首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fifty earthquakes that occurred in Hungary (central part of the Pannonian basin) with local magnitude $M_\textrm{L}$ ranging from 0.8 to 4.5 have been analyzed. The digital seismograms used in this study were recorded by six permanent broadband stations and 20 short-period ones at hypocentral distances between 10 and 327 km. The displacement spectra for P- and SH-waves were analyzed according to Brune’s source model. Observed spectra were corrected for path-dependent attenuation effects using an independent regional estimate of the quality factor Q S . To correct spectra for near-surface attenuation, the κ parameter was calculated, obtaining it from waveforms recorded at short epicentral distances. The values of the κ parameter vary between 0.01 and 0.06 s with a mean of 0.03 s for P-waves and between 0.01 and 0.09 s with a mean of 0.04 s for SH-waves. After correction for attenuation effects, spectral parameters (corner frequency and low-frequency spectral level) were estimated by a grid search algorithm. The obtained seismic moments range from 4.21×1011 to 3.41×1015 Nm (1.7?≤?M w ?≤?4.3). The source radii are between 125 and 1,343 m. Stress drop values vary between 0.14 and 32.4 bars with a logarithmic mean of 2.59 bars (1 bar = 105 Pa). From the results, a linear relationship between local and moment magnitudes has been established. The obtained scaling relations show slight evidence of self-similarity violation. However, due to the high scatter of our data, the existence of self-similarity cannot be excluded.  相似文献   

2.
Ever since the 1999 Kocaeli earthquake, in which the Kandilli Observatory and Earthquake Research Institute (KOERI) was not able to correctly reflect the magnitude size in its preliminary report because of the saturation effect, a rapid and accurate determination of the earthquake becomes a very important issue. Therefore, in the framework of this study, an automatic determination of the moment magnitude was performed by using the displacement spectra of selected earthquakes in the Marmara Region. For this purpose, 39 three-component broadband stations from KOERI seismic network which recorded 174 earthquakes with magnitudes 2.5?≤?M?≤?5.0 in between 2006–2009 were used. Due to the importance of quality factor in determination of the moment magnitude with spectral analysis method, the quality factor was calculated for the whole region in the beginning. Source spectrum which was obtained by converting the velocity records to displacement spectra and moment magnitudes of earthquakes were determined by fitting this spectrum to classical Brune model. For this aim, an automatic procedure was utilized which based on minimizing the differences between observed and synthetic source spectra identified by the S waves. Besides moment magnitude and location parameters, some source parameters such as seismic moment, spectral level, corner frequency and stress drop were also calculated. Application of the method proves that determining the seismic moment from the source spectra is applicable not only for earthquakes with small magnitude but also moderate earthquakes as well.  相似文献   

3.
通过对甘肃数字地震台网2008年1月-2009年6月记录的ML 2.0-ML 6.0中小地震,S波观测谱中噪音、仪器、路径、场地等影响的逐一消除,利用遗传算法反演得到甘肃地区273条地震的震源谱,进而根据Brune的圆盘震源模型,计算地震矩、应力降、拐角频率、震源半径等震源参数,并研究甘肃地区震源参数的特征及相似关系....  相似文献   

4.
Generalized inversion of the S-wave amplitude spectra from the strong-motion network data in the East-Central Iran has been used to estimate simultaneously source parameters, site response and the S-wave attenuation (Qs). In this regard, 190 three-component records were used corresponded to 40 earthquakes with the magnitudes M3.5–M7.3. These earthquakes were recorded at 42 stations in the hypocentral distance range from 9 to 200 km. The inverse problem was solved in 20 logarithmically equally spaced points in the frequency band from 0.4 to 15 Hz. The frequency-dependent site amplification was imposed, as a constraint, on two reference site responses in order to remove the undetermined degree of freedom in the inversion and obtain a unique inverse solution. Also, a geometrical spreading factor was assumed for removing the trade-off between geometrical spreading and anelastic attenuation. Different source parameters, such as seismic moment (M0), seismic energy (Es), corner frequency (fc) and Brune stress drop (Δσ), were estimated for each event by fitting an ω2 model to the spectra obtained from the inversion. The stress drop values of earthquakes, obtained in this research, are in good agreement with those of other studies. Also average site response values were correlated to the average shear wave velocities in the uppermost 30 m, in high and low frequency bands. The peak frequencies of site amplifications, estimated by the generalized inversion method, where in good agreement with those of horizontal to vertical (H/V) spectral ratios for the S-wave portion of records. However, no perfect matching in amplitude was obtained due to the deficiencies of the H/V ratio technique. By supposing a free shape for Q factor, a frequency dependent function was found, the logarithm of which could be approximated by a linear function, Q(f)=151f0.75. The uncertainties of model parameters have been evaluated by covariance matrix of least-square fit. The residuals were also analyzed in order to assess the validity of the model. The analysis of residuals with respect to magnitude and distance indicates that they are distributed normally with approximately zero mean. The robustness of the results has been studied concerning their sensitivities to the omission of different datasets, selected randomly from original database. The results obtained here can be used in predicting ground-motion parameters applying stochastic methods.  相似文献   

5.
Source, propagation path and site conditions are the factors affecting seismic ground motion. Consequently, recordings acquired at a seismic station are formed by the convolution of these three factors. In this work S-wave acceleration Fourier spectra of earthquakes recorded at local and regional scale, by the ITSAK accelerometric network for the period 2010–2016, are modeled as a product of source, propagation path (including geometric and anelastic attenuation) and site effects. The data set consists of 136 crustal earthquakes occurred in the broader Aegean area, with magnitudes 4.2?≤?Mw?≤?6.5 and epicentral distances 20 km?≤?R?≤?350 km, recorded at 112 broadband accelerometric stations installed at sites with various geologic conditions. Based on this data set, an iterative Gauss–Newton inversion method to solve the non-linear problem and retrieve the different terms of source, propagation path and site, is applied. This method uses an initial input model trying to find the best and at the same time a stable solution for the inverted parameters, which are, moment magnitude (Mw), corner frequency (fc), attenuation quality factor (Qs?=?Qofα), slope of the geometric attenuation (1/Rγ) and site transfer function (S(f)). The initial values of the starting model can be either known from other studies or inferred within a reasonable range. Depending on the level of knowledge on these input parameters, the associated standard deviation can be adjusted (large values for unknown parameters or small values for parameters which are well constrained). Results of the analyses exhibit satisfactory agreement of estimated source parameters with those proposed by seismological centers in Greece and propagation path properties similar to the ones determined in relevant previous studies for the same region. In addition, the site transfer functions obtained by the non-linear inversion are comparable with those calculated for the same sites using either standard spectral ratio or horizontal-to-vertical spectral ration (HVSR—receiver function) techniques. The aforementioned results are encouraging for reliable earthquake source parameters, propagation path properties and site effect assessment, in areas of intermediate to high seismicity.  相似文献   

6.
We estimated the network-averaged mantle attenuation t*(total) of 0.5 s beneath the North Korea test site (NKTS) by use of P-wave spectra and normalized spectral stacks from the 25 May 2009 declared nuclear test (mb 4.5; IDC). This value was checked using P-waves from seven deep (580–600 km) earthquakes (4.8 < M w < 5.5) in the Jilin-Heilongjiang, China region that borders with Russia and North Korea. These earthquakes are 200–300 km from the NKTS, within 200 km of the Global Seismic Network seismic station in Mudanjiang, China (MDJ) and the International Monitoring System primary arrays at Ussuriysk, Russia (USRK) and Wonju, Republic of Korea (KSRS). With the deep earthquakes, we split the t*(total) ray path into two segments: a t*(u), that represents the attenuation of the up-going ray from the deep hypocenters to the local-regional receivers, and t*(d), that represents the attenuation along the down-going ray to teleseismic receivers. The sum of t*(u) and t*(d) should be equal to t*(total), because they both share coincident ray paths. We estimated the upper-mantle attenuation t*(u) of 0.1 s at stations MDJ, USRK, and KSRS from individual and stacks of normalized P-wave spectra. We then estimated the average lower-mantle attenuation t*(d) of 0.4 s using stacked teleseismic P-wave spectra. We finally estimated a network average t*(total) of 0.5 s from the stacked teleseismic P-wave spectra from the 2009 nuclear test, which confirms the equality with the sum of t*(u) and t*(d). We included constraints on seismic moment, depth, and radiation pattern by using results from a moment tensor analysis and corner frequencies from modeling of P-wave spectra recorded at local distances. We also avoided finite-faulting effects by excluding earthquakes with complex source time functions. We assumed ω2 source models for earthquakes and explosions. The mantle attenuation beneath the NKTS is clearly different when compared with the network-averaged t* of 0.75 s for the western US and is similar to values of approximately 0.5 s for the Semipalatinsk test site within the 0.5–2 Hz range.  相似文献   

7.
The attenuation characteristics and site response are calculated respectively for each individual tectonic unit in Sichuan (Sichuan Basin,west Sichuan plateau and Panzhihua-Xichang area),using digital waveform data recorded by regional seismic networks and relevant seismic phase data collected from China Seismograph Network.The frequency dependent Q(f) is obtained by the iterative grid-search technique described by Atkinson and Mereu based on trilinear geometrical spreading model.The source spectra are determined by the model of Brune and the site responses of seismic stations are derived by Moya's method using genetic algorithms.Comparison to conventional ML estimates shows that the network local magnitude bias is quite significant at low and intermediate magnitudes.The bias at the jth station for the ith event is defined as ΔMij=Mij-Mi, where ΔMij is the station magnitude and Mi the network-average value.For comparison,we mapped the spatial distribution of biases by digital seismograms recorded from 10535 earthquakes of magnitude 2.5≤ML≤4.9 that occurred in Sichuan from January 1,2009 to June 30,2015.Based on the above data,the attenuation characteristics,site response and their effects on magnitude determination in Sichuan are analyzed.Our results demonstrate that the associated model for regional quality factor for frequencies can be expressed as Q1(f)=450.6f0.513 4 for Sichuan Basin,Q2(f)=136.6f0.581 3 for west Sichuan Plateau and Q3(f)=101.9f0.666 3 for Panzhihua-Xichang area.Site response results indicate that different stations show different amplifications.Maps of biases appear to be different,but with similar dominant spatial distribution.For stations in Sichuan Basin,their greater magnitudes are functions of low attenuation in structure and amplification effects of both seismic stations and basin effects.For stations in west Sichuan Plateau,the possible causes of these lower magnitudes are severe dependence upon source region due to extreme lateral variations in either structure or path effect attenuation.For stations in Panzhihua-Xichang area,broken medium caused by strong tectonic activity or large earthquakes and heat flow up-welling along active faults may be the main reasons of low magnitude values when earthquakes occur in western Sichuan and eastern Tibetan region.And the greater magnitudes for earthquakes along the Longmen Mountains appear to be well correlated with edge effect of sedimentary basin on strong ground motion.In our study,stations magnitude biases appear to be extremely correlated with tectonic structures and different regions when seismic rays passing through,magnitudes are affected significantly by lateral variations in attenuation characters rather than site responses.  相似文献   

8.
Source parameter estimates based on the homogeneous and inhomogeneous source models have been examined for an anomalous sequence of seven mine-induced events located between 640 and 825 m depth at Strathcona mine, Ontario, and having magnitudes ranging betweenm N 0.8 and 2.7. The derived Brune static stress drops were found to be similar to those observed for natural earthquakes (30 bars), whereas dynamic stress drops were found to range up to 250–300 bars. Source radii derived from Madariaga's model better fit documented evidence of underground damage. These values of source radii were similar to those observed for the inhomogeneous model. The displacement at the source, based on the observed attenuation relationship, was about 60 mm for three magnitude 2.7 events. This is in agreement with slip values calculated using peak velocities and assuming the asperity as a Brune source within itself (72 mm). By using Madariaga's model for the asperity, the slip was over 3 times larger than observed. Peak velocity and acceleration scaling relations with magnitude were investigated by incorporating available South African data, appropriately reduced to Canadian geophysical conditions. The dynamic stress drop scaled as the square root of the seismic moment, similar to reported results in the literature for crustal earthquakes. This behavior suggests that the size of the asperities responsible for the peak ground motion, with respect to the overall source size, follow distributions that may be similar over a wide range of magnitudes. Measurements of source rupture complexity (ranging from 2 to 4) were found to agree with estimates of overall source to asperity radii, suggesting, together with the observed low rupture velocities (0.3 to 0.6 ), that the sources were somewhat complex. Validation of source model appropriateness was achieved by direct comparison of the predicted ground motion level to observed underground damage in Creighton mine, located within the same regional stress and geological regime as Strathcona mine. Close to the source (<100 m), corresponding to relatively higher damage levels, a good agreement was found between the predicted peak particle velocities for the inhomogeneous model and velocities derived based on established geomechanical relationships. The similarity between asperity radii and the regions of the highest observed damage provided additional support for the use of the inhomogeneous source model in the assessment of damage potential.  相似文献   

9.
利用山西数字测震台网“十五”数字化之后34次 ML2.5~ML5.2级地震波形资料,采用Atkinson方法反演出非弹性衰减Q值随频率f的关系为Q( f)=469.5df0.3141;采用Moya方法反演得出41个台站的场地响应,结果显示出仪器安置在山洞且地处外界干扰小的台站没有明显的放大效应,而其它台站尽管都是基岩台...  相似文献   

10.
On the 27 June 2015, at 15:34:03 UTC, a moderate-sized earthquake of M w 5.0 occurred in the Gulf of Aqaba. Using teleseismic P waves, the focal mechanism of the mainshock was investigated by two techniques. The first technique used the polarities of the first P wave onsets, and the second technique was based on the normalized waveform modeling technique. The results showed that the extension stress has a NE orientation with a shallow southward plunge while the compression stress has a NW trend with a nearly shallow westward plunge, obtaining a strike-slip mechanism. This result agrees well with the typical consequence of crustal deformation resulting from the ongoing extensional to shear stress regime in the Gulf of Aqaba (NE-SW extension and NW-SE compression). The grid search method over a range of focal depths indicates an optimum solution at 15 ± 1 km. To identify the causative fault plane, the aftershock hypocenters were relocated using the local waveform data and the double-difference technique. Considering the fault trends, the spatial distribution of relocated aftershocks demarcated a NS-oriented causative fault, in consistence with one of the nodal planes of the focal mechanism solution, emphasizing the dominant stress regime in the region. Following the Brune model, the estimates of source parameters exhibited fault lengths of 0.29 ≤ L ≤ 2.48 km, moment magnitudes of 3.0 ≤ M w ≤ 5.0, and stress drops of 0.14 ≤ Δσ < 1.14 MPa, indicating a source scaling similar to the tectonic earthquakes related to plate boundaries.  相似文献   

11.
利用甘肃数字地震台网的波形记录,基于遗传算法,首先用Atkinson方法计算非弹性衰减系数,在此基础上用Moya方法同时反演震源参数和场地响应。反演结果表明,祁连山中东段地区非弹性衰减Q值与频率的关系为:Q(f)=687.9f0.460;除了湟源台(HYQ)外,其余台站的场地响应均有不同程度的放大效应;研究区地震的应力降范围为2~40 bar,优势分布在2~20 bar;震源参数拐角频率与地震矩、地震矩与震级之间存在依赖关系。  相似文献   

12.
中强地震能量震级测定   总被引:3,自引:0,他引:3       下载免费PDF全文
本文根据地震波衰减特性,开展了利用宽频带地震波形数据测定地震波能量ES和能量震级Me的方法研究。利用震中距处于20°—98°范围内的宽频带远震P波波形数据,测定了4次国外和4次国内中强震的能量震级Me,并对其面波震级MS、矩震级MW及能量震级Me进行了分析对比。结果表明:面波震级MS表示的是地震在某一固定频率所辐射的地震波能量大小;矩震级MW与地震所产生的断层长度、断层宽度、震源破裂的平均位错量等静态构造效应密切相关;而能量震级Me反映的是震源动态特征,与地震震源的动力学特性密切相关。由于地震是以地震波形式辐射,能量主要集中在震源谱的拐角频率附近,因此能量震级Me更适合描述地震的破坏性。由此可见,联合测定面波震级MS,矩震级MW和能量震级Me对于地震定量研究以及地震灾害与风险评估具有重要作用。   相似文献   

13.
郭晓  张元生  莘海亮  李稳 《中国地震》2007,23(4):383-392
利用甘肃数字地震台网的波形记录,基于遗传算法,首先用Atkinson方法计算非弹性衰减系数,在此基础上用Moya方法同时反演震源参数和场地响应。反演结果表明:甘东南地区非弹性衰减Q值与频率的关系为Q(f)=404.2f0.264;9个台站中除了天水台,其余台站的场地响应均没有显示明显的放大效应,这与其均处于岩石地基的情况相吻合;研究区地震的应力降范围为1~70bar;震源参数拐角频率与地震矩、地震矩与震级之间存在较明显的依赖关系。  相似文献   

14.
We develop a data set of aftershock recordings of the 1999, M = 7.4 Izmit and M = 7.2 Duzce (Turkey) earthquakes to study their source parameters. We combined seismograms from 44 stations maintained by several sources (organizations) to obtain a unified data set of events (2.1 ≤ Mw ≤ 5.5). We calculate source parameters of these small earthquakes by two methods that use different techniques to address the difficulty in obtaining source spectra for small earthquakes subject to interference from site response. One method (program NetMoment (NM), Hutchings, 2004) uses spectra of direct S waves in a simultaneous inversion of local high-frequency network data to estimate seismic moment, source corner frequency (fc), site attenuation (k) and whole-path Q. This approach takes advantage of the source commonality in all recordings for a particular earthquake by fitting a common Brune source spectrum to the data with a and individual k. The second approach (Mayeda et al., 2003) uses the coda method (CM) to obtain “nonmodel-based” source spectra and moment estimates from selected broadband recording sites. We found that both methods do well for events that allow the comparison with seismic moment estimates derived from waveform modeling. Also, source spectra obtained from the two methods are very closely matched for most of the events they have in common. We use an F test to examine the trade-off between k and fc picks identified by the direct S-wave method. About half of the events could be constrained to have less than a 50% average uncertainty in fc and k. We used these source spectra solutions to calculate energy and apparent stress and compare these to estimates from the selected “good quality” source spectra from CM. Both studies have values mutually consistent and show a similar increase in apparent stress with increasing moment. This result has added merit due to the independent approaches to calculate apparent stress. We conclude that both methods are at least partially validated by our study, and they both have usefulness for different circumstances of recording local small earthquakes. CM would work well in studies for which there is a broad magnitude range of events and NM works well for local events recorded by band-limited recorders.  相似文献   

15.
基于安徽数字地震台网2010年1月至2017年12月记录到的ML2.5~5.0级地震,根据中小地震震源参数测定原理,利用多台多地震联合反演Atkinson方法和Moya方法分别计算了安徽地区地壳平均非弹性衰减因子Q值和安徽24个省属专业地震的台站场地。在此基础上,运用遗传算法求得安徽地区96个地震事件的震源谱参数,进而根据Brune中小地震圆盘模型计算其拐角频率、地震矩、应力降、矩震级、震源尺度等震源参数,并分析其特征及相互之间的关系。研究结果表明:安徽地区中小地震的ML震级与其他震源参数之间存在一定相关关系,而地震矩M0与应力降Δσ、震源尺度r和拐角频率fc之间并未表现出明显的相关关系。  相似文献   

16.
We estimated the source parameters of 53 local earthquakes (2.0<ML<5.7) of the Friuli-Venezia Giulia (Northeastern Italy) area, recorded by the short-period local seismic network of the Istituto Nazionale di Oceanografia e Geofisica Sperimentale (OGS), in the period 1995-2003. Data were selected on the basis of high quality locations and focal mechanisms. Standard H/V spectral ratios (HVRS) of the three-component stations of the network were performed in order to assess local amplifications, and only stations showing HVRS not exceeding two were considered for the source parameters estimation. Both velocity and acceleration data were used to compute the SH-wave spectra. Observed spectra were corrected for attenuation effects using an independent regional estimate of the quality factor Q and a station dependent estimate of the spectral decay parameter k. Only earthquakes with ML>3.0 recorded with a sampling rate of 125 cps were used to compute k, thus allowing to visualize a linear trend of the high frequency acceleration spectrum up to 40-50 Hz. SH-wave spectra, corrected for attenuation, showed an ω−2 shape allowing a good fit with the Brune model. Seismic moments and Brune radii ranged between 1.5×1012 and 1.1×1017  N m and between 0.1 and 2.7 km respectively. We obtained Mo=1.1×1017  N m for the seismic moment of the Kobarid (SLO) main shock, in good agreement with the Harvard CMT solution (Mo=3.5×1017  N m). Brune stress drops were confined to the range from 0.07 to 5.31 MPa, with an average value of 0.73 MPa and seem to be approximately constant over five orders of magnitude of seismic moment. Radiated seismic energy computed from two nearby stations scales with seismic moment according to , and apparent stress values are between 0.02 and 4.26 MPa. The observed scatter of Brune stress drop data allowed to hypothesize a scaling relation between seismic moment and corner frequency in order to accommodate both Brune stress drop and apparent stress scalings. No systematic differences are evidenced between stress parameters of earthquakes with different focal mechanisms. As a consequence, a relation of the seismic stress release with the strength of rocks can be hypothesized. A high correlation (r>0.9) of Brune stress drop is found with both apparent stress and RMS stress drop, according to and respectively.  相似文献   

17.
By using a broadband Lg attenuation model developed for the Tibetan Plateau, we isolate source terms by removing attenuation and site effects from the observed Lg-wave displacement spectra of the M7.0 earthquake that occurred on August 8, 2017, in Jiuzhaigou, China, and its aftershock sequence. Thus, the source parameters, including the scalar seismic moment, corner frequency and stress drop, of these events can be further estimated. The estimated stress drops vary from 47.1 kPa to 7149.6 kPa, with a median value of 59.4 kPa and most values falling between 50 kPa and 75 kPa. The estimated stress drops show significant spatial variations. Lower stress drops were mainly found close to the mainshock and on the seismogenic fault plane with large coseismic slip. In contrast, the highest stress drop was 7.1 MPa for the mainshock, and relatively large stress drops were also found for aftershocks away from the major seismogenic fault and at depths deeper than the zone with large coseismic slip. By using a statistical method, we found self-similarity among some of the aftershocks with a nearly constant stress drop. In contrast, the stress drop increased with the seismic moment for other aftershocks. The amount of stress released during earthquakes is a fundamental characteristic of the earthquake rupture process. As such, the stress drop represents a key parameter for improving our understanding of earthquake source physics.  相似文献   

18.
Generalized inversion of the S-wave amplitude spectra from the strong-motion network data in the Alborz, Iran has been used to estimate simultaneously source parameters, site response and S-wave attenuation (Qs). To obtain an optimum inverse solution, and also for decreasing the uncertainty level, a frequency-dependent site amplification as a constraint, was imposed to five reference site responses. This constraint removes the undetermined degree of freedom in the inversion. Furthermore, for removing the trade-off between geometrical spreading and anelastic attenuation, a geometrical spreading factor was adopted from the Motazedian [20] study. A point source model has been calibrated against the resulting source terms and consequently source parameters, like corner frequency, moment magnitude and high frequency fall off coefficient, for each event has been determined separately. Also, based on the available data and their connectivity two sub-regions including western and eastern parts of Alborz located east and west of 52.5°E have been considered to see that if there is any possible systematic difference in their seismic source characteristics. The average stress drops obtained are about 182 and 116 bars, respectively for eastern and western Alborz. Another result of the study is the site responses, which have been determined for all of 81 stations individually. Though soil nonlinearity was detected at the Ab-bar station (experienced strong ground shaking, i.e., PGA>0.5 g) near to the epicenter of Manjil M7.4 earthquake of June 20, 1990, but an analysis of residuals showed generally a weak influence of soil nonlinearity (i.e., dependence of amplification on shaking level); probably because of the relatively weak levels of acceleration in our database. Finally, the shear wave quality factor (i.e., Qs) has been determined as a function of frequency represented by a linear equation in logarithmic scale. To evaluate the outcomes of the current study, the results have been compared with similar studies wherever it was available. The results of the current study are of utmost importance for seismic hazard assessment of the metropolitan area of Tehran, where 15 million people live, one-fifth of the population of Iran.  相似文献   

19.
利用宁夏及邻区的数字测震资料,选取2009年5月至2010年10月间的31个M2.7-ML4.9地震事件的波形记录,以Brune提出的震源谱为平方模型基础,通过消除观测谱中的几何扩散、非弹性衰减、场地响应、仪器响应等影响因素,得到这些地震的震源谱,根据Brune的圆盘震源模型计算并研究地震矩、矩震级、地震应力降、震源尺...  相似文献   

20.
Stress drop estimates of moderate-magnitude earthquakes in the Umbria–Marche region, in the northern Apennines, exhibit a large scatter. For the two M w 5.7 and 6.0 main shocks of 26 September 1997 near Colfiorito, several papers resulted in stress drop estimates of 20 MPa, but values as low as 2–3 MPa were proposed as well. Also for the largest aftershocks (M w > 4), estimates spread from < 1 MPa up to values ten times larger. We have critically revisited methods and data used in the literature. We have specifically faced the trade-off between source and propagation effects, as we believe that it is responsible for a part of the large scatter. To keep this trade-off under control, we have applied a methodology that combines the best fit of both source spectra after Empirical Green’s Function (EGF) deconvolution and observed ground motion spectra, finding that the results of the two different data sets converge independently at the same solution. We have used ground motions observed in the Colfiorito basin, where an accelerograph and a co-located seismological broad-band station recorded three clusters of earthquakes in a broad magnitude interval (1.7 ≤ M w ≤ 6.0). We have found that the mainshock–aftershock sequences result in stress drops of 2–5 MPa at M w ≥ 5.6, with an average tendency to decrease at smaller magnitudes where stress drop variability increases. These findings confirm the source scaling recently assessed through Empirical Green’s Function deconvolution for another well-monitored seismic sequence of normal-faulting earthquakes, which struck the city of L’Aquila in the central Apennines in April 2009. The similar scaling law of the two areas suggests common mechanisms of stress release for the shallow normal faults in the Apennines. The propensity of smaller earthquakes to increase in variability, with a tendency toward smaller stress drops, may reflect an effect of fault strength heterogeneities for smaller size ruptures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号