首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The 2017 Guptkashi earthquake occurred in a segment of the Himalayan arc with high potential for a strong earthquake in the near future. In this context, a careful analysis of the earthquake is important as it may shed light on source and ground motion characteristics during future earthquakes. Using the earthquake recording on a single broadband strong-motion seismograph installed at the epicenter, we estimate the earthquake’s location (30.546° N, 79.063° E), depth (H?=?19 km), the seismic moment (M0?=?1.12×1017 Nm, M w 5.3), the focal mechanism (φ?=?280°, δ?=?14°, λ?=?84°), the source radius (a?=?1.3 km), and the static stress drop (Δσ s ~22 MPa). The event occurred just above the Main Himalayan Thrust. S-wave spectra of the earthquake at hard sites in the arc are well approximated (assuming ω?2 source model) by attenuation parameters Q(f)?=?500f0.9, κ?=?0.04 s, and fmax?=?infinite, and a stress drop of Δσ?=?70 MPa. Observed and computed peak ground motions, using stochastic method along with parameters inferred from spectral analysis, agree well with each other. These attenuation parameters are also reasonable for the observed spectra and/or peak ground motion parameters in the arc at distances ≤?200 km during five other earthquakes in the region (4.6?≤?M w ?≤?6.9). The estimated stress drop of the six events ranges from 20 to 120 MPa. Our analysis suggests that attenuation parameters given above may be used for ground motion estimation at hard sites in the Himalayan arc via the stochastic method.  相似文献   

2.
Attenuation characteristics in the New Madrid Seismic Zone (NMSZ) are estimated from 157 local seismograph recordings out of 46 earthquakes of 2.6?≤?M?≤?4.1 with hypocentral distances up to 60 km and focal depths down to 25 km. Digital waveform seismograms were obtained from local earthquakes in the NMSZ recorded by the Center for Earthquake Research and Information (CERI) at the University of Memphis. Using the coda normalization method, we tried to determine Q values and geometrical spreading exponents at 13 center frequencies. The scatter of the data and trade-off between the geometrical spreading and the quality factor did not allow us to simultaneously derive both these parameters from inversion. Assuming 1/R 1.0 as the geometrical spreading function in the NMSZ, the Q P and Q S estimates increase with increasing frequency from 354 and 426 at 4 Hz to 729 and 1091 at 24 Hz, respectively. Fitting a power law equation to the Q estimates, we found the attenuation models for the P waves and S waves in the frequency range of 4 to 24 Hz as Q P?=?(115.80?±?1.36) f (0.495?±?0.129) and Q S?=?(161.34?±?1.73) f (0.613?±?0.067), respectively. We did not consider Q estimates from the coda normalization method for frequencies less than 4 Hz in the regression analysis since the decay of coda amplitude was not observed at most bandpass filtered seismograms for these frequencies. Q S/Q P?>?1, for 4?≤?f?≤?24 Hz as well as strong intrinsic attenuation, suggest that the crust beneath the NMSZ is partially fluid-saturated. Further, high scattering attenuation indicates the presence of a high level of small-scale heterogeneities inside the crust in this region.  相似文献   

3.
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580–600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200–300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5–2 Hz range.  相似文献   

4.
Microearthquake digital data collected at Campi Flegrei during the recent (1982–1985) ground uplift episode have been analyzed in order to infer source and medium seismic properties. The main results obtained from these analyses are:
  1. Hypocenter distribution and the size of the seismic zone do not change with time and do not depend on the ground uplift rate. Events occurred clustered in time with no simple causal relations between the cluster occurrences and their energy.
  2. Anelastic attenuation does not depend strongly on frequency, showing a constant pattern at high frequencies. The observed values of low and high frequency attenuation, due to the short source receiver distances, do not seriously affect the spectral content of signals radiated by the sources.
  3. A constant Brune stress drop pattern (~4–5 bars) as a function of seismic moment is observed. This indicates that the manner of fracturing is almost independent on magnitude of earthquakes (hypothesis of self-similarity (Aki, 1967)). Seismic processes in a prefractured medium can explain the observed small stress drop values.
  4. Focal mechanisms from moment tensor estimates show that radiation patterns are mostly well interpreted in terms of double couple source models.
  5. The scaling of peak ground motion parameters (A max andV max vs seismic moment) can be explained by an ω2 source model (constant stress drop) multiplied by an exponential function with a small decay parameter, which takes into account the measured attenuation.
These results support the hypothesis of earthquakes generated by simple shear fractures along prefractured structures as a response to changes in the stress field due to the ground deformation.  相似文献   

5.
Site response and source spectra of S waves in the Zagros region, Iran   总被引:1,自引:0,他引:1  
S wave amplitude spectra from shallow earthquakes with magnitudes ranging between 4.2 and 6.2 in the Zagros region of Iran that occurred between 1998 and 2008 are used to examine source parameters and site response of S waves. A generalized inversion scheme has been used to separate the source, propagation path, and local site effects from S wave spectra. For removing the trade-off between source and site terms and propagation effects (including geometric and anelastic attenuation), the spectral amplitudes of the records used were corrected for attenuation and geometrical spreading function using a path model proposed by Zafarani and Soghrat (Bull Seism Soc Am 102:2031–2045, 2012) for the region. We assume a Brune’s point source model to retrieve source parameters like corner frequency, moment magnitude, and high-frequency fall off coefficient, for each event. When the source spectra are interpreted in terms of Brune’s model, the average stress drops obtained are about 7.1 and 5.9 MPa (71 and 59 bars), respectively for the eastern and western Zagros regions. Stress drops range from 1.4 to 35.0 MPa (14 to 350 bars), with no clear dependence on magnitude. The results in terms of stress drop and S wave seismic energy indicate that the Zagros events are more similar to interplate earthquakes of western North America than to intraplate events of eastern North America. The method also provides us with site responses for all 40 stations individually and is an interesting alternative to other methods, such as the H/V method. A new empirical relationship between body-wave magnitudes and moment magnitude has been proposed for the Iranian plateau using derived seismic moment from the inversion.  相似文献   

6.
A κ Model for Mainland France   总被引:1,自引:0,他引:1  
An important parameter for the characterization of strong ground motion at high-frequencies (>1 Hz) is kappa, κ, which models a linear decay of the acceleration spectrum, a(f), in log-linear space (i.e. a(f) = A 0 exp(? π κ f) for f > f E where f is frequency, f E is a low frequency limit and A 0 controls the amplitude of the spectrum). κ is a key input parameter in the stochastic method for the simulation of strong ground motion, which is particularly useful for areas with insufficient strong-motion data to enable the derivation of robust empirical ground motion prediction equations, such as mainland France. Numerous studies using strong-motion data from western North America (WNA) (an active tectonic region where surface rock is predominantly soft) and eastern North America (ENA) (a stable continental region where surface rock is predominantly very hard) have demonstrated that κ varies with region and surface geology, with WNA rock sites having a κ of about 0.04 s and ENA rock sites having a κ of about 0.006 s. Lower κs are one reason why high-frequency strong ground motions in stable regions are generally higher than in active regions for the same magnitude and distance. Few, if any, estimates of κs for French sites have been published. Therefore, the purpose of this study is to estimate κ using data recorded by the French national strong-motion network (RAP) for various sites in different regions of mainland France. For each record, a value of κ is estimated by following the procedure developed by Anderson and Hough (Bull Seismol Soc Am 74:1969–1993, 1984): this method is based on the analysis of the S-wave spectrum, which has to be performed manually, thus leading to some uncertainties. For the three French regions where most records are available (the Pyrenees, the Alps and the Côtes-d’Azur), a regional κ model is developed using weighted regression on the local geology (soil or rock) and source-to-site distance. It is found that the studied regions have a mean κ between the values found for WNA and ENA. For example, for the Alps region a κ value of 0.0254 s is found for rock sites, an estimate reasonably consistent with previous studies.  相似文献   

7.
Variability of the Earth’s structure makes a first-order impact on attenuation measurements which often does not receive adequate attention. Geometrical spreading (GS) can be used as a simple measure of the effects of such structure. The traditional simplified GS compensation is insufficiently accurate for attenuation measurements, and the residual GS appears as biases in both Q 0 and η parameters in the frequency-dependent attenuation law Q(f) = Q 0 f η . A new interpretation approach bypassing Q(f) and using the attenuation coefficient χ(f) = γ + πf/Q e(f) resolves this problem by directly measuring the residual GS, denoted γ, and effective attenuation, Q e. The approach is illustrated by re-interpreting several published datasets, including nuclear-explosion and local-earthquake codas, Pn, and synthetic 50–300-s surface waves. Some of these examples were key to establishing the Q(f) concept. In all examples considered, χ(f) shows a linear dependence on the frequency, γ ≠ 0, and Q e can be considered frequency-independent. Short-period crustal body waves are characterized by positive γ SP values of (0.6–2.0) × 10?2 s?1 interpreted as related to the downward upper-crustal reflectivity. Long-period surface waves show negative γ LP ≈ ?1.9 × 10?5 s?1, which could be caused by insufficient modeling accuracy at long periods. The above γ values also provide a simple explanation for the absorption band observed within the Earth. The band is interpreted as apparent and formed by levels of Q e ≈ 1,100 within the crust decreasing to Q e ≈ 120 within the uppermost mantle, with frequencies of its flanks corresponding to γ LP and γ SP. Therefore, the observed absorption band could be purely geometrical in nature, and relaxation or scattering models may not be necessary for explaining the observed apparent Q(f). Linearity of the attenuation coefficient suggests that at all periods, the attenuation of both Rayleigh and Love waves should be principally accumulated at the sub-crustal depths (~38–100 km).  相似文献   

8.
Source, propagation path and site conditions are the factors affecting seismic ground motion. Consequently, recordings acquired at a seismic station are formed by the convolution of these three factors. In this work S-wave acceleration Fourier spectra of earthquakes recorded at local and regional scale, by the ITSAK accelerometric network for the period 2010–2016, are modeled as a product of source, propagation path (including geometric and anelastic attenuation) and site effects. The data set consists of 136 crustal earthquakes occurred in the broader Aegean area, with magnitudes 4.2?≤?Mw?≤?6.5 and epicentral distances 20 km?≤?R?≤?350 km, recorded at 112 broadband accelerometric stations installed at sites with various geologic conditions. Based on this data set, an iterative Gauss–Newton inversion method to solve the non-linear problem and retrieve the different terms of source, propagation path and site, is applied. This method uses an initial input model trying to find the best and at the same time a stable solution for the inverted parameters, which are, moment magnitude (Mw), corner frequency (fc), attenuation quality factor (Qs?=?Qofα), slope of the geometric attenuation (1/Rγ) and site transfer function (S(f)). The initial values of the starting model can be either known from other studies or inferred within a reasonable range. Depending on the level of knowledge on these input parameters, the associated standard deviation can be adjusted (large values for unknown parameters or small values for parameters which are well constrained). Results of the analyses exhibit satisfactory agreement of estimated source parameters with those proposed by seismological centers in Greece and propagation path properties similar to the ones determined in relevant previous studies for the same region. In addition, the site transfer functions obtained by the non-linear inversion are comparable with those calculated for the same sites using either standard spectral ratio or horizontal-to-vertical spectral ration (HVSR—receiver function) techniques. The aforementioned results are encouraging for reliable earthquake source parameters, propagation path properties and site effect assessment, in areas of intermediate to high seismicity.  相似文献   

9.
Tsunamis are most destructive at near to regional distances, arriving within 20–30 min after a causative earthquake; effective early warning at these distances requires notification within 15 min or less. The size and impact of a tsunami also depend on sea floor displacement, which is related to the length, L, width, W, mean slip, D, and depth, z, of the earthquake rupture. Currently, the primary seismic discriminant for tsunami potential is the centroid-moment tensor magnitude, M w CMT , representing the product LWD and estimated via an indirect inversion procedure. However, the obtained M w CMT and the implied LWD value vary with rupture depth, earth model, and other factors, and are only available 20–30 min or more after an earthquake. The use of more direct discriminants for tsunami potential could avoid these problems and aid in effective early warning, especially for near to regional distances. Previously, we presented a direct procedure for rapid assessment of earthquake tsunami potential using two, simple measurements on P-wave seismograms—the predominant period on velocity records, T d , and the likelihood, T 50 Ex , that the high-frequency, apparent rupture-duration, T 0, exceeds 50–55 s. We have shown that T d and T 0 are related to the critical rupture parameters L, W, D, and z, and that either of the period–duration products T d T 0 or T d T 50 Ex gives more information on tsunami impact and size than M w CMT , M wp, and other currently used discriminants. These results imply that tsunami potential is not directly related to the product LWD from the “seismic” faulting model, as is assumed with the use of the M w CMT discriminant. Instead, information on rupture length, L, and depth, z, as provided by T d T 0 or T d T 50 Ex , can constrain well the tsunami potential of an earthquake. We introduce here special treatment of the signal around the S arrival at close stations, a modified, real-time, M wpd(RT) magnitude, and other procedures to enable early estimation of event parameters and tsunami discriminants. We show that with real-time data currently available in most regions of tsunami hazard, event locations, m b and M wp magnitudes, and the direct, period–duration discriminant, T d T 50 Ex can be determined within 5 min after an earthquake occurs, and T 0, T d T 0, and M wpd(RT) within approximately 10 min. This processing is implemented and running continuously in real-time within the Early-est earthquake monitor at INGV-Rome (http://early-est.rm.ingv.it). We also show that the difference m b  ? log10(T d T 0) forms a rapid discriminant for slow, tsunami earthquakes. The rapid availability of these measurements can aid in faster and more reliable tsunami early warning for near to regional distances.  相似文献   

10.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

11.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

12.
A total of 144 free-field ground motions with closest site-to-rupture distances (Rrup) less than 200 km recorded during the 2010 Mw 7.2 El Mayor–Cucapah earthquake are used to investigate predictive capabilities of the next generation attenuation (NGA) ground-motion prediction equations (GMPE). The NGA GMPEs underpredict observed spectral accelerations at sites with shear wave velocity in the upper 30 m of the site (Vs30) between 180 and 366 m/s with Rrup from about 10 to 50 km and overpredict at sites with Rrup from about 50 to 200 km. Intra-event residuals of the NGA GMPEs exhibit a noticeable negative trend for peak ground acceleration and 0.3, 1.0, and 2.0 s periods. Comparison of the inter-event residual between the 2010 Mw 7.2 El Mayor–Cucapah earthquake and the NGA dataset reveals that short-period inter-event residuals from the 2010 Mw 7.2 El Mayor–Cucapah earthquake is within the scatter of inter-event residuals from the NGA dataset but long-period inter-event residuals do not appear within of the scatter of inter-event residuals from the NGA dataset. Spectral accelerations predicted by the NGA GMPEs are generally unbiased against Vs30 and periods of less than 4.0 s. Observed spectral accelerations show a stronger Vs30 dependence for both short and long periods compared with the NGA GMPEs. The Boore and Atkinson (Earthq Spectra 24(1):99–138, 2008) and Chiou and Youngs (Earthq Spectra 24(1):173–215, 2008) GMPEs perform better in predicting observed short-period spectral accelerations at the sites with Vs30 between 180 and 250 m/s than the Abrahamson and Silva (Earthq Spectra 24(1):67–97, 2008) and Campbell and Bozorgnia (Earthq Spectra 24(1):139–171, 2008) GMPEs.  相似文献   

13.
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°–26°N and longitudes 73°–83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg–Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period (T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % (T = 475 years) and 2 % (T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships $ {\text{ZPA}}_{(T = 475)} = 0.1146\;[V_{\text{s}} (30)]^{ - 0.2924}, $ and $ {\text{ZPA}}_{(T = 2475)} = 0.2053\;[V_{\text{s}} (30)]^{ - 0.2426} $ between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.  相似文献   

14.
In the present study, a digital waveform dataset of 216 local earthquakes recorded by the Egyptian National Seismic Network (ENSN) was used to estimate the attenuation of seismic wave energy in the greater Cairo region. The quality factor and the frequency dependence for Coda waves and S-waves were estimated and clarified. The Coda waves (Q c) and S-waves (Q d) quality factor were estimated by applying the single scattering model and Coda Normalization method, respectively, to bandpass-filtered seismograms of frequency bands centering at 1.5, 3, 6, 12, 18 and 24?Hz. Lapse time dependence was also studied for the area, with the Coda waves analyzed through four lapse time windows (10, 20, 30 and 40?s). The average quality factor as function of frequency is found to be Q c?=?35?±?9f 0.9±0.02 and Q d?=?10?±?2f 0.9±0.02 for Coda and S-waves, respectively. This behavior is usually correlated with the degree of tectonic complexity and the presence of heterogeneities at several scales. The variation of Q c with frequency and lapse time shows that the lithosphere becomes more homogeneous with depth. In fact, by using the Coda Normalization method we obtained low Q d values as expected for a heterogeneous and active zone. The intrinsic quality factor (Q i ?1 ) was separated from the scattering quality factor (Q s ?1 ) by applying the Multiple Lapse Time Domain Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering with uniform distribution of scatters. The obtained results suggest that the contribution of the intrinsic attenuation (Q i ?1 ) prevails on the scattering attenuation (Q s ?1 ) at frequencies higher than 3?Hz.  相似文献   

15.
Solid precipitation (SP) intensity ( $ R_{\text{s}} $ ) using four automatic gauges, Pluvio, PARSIVEL (PArticle, SIze and VELocity), FD12P and POSS, and radar reflectivity factor ( $ Z $ ) using the POSS and PARSIVEL were measured at a naturally sheltered station (VOA) located at high level (1,640 m) on the Whistler Mountain in British Colombia, Canada. The R s and other standard meteorological parameters were collected from March 2009, and from November 2009, to February 2010. The wind speed (ws) measured during this period ranged from 0 to 4.5 ms?1, with a mean value of 0.5 ms?1. The temperature varied from 4 to ?17 °C. The SP amount reported by the PARSIVEL was higher than that reported by the Pluvio by more than a factor of 2, while the FD12P and POSS measured relatively smaller amounts, but much closer to that reported by the Pluvio and manual measurements. The dependence of R s from the PARSIVEL on wind speed was examined, but no significant dependence was found. The PARSIVEL’s precipitation retrieval algorithm was modified and tested using three different snow density size relationships (ρ sD) reported in literature. It was found that after modification of the algorithm, the derived R s amounts using the raw data agreed reasonably well with the Pluvio. Statistical analysis shows that more than 95 % of $ Z_{{h_{\text{poss}} }} $ data measured by POSS appears to correlates well with the reflectivity factors determined using the three ρ sD relationships. The automated Pluvio accumulation and manually determined daily SP amount (SPm) measured during five winter months were compared. The mean ratio (MR) and the mean difference (MD), and the correlation coefficient (r) calculated using the data collected using the two methods, were found to be 0.96, 0.4 and 0.6 respectively, indicating respectable agreement between these two methods, with only the Pluvio underestimating the amount by about 4 %.  相似文献   

16.
Unloaded natural rock masses are known to generate seismic signals (Green et al., 2006; Hainzl et al., 2006; Husen et al., 2007; Kraft et al., 2006). Following a 1,000 m3 mass failure into the Mediterranean Sea, centimeter-wide tensile cracks were observed to have developed on top of an unstable segment of the coastal cliff. Nanoseismic monitoring techniques (Wust-Bloch and Joswig, 2006; Joswig, 2008), which function as a seismic microscope for extremely weak seismic events, were applied to verify whether brittle failure is still generated within this unconsolidated sandstone mass and to determine whether it can be detected. Sixteen days after the initial mass failure, three small-aperture sparse arrays (Seismic Navigation Systems-SNS) were deployed on top of this 40-m high shoreline cliff. This paper analyzes dozens of spiky nanoseismic (?2.2 ≥ M L ≥ ?3.4) signals recorded over one night in continuous mode (at 200 Hz) at very short slant distances (3–67 m). Waveform characterization by sonogram analysis (Joswig, 2008) shows that these spiky signals are all short in duration (>0.5 s). Most of their signal energy is concentrated in the 10–75 Hz frequency range and the waveforms display high signal similarity. The detection threshold of the data set reaches M L ?3.4 at 15 m and M L ?2.7 at 67 m. The spatial distribution of source signals shows 3-D clustering within 10 m from the cliff edge. The time distribution of M L magnitude does not display any decay pattern of M L over time. This corroborates an unusual event decay over time (modified Omori’s law), whereby an initial quiet period is followed by regained activity, which then fades again. The polarization of maximal waveform amplitude was used to estimate spatial stress distribution. The orientation of ellipses displaying maximal signal energy is consistent with that of tensile cracks observed in the field and agrees with rock mechanics predictions. The M L– surface rupture length relationship displayed by our data fits a constant-slope extrapolation of empirical data collected by Wells and Coppersmith (1994) for normal fault features at much larger scale. Signal characterization and location as well as the absence of direct anthropogenic noise sources near the monitoring site, all indicate that these nanoseismic signals are generated by brittle failure within the top section of the cliff. The atypical event decay over time that was observed suggests that the cliff material is undergoing post-collapse bulk strain accommodation. This feasibility study demonstrates the potential of nanoseismic monitoring in rapidly detecting, locating and analyzing brittle failure generated within unconsolidated material before total collapse occurs.  相似文献   

17.
Forty-six mining-induced seismic events with moment magnitude between ?1.2 and 2.1 that possibly caused damage were studied. The events occurred between 2008 and 2013 at mining level 850–1350 m in the Kiirunavaara Mine (Sweden). Hypocenter locations were refined using from 6 to 130 sensors at distances of up to 1400 m. The source parameters of the events were re-estimated using spectral analysis with a standard Brune model (slope ?2). The radiated energy for the studied events varied from 4.7 × 10?1 to 3.8 × 107 J, the source radii from 4 to 110 m, the apparent stress from 6.2 × 102 to 1.1 × 106 Pa, energy ratio (E s/E p) from 1.2 to 126, and apparent volume from 1.8 × 103 to 1.1 × 107 m3. 90% of the events were located in the footwall, close to the ore contact. The events were classified as shear/fault slip (FS) or non-shear (NS) based on the E s/E p ratio (>10 or <10). Out of 46 events 15 events were classified as NS located almost in the whole range between 840 and 1360 m, including many events below the production. The rest 31 FS events were concentrated mostly around the production levels and slightly below them. The relationships between some source parameters and seismic moment/moment magnitude showed dependence on the type of the source mechanism. The energy and the apparent stress were found to be three times larger for FS events than for NS events.  相似文献   

18.
In the hours following the 2011 Honshu event, and as part of tsunami warning procedures at the Laboratoire de Géophysique in Papeete, Tahiti, the seismic source of the event was analyzed using a number of real-time procedures. The ultra-long period mantle magnitude algorithm suggests a static moment of 4.1 × 1029 dyn cm, not significantly different from the National Earthquake Information Center (NEIC) value obtained by W-phase inversion. The slowness parameter, $\Uptheta = -5.65, $ is slightly deficient, but characteristic of other large subduction events such as Nias (2005) or Peru (2001); it remains significantly larger than for slow earthquakes such as Sumatra (2004) or Mentawai (2010). Similarly, the duration of high-frequency (2–4 Hz) P waves in relation to seismic moment or estimated energy, fails to document any slowness in the seismic source. These results were confirmed in the ensuing weeks by the analysis of the lowest-frequency spheroidal modes of the Earth. A dataset of 117 fits for eight modes (including the gravest one, 0 S 2, and the breathing mode, 0 S 0) yields a remarkably flat spectrum, with an average moment of 3.5 × 1029 dyn cm (*/1.07). This behavior of the Tohoku earthquake explains the generally successful real-time modeling of its teleseismic tsunami, based on available seismic source scaling laws. On the other hand, it confirms the dichotomy, among mega-quakes (M 0 > 1029 dyn cm) between regular events (Nias, 2005; Chile, 2010; Sendai, 2011) and slow ones (Chile, 1960; Alaska, 1964; Sumatra, 2004; and probably Rat Island, 1965), whose origin remains unexplained.  相似文献   

19.
The Southeast Crater (SEC) of Mt. Etna, Italy, is renowned for its high activity, mainly long-lived eruptions consisting of sequences of individual paroxysmal episodes which have produced more than 150 eruptive events since 1998. Each episode typically forms eruption columns followed by tephra fallout over distances of up to about 100 km from the vent. One of the last sequences consisted of 25 lava fountaining events, which took place between January 2011 and April 2012 from a pit-vent on the eastern flank of the SEC and built a new scoria cone renamed New Southeast Crater. The first episode on 12–13 January 2011 produced tephra fallout which was unusually dispersed toward to the South extending out over the Mediterranean Sea. The southerly deposition of tephra permitted an extensive survey at distances between ~1 and ~100 km, providing an excellent characterization of the tephra deposit. Here, we document the stratigraphy of the 12–13 January fallout deposit, draw its dispersal, and reconstruct its isopleth map. These data are then used to estimate the main eruption source parameters. The total erupted mass (TEM) was calculated by using four different methodologies which give a mean value of 1.5?±?0.4?×?108 kg. The mass eruption rate (MER) is 2.5?±?0.7?×?104 kg/s using eruption duration of 100 min. The total grain-size (TGS) distribution, peaked at ?3 phi, ranges between ?5 and 5 phi and has a median value of ?1.4 phi. Further, for the eruption column height, we obtained respective values of 6.8–13.8 km by using the method of Carey and Sparks (1986) and 3.4?±?0.3 km by using the methods of Wilson and Walker (1987), Mastin et al. (2009), and Pistolesi et al. (2011) and considering the mean value of MER from the deposit. We also evaluated the uncertainty and reliability of TEM and TGS for scenarios where the proximal and distal samples are not obtainable. This is achieved by only using a sector spanning the downwind distances between 6 and 23 km. This scenario is typical for Etna when the tephra plume is dispersed eastward, i.e., in the prevailing wind direction. Our results show that, if the analyzed deposit has poorer sample coverage than presented in this study, the TEM (3.4?×?107 kg) is 22 % than the TEM obtained from the whole deposit. The lack of the proximal (<6 km) deposit may cause more significant differences in the TGS estimations.  相似文献   

20.
Knowledge of aquifer parameters is essential for management of groundwater resources. Conventionally, these parameters are estimated through pumping tests carried out on water wells. This paper presents a study that was conducted in three villages (Tumba, Kabazi, and Ndaiga) of Nakasongola District, central Uganda to investigate the hydrogeological characteristics of the basement aquifers. Our objective was to correlate surface resistivity data with aquifer properties in order to reveal the groundwater potential in the district. Existing electrical resistivity and borehole data from 20 villages in Nakasongola District were used to correlate the aquifer apparent resistivity (ρ e) with its hydraulic conductivity (K e), and aquifer transverse resistance (TR) with its transmissivity (T e). K e was found to be related to ρ e by; $ {\text{Log }}(K_{\text{e}} ) = - 0.002\rho_{\text{e}} + 2.692 $ . Similarly, TR was found to be related to T by; $ {\text{TR}} = - 0.07T_{\text{e}} + 2260 $ . Using these expressions, aquifer parameters (T c and K c) were extrapolated from measurements obtained from surface resistivity surveys. Our results show very low resistivities for the presumed water-bearing aquifer zones, possibly because of deteriorating quality of the groundwater and their packing and grain size. Drilling at the preferred VES spots was conducted before the pumping tests to reveal the aquifer characteristics. Aquifer parameters (T o and K o) as obtained from pumping tests gave values (29,424.7 m2/day, 374.3 m/day), (9,801.1 m2/day, 437.0 m/day), (31,852.4 m2/day, 392.9 m/day). The estimated aquifer parameter (T c and K c) when extrapolated from surface geoelectrical data gave (7,142.9 m2/day, 381.9 m/day), (28,200.0 m2/day, 463.4 m/day), (19,428.6 m2/day, 459.2 m/day) for Tumba, Kabazi, and Ndaiga villages, respectively. Interestingly, the similarity between the K c and K o pairs was not significantly different. We observed no significant relationships between the T c and T o pairs. The root mean square errors were estimated to be 18,159 m2/day and 41.4 m/day.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号