、示踪物浓度差和垂向涡黏性系数均显示横向布置优于纵向布置,相较于布设间距,来流速度是影响上升流体积最重要的因素。  相似文献   

6.
纪艳菊  刘淑波  齐震 《海洋科学》2014,38(12):120-127
本文通过假定底边界层湍黏性的三次多项式参数化形式,基于简化的Navier–Stokes方程,并利用超几何方程的性质,推导出了湍流粗糙底边界层的速度解析解。同时,得到了底边界层内其他的动力参数,如底剪应力、Ekman传输、Ekman抽吸及近底部速度分布场,从理论上讨论了均匀混合底边界层特征量分布特征。通过数值结果分析,进一步得出底边界层的总速度、亏损速度及其剪应力受平均流的角频率和地球自转影响比较大;而底边界层的动力结构对于底边界层顶部粗糙度不敏感。该涡黏性模式从理论上丰富了底边界层涡黏性的形式,为底边界层的动力系统研究提供了借鉴和理论参考。  相似文献   

7.
Modeling of the eddy viscosity by breaking waves   总被引:1,自引:1,他引:0  
Breaking wave induced nearsurface turbulence has important consequences for many physical and biochemical processes including water column and nutrients mixing,heat and gases exchange across air-sea interface.The energy loss from wave breaking and the bubble plume penetration depth are estimated.As a consequence,the vertical distribution of the turbulent kinetic energy(TKE),the TKE dissipation rate and the eddy viscosity induced by wave breaking are also provided.It is indicated that model results are found to be consistent with the observational evidence that most TKE generated by wave breaking is lost within a depth of a few meters near the sea surface.High turbulence level with intensities of eddy viscosity induced by breaking is nearly four orders larger than υwl(=κuwz),the value predicted for the wall layer scaling close to the surface,where uw is the friction velocity in water,κ with 0.4 is the von Kármán constant,and z is the water depth,and the strength of the eddy viscosity depends both on wind speed and sea state,and decays rapidly through the depth.This leads to the conclusion that the breaking wave induced vertical mixing is mainly limited to the near surface layer,well above the classical values expected from the similarity theory.Deeper down,however,the effects of wave breaking on the vertical mixing become less important.  相似文献   

8.
基于大涡模拟和局部滤波同化方法的海洋环流模式   总被引:3,自引:1,他引:2  
结合最小二乘法极值原理,提出了一种基于局部谱展开的滤波同化方法,把测量数据和数值计算过程中出现的高频短波滤掉,并将高度计数据同化到了求解过程中.结果既增加了数值稳定性,又提高了数值模拟的准确性.针对在海洋环流问题中水平的流动性质和垂直的不同的特点,我们还将大涡模拟的思想和直接涡黏的思想分别应用于水平方向和垂直方向,给出的方法是一种适用于海洋环流和浅水环流问题的大涡模拟湍流模式.对热带和北太平洋一年四季非定常季风作用下环流的数值模拟表明,提出的方法非常有效,数值结果与实际相当吻合.  相似文献   

9.
A three-dimensional tidal current model is developed and applied to the East China Sea (ECS), the Yellow Sea and the Bohai Sea. The model well reproduces the major four tides, namely M2, S2, K1 and O1 tides, and their currents. The horizontal distributions of the major four tidal currents are the same as those calculated by the horizontal two-dimensional models. With its high resolutions in the horizontal (12.5 km) and the vertical (20 layers), the model is used to investigate the vertical distributions of tidal current. Four vertical eddy viscosity models are used in the numerical experiments. As the tidal current becomes strong, its vertical shear becomes large and its vertical profile becomes sensitive to the vertical eddy viscosity. As a conclusion, the HU (a) model (Davieset al., 1997), which relates the vertical eddy viscosity to the water depth and depth mean velocity, gives the closest results to the observed data. The reproduction of the amphidromic point of M2 tide in Liaodong Bay is discussed and it is concluded that it depends on the bottom friction stress. The model reproduces a unique vertical profile of tidal current in the Yellow Sea, which is also found in the observed data. The reason for the reproduction of such a unique profile in the model is investigated.  相似文献   

10.
Measurements in the mixing zone of the Elbe estuary were performed during three consecutive tidal cycles with three types of instruments—a moored tripod with velocity and temperature/conductivity/light attenuation sensors, a profiling sonde with similar sensors lowered from an anchored vessel, and instrumented moorings. Acoustic-travel-time sensors were used for velocity measurements.Spectral analysis of 12·8 min pieces of the obtained time series gives results that are consistent with isotropic turbulence for part of the frequency space. Temporal changes of turbulent kinetic energy are correlated with tidal current velocity. A retardation is found between changes in tidal current and turbulent energy. Not all shear stress terms are in similar phase with tidal flow. Mean gradients, Reynolds stress terms, and turbulent salt flux terms are combined to determine eddy viscosity and eddy diffusion coefficients.  相似文献   

11.
A three-dimensional,first order turbulence closure,thermal diffusion model is described inthis paper.The governing equations consist of an equation of continuity,three components of momentum,conservation equations for salt,temperature and subgridscale energy,and an equation of state.In the mod-el,according to the hypothesis of Kolmogorov and Prandtl,the viscosity coefficient of turbulent flow ofhomogeneous fluid is related to the local turbulent energy,and the horizontal and vertical exchangecoefficients of mass,heat and momentum are computed with the introduction of subgridscale turbulenceenergy.The governing equations are solved by finite difference techniques.This model is applied to theJiaozhou bay to predict thermal pollution by the Huangdao power plant.An instantaneous tidal currentfield is computed,then the distribution of temperature increment is predicted,and finally the effect of windstress on thermal discharge is discussed.  相似文献   

12.
The eddy viscosity of the ocean is an important parameter indicating the small-scale mixing process in the oceanic interior water column.Ekman wind-driven current model and adjoint assimilation technique are used to calculate the vertical profiles of eddy viscosity by fitting model results to the observation data.The data used in the paper include observed wind data and ADCP data obtained at Wenchang Oil Rig on the SCS (the South China Sea) shelf in August 2002.Different simulations under different wind conditions are analyzed to explore how the eddy viscosity develops with varying wind field.The results show that the eddy viscosity endured gradual variations in the range of 10-3-10-2 m2/s during the periods of wind changes.The mean eddy viscosity undergoing strong wind could rise by about 25% as compared to the value under weak wind.  相似文献   

13.
张宇  陈旭  刘娟  宁珏 《海洋与湖沼》2024,55(2):306-317
南海北部吕宋海峡是内潮最为活跃的区域之一,且涡旋种类繁多,不同特性的涡旋对内潮的影响不同。基于近岸与区域海洋共同模式(coastal and regional ocean community model,CROCO),模拟探究理想涡旋存在时,涡旋位置、极性、峰值流速和半径对内潮的影响。结果表明:涡旋位置是影响内潮的直接因素,位于涡旋区域内的内潮是主要影响对象,涡旋中心以西内潮方向变化的角度是以东的3倍。气旋涡和反气旋涡分别使潮能通量的方向向南和向北偏转,最大偏转角度超过12°,当涡旋所致背景流与内潮传播方向一致时,内潮群速度增强,反之减弱。涡旋对内潮的影响范围和幅度随着涡旋的半径和峰值流速的增大而变大。当涡旋峰值速度变大时,反气旋涡心以北的潮能通量增长量超过15 kW/m。当涡旋半径增大时,涡旋峰值速度的位置发生变化,涡旋的峰值流速和半径共同影响潮能通量水平分布结构,使其呈现纬向单峰或多峰结构。  相似文献   

14.
A new set of Boussinesq-type equations describing the free surface evolution and the corresponding depth-integrated horizontal velocity is derived with the bottom boundary layer effects included. Inside the boundary layer the eddy viscosity gradient model is employed to characterize Reynolds stresses and the eddy viscosity is further approximated as a linear function of the distance measured from the seafloor. Boundary-layer velocities are coupled with the irrotational velocity in the core region through boundary conditions. The leading order boundary layer effects on wave propagation appear in the depth-integrated continuity equation to account for the velocity deficit inside the boundary layer. This formulation is different from the conventional approach in which a bottom stress term is inserted in the momentum equation. An iterative scheme is developed to solve the new model equations for the free surface elevation, depth-integrated velocity, the bottom stress, the boundary layer thickness and the magnitude of the turbulent eddy viscosity. A numerical example for the evolution of periodic waves propagating in one-dimensional channel is discussed to illustrate the numerical procedure and physics involved. The differences between the conventional approach and the present formulation are discussed in terms of the bottom frictional stress and the free surface profiles.  相似文献   

15.
The present paper describes a three-dimensional hydrodynamical numerical model of the Northern Adriatic. The model is based on the approach of N.S. Heaps in which the integral transformations are used to reproduce the vertical distribution of velocity. The model is applied to reproduce the wind-induced motion in the Northern Adriatic during winter. Hydrographic, sea level and current data collected during the MEDALPEX are used to verify the model predictions. Analysis of the empirical data suggests that the bura wind induces the most pronounced, although transient, contribution to the Northern Adriatic current field. The model predictions clearly show the controlling influence of a shallower bottom along the Italian coast. The model to data comparison suggests for the eddy viscosity coefficient value an order of magnitude lower than expected from literature data. The quadratic law for bottom friction and wind-stress curl have been identified as possible improvements of the model.  相似文献   

16.
再谈海冰边缘区域中尺度涡旋形成机制——非线性平流   总被引:1,自引:1,他引:0  
利用三维海洋模式与二维海冰模式耦合,研究海冰边缘区域中尺度涡旋形成最重要的机制之一——非线性平流机制。二维海洋模型模拟结果表明,非线性平流机制在水深比较浅的时候更加重要。不同于把海洋考虑成一个正压流体的二维模型,三维海洋模型中海冰通过海-冰相互作用直接影响海洋表层。我们发现在三维海洋模型实验中,中尺度涡旋和海洋表面抬升都对水深变化敏感。海流速度的垂直结构表面,当海水变浅,各层海流都变得更快。相同风应力作用相同时间之后,表面抬升与海水深度成反比关系。同时我们还发现由于垂直运动,在三维海洋模型实验结果中,海面抬升非常小,只有二维海洋模型实验结果的1%。垂直运动是三维海洋模型和二维海洋模型实验结果不同的根本原因。  相似文献   

17.
将海上石油平台改建为人工鱼礁是一种理想的退役平台处置方式,流场对人工鱼礁发挥功效起着重要作用,而目前对平台造礁的流场效应仍有待研究。基于埕岛油田退役平台造礁示范工程,构建了渤海埕岛油田海域三维水动力数值模型,在实际海况条件下定量研究不同规模平台造礁对流场影响效应。结果表明:当布设鱼礁山后,在鱼礁山两侧及上方沿水平来流方向均形成流速增大区域,而迎流面和背流面出现了流速减小区域;与无鱼礁山时相比,随着鱼礁山高度增加和来流速度增大,鱼礁山区域流速变化幅度和变化区域面积逐渐增大,且鱼礁山高度对流速影响范围更大,来流速度则决定流速变化幅度;在垂向上会产生明显的上升流与背涡流,随着水平来流速度增大,鱼礁山高度对垂向流场的影响程度逐渐减小。  相似文献   

18.
Based on the Boussinesq assumption,derived are couple equations of free surface elevationand horizontal velocities for horizontal irrotational flow,and analytical expressions of the correspondingpressure and vertical velocity.After the free surface elevation and horizontal velocity at a certain depth areobtained by numerical method,the pressure and vertical velocity distributions can be obtained by simplecalculation.The dispersion at different depths is the same at the O(ε)approximation.The waveamplitude will decrease with increasing time due to viscosity,but it will increase due to the matching ofviscosity and the bed slope.thus,flow is unstable.Numerical or analytical results show that the waveamplitude.velocity and length will increase as the current increases along the wave direction.but theamplitude will increase.and the wave velocity and length will decrease as the water depth decreases.  相似文献   

19.
孙斌  蒋昌波  夏波 《海洋工程》2012,30(1):92-97
利用Flow-3D建立三维数值波浪水槽,模拟波浪在不对称台阶地形上的传播。系统研究规则波作用下墩柱周围水流的流动特性,分析墩柱周围的瞬时速度场、涡量场以及KC值变化,不同相位时墩柱前、后水平流速分布情况。结果表明:波浪在台阶地形传播的过程中,墩柱迎水面的涡动结构不够明显;高涡量呈对称状聚集在墩柱的背水面,并形成一对旋转方向相反的涡结构;周期对KC值的影响比波高的影响要明显;墩柱迎水面水平方向流速变化较大,侧面水平流速变化最为剧烈,背面由于受到墩柱的掩护作用水平方向流速变化不大,在墩柱的正面和侧面竖向环流明显。  相似文献   

20.
Characteristics of the tidal residual flow, the steady current induced in the tidal current system, are studied by a numerical method. The model basin has the same topography as that studied byYanagi (1976) and byOonishi (1977) where only the horizontal motion of the residual flow is concerned. In this study, the effect of the vertical motion is investigated as it is associated with the tidal residual flow. To this end, the bottom friction omitted in the previous study (Oonishi, 1977) is included and a two-leveled model is adopted.The first two experiments exclude the earth's rotation and the buoyancy effect on the flow. The results are as follows. The horizontal flow pattern is essentially the same as that obtained in the previous Oonishi study. The bottom friction results in the reduction of the velocity of the residual flow especially in the bottom level. An important result is that vertical velocity is as strong as the horizontal velocity multiplied by the scale ratio and that it remains even in the time-average. Upwelling appears at the center of the residual circulation. This upwelling explains Yanagi's observation in the hydraulic model that the sediment is swept by the flow and accumulates horizontally in the area at the bottom below the center of the residual circulation. The distribution of a tracer, which is simultaneously calculated in these cases, indicates the important role of vertical motion in the material dispersion in the model.The last experiment includes the earth's rotation and the buoyancy effect presuming a more actual sea. It shows another effect of the vertical motion. The Coriolis term, which operates only under the condition that a horizontal divergence of the flow is present, skews the horizontal residual flow pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号