首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 549 毫秒
1.
结合国际上深海沉积研究最新动态,分析了鄂尔多斯盆地西侧胡基台地区中奥陶统樱桃沟组野外剖面。认为该地层块状内部无层理砂岩为砂质碎屑流沉积而不是前人认为的浊流沉积。研究区发育有垮塌沉积、颗粒流沉积、砂质碎屑流沉积、浊流沉积等重力流沉积。该区樱桃沟组重力流沉积类型的总体分布特征是:下部发育钙屑浊流与大规模灰岩垮塌沉积,见砂质碎屑流沉积;中部主要发育陆源碎屑浊流沉积,但在其下部有较为发育的颗粒流沉积;上部发育陆源碎屑浊流沉积。其中垮塌沉积和颗粒流沉积作为对古构造的沉积响应,反映了樱桃沟期该地区的古构造地形为陡坡。  相似文献   

2.
The Upper Cretaceous (Campanian) Kenilworth Member of the Blackhawk Formation (Mesaverde Group) is part of a series of strand plain sandstones that intertongue with and overstep the shelfal shales of the western interior basin of North America. Analysis of this section at a combination of small (sedimentological) and large (stratigraphical) scales reveals the dynamics of progradation of a shelf-slope sequence into a subsiding foreland basin. Four major lithofacies are present in the upper Mancos and Kenilworth beds of the Book Cliffs. A lag sandstone and channel-fill shale lithofacies constitutes the thin, basal, transgressive sequence, which rests on a marine erosion surface. It was deposited in an outer shelf environment. Shale, interbedded sandstone and shale, and amalgamated sandstone lithofacies were deposited over the transgressive lag sandstone lithofacies as a wave-dominated delta and its flanking strand plains prograded seaward. Analysis of grain size and primary structures in Kenilworth beds indicates that there are four basic strata types which combine to build the observed lithofacies. The fine- to very fine-grained graded strata of the interbedded facies are tempestites, deposited out of suspension by alongshelf storm flows (geostrophic flows). There is no need to call on cross-shelf turbidity currents (density underflows) to explain their presence. Very fine- to fine-grained hummocky strata are likewise suspension deposits created by waning storm flows, but were deposited under conditions of more intense wave agitation on the middle shoreface. Cross-strata sets in this region are bed-load deposits that accumulated on the upper shore-face, in the surf zone. Lag strata are multi-event, bed-load deposits that are the product of prolonged storm winnowing. They occur on transgressive surfaces. While the graded beds are tempestites in the strict sense, all four classes of strata are storm deposits. The distribution of strata types and their palaeocurrent orientations suggests a model of the Kenilworth transport system driven by downwelling coastal storm flows, and probably by a northeasterly alongshore pressure gradient. The stratification patterns shift systematically from upper shoreface to lower shoreface and inner shelf lithofacies partly because of a reduction in fluid power expenditure with increasing water depth, but also because of progressive sorting, which resulted in a decrease in grain size in the sediment load delivered to successive downstream environments. The Kenilworth Member and an isolated outlier, the Hatch Mesa lentil, constitute a delta-prodelta shelf depositional system. Their rhythmically bedded, lenticular, sandstone and shale successions are a prodelta shelf facies, and may be prodelta plume deposits. Major Upper Cretaceous sandstone tongues in the Book Cliffs are underlain by erosional surfaces like that beneath the Blackhawk Formation, which extend for many tens of kilometres into the Mancos shale. These surfaces are the boundaries of Upper Cretaceous depositional sequences. The sequences are large-scale genetic stratigraphic units. They result from the arranging of facies into depositional systems; the depositional systems are in turn stacked in repeating arrays, which constitute the depositional sequences. The anatomy of these foreland basin sequences differs  相似文献   

3.
The Rio Dell Formation (Pleistocene and Pliocene), exposed south of Eureka, California, is a prograded sequence of basinal turbidites overlain by basin slope and shelf deposits. The slope deposits studied in the Centerville Beach section accumulated in a steadily shallowing environment delineated by analysis of palaeobathymetrically significant benthonic foraminiferal biofacies in turn suggesting deposition at depths of 1000–100 m. Lower slope deposits interfinger with basinal turbidites derived from the Eel River delta to the north. Slumped blocks of silty mudstone, and associated silt and mud beds, are common. The middle slope deposits are mudstones; coarser sediments bypassed this zone. Mudstones and muddy siltstones alternate on the upper slope. Shallow depressions, probably slump scars, that have been rapidly filled by upper slope sediment are common. The transition to shelf deposits is marked by an increase in sediment grain size, in the degree of oxidation, and in the abundance of megafossils. High percentages of benthonic foraminifera displaced from shelf depths indicate that resedimentation processes are most important on the upper slope.  相似文献   

4.
塔里木盆地志留系层序地层特征   总被引:20,自引:7,他引:20  
通过对塔里木盆地西缘露头、盆内钻井、测井和地震资料以及大量室内分析化验资料的层序地层综合分析,可将志留系划分成五个三级层序,志留系沉积层序厚度40--155m。层序界面多为分布范围较广的区域性或局部不整合。层序叠置样式可用具陆棚坡折的I型层序地层样式来描述。每个沉积层序可由完整的低位、海侵和高位体系域组成或由其中的一个、两个体系域组成。体系域边界主要依据滨岸上超点位置、岩性组合及准层序叠置样式变化来确定。低位体系域由向上粒度变细、砂岩厚度向上减薄的准层序组成;海侵体系域表现为向上泥岩厚度加大、砂岩厚度减薄的叠置特点;高位体系域表现为加积--进积沉积特征。志留纪,研究区接受了滨外陆棚及滨岸、海湾潮坪沉积,发育典型的海相沉积构造,表现出明显的旋回特征。  相似文献   

5.
鄂尔多斯盆地上三叠统延长组长7段深水重力流沉积类型   总被引:1,自引:0,他引:1  
以鄂尔多斯盆地上三叠统延长组长7段取芯段为主要研究对象,以详细的岩芯观察为基础,以Z43井为例,研究鄂尔多斯盆地延长组长7段深水重力流沉积类型及其特征。研究结果表明,研究区主要发育砂质碎屑流沉积、低密度浊流沉积及混合事件层三种沉积类型。砂质碎屑流沉积整体呈块状,岩性为中—细砂岩,内部可见多个接触面,为多套砂质碎屑流沉积垂向叠置形成。低密度浊流沉积中大部分为中—薄层的正粒序砂岩垂向叠置而成,部分泥质含量较高,表现出砂泥互层的特征。混合事件层主要由下部干净的块状细砂岩与上部富含变形泥岩撕裂屑的砂质泥岩或泥质砂岩成对组合形成,其成因为浊流流动过程中侵蚀泥质基底,黏土物质或泥质碎屑的混入导致浊流向泥质碎屑流转化,最终形成下部浊流沉积上部泥质碎屑流沉积的混合事件层。相近位置不同深度不同类型的深水重力流沉积垂向叠置,指示了复杂多变的重力流流体演化过程。对重力流沉积类型的准确认识,能进一步促进对深水重力流流体转化过程的理解,明确深水重力流沉积分布,为鄂尔多斯盆地深水重力流沉积及常规与非常规油气勘探与开发提供理论指导。  相似文献   

6.
Abstract The Panther Tongue of the Star Point Formation in central Utah contains a variety of transgressive lag deposits that, when mapped regionally, show a sensitive dependence upon pre‐existing topography of the palaeoshoreline. The Panther Tongue consists of a coarsening‐upward sandstone wedge that prograded into the Western Interior Seaway during Late Cretaceous (Santonian) time. High‐resolution sequence stratigraphic analysis revealed that this member was deposited during the long‐distance (>50 km) regression and transgression of a delta into shallow‐marine environments, containing basal highstand, forced regression, lowstand and transgressive systems tracts. Based on grain size, clast composition, lateral extent and stratigraphic position, the coarse sandstones on top of the Panther Tongue were classified into four types: (1) simple; (2) dispersed; (3) oxidized; and (4) local lags. The simple lag is composed of dark grey coarse sandstone with oyster fragments and shark teeth. This lag is typically extensively bioturbated and massive. Laminated and cross‐bedded units are also common. This type of coarse sandstone is interpreted as a typical transgressive lag. The dispersed lag differs in that it contains abundant mud and commonly occurs as multiple beds in thick intervals of muddy sandstone. Mixing of bay/estuarine and shallow ‐ marine mud with simple lag sand may be responsible for deposition of this type of coarse sandstone. The oxidized lag is distinctive in its reddish colour with extensive bioturbation and is commonly overlain by a simple lag. The local lag is composed of thin‐bedded, dark grey, coarse sandstone, occurring locally between the mouth bar and distributary channel. The variation in types, grain size and bed thickness of the coarse‐grained lags was mainly controlled by antecedent topography as suggested by immediately underlying lithofacies. Relatively thick (≈30 cm) simple lags are present on top of mouth‐bar sandstones, whereas dispersed lags are common on top of the distributary channel sandstone and in bay/estuarine and shallow‐marine mudstones. Erosion of topographic highs (mouth bar) resulted in relatively thick accumulation of simple lags. In topographic low areas such as distributary channel, estuary, bay and shallow‐marine environments, fine‐grained muddy sands that were eroded from the nearby topographic highs were redeposited. Intermittent storm waves transported coarse sands both landward and seaward, forming a dispersed lag. The net effect was reworking of local topographic relief during overall transgression, forming an apparently planar transgressive surface of erosion.  相似文献   

7.
The Aptian succession on the Vocontian palaeomargin (south-east France) consists of marl and marly calcareous pelagic slope facies together with a range of gravity-driven deposits (slumps, debris-flow deposits, turbidite packages and massive sandstones). The massive sandstones were emplaced by high-density turbidity currents and are associated with extensive clastic sills and dykes. The sedimentology is constrained by a high-resolution bio- and lithostratigraphic framework and permits a detailed analysis of the slope succession including: (1) a sequence stratigraphical analysis of the slope deposits; and (2) lateral tracing of individual sedimentary packages downslope. The resulting model for the Vocontian slope represents an alternative to the ‘classic’ Exxon delta-fed, mud-rich model. Key elements of the Vocontian model are: (1) an emphasis on lowstand slope erosion and complex slope morphology controlled by contemporary tectonism and salt diapirism; (2) slope deposition in confined erosional and structurally controlled conduits rather than the buildout of slope fans/channel-levee complexes; (3) a dominance of large-volume muddy slump and transitional debris-flow deposits, with subordinate sandy turbidites, including significant massive sandstone facies; (4) common sand injections (sills and dykes) associated with the massive sandstone facies; and (5) minimal downslope evolution of the flows, with the nature of the source sediment being the over-riding factor determining flow behaviour and deposit character. The Vocontian system is a rare instance in which large sections of a ‘fossil’ passive margin slope are preserved in the geological record. The slope deposits differ from the classic models of turbidite systems that have mainly been built from peripheral foreland basins, and the new insight makes it possible to compare ancient and present-day passive margin slope systems.  相似文献   

8.
The Lower Cretaceous Britannia Formation (North Sea) includes an assemblage of sandstone beds interpreted here to be the deposits of turbidity currents, debris flows and a spectrum of intermediate flow types termed slurry flows. The term ‘slurry flow’ is used here to refer to watery flows transitional between turbidity currents, in which particles are supported primarily by flow turbulence, and debris flows, in which particles are supported by flow strength. Thick, clean, dish‐structured sandstones and associated thin‐bedded sandstones showing Bouma Tb–e divisions were deposited by high‐ and low‐density turbidity currents respectively. Debris flow deposits are marked by deformed, intraformational mudstone and sandstone masses suspended within a sand‐rich mudstone matrix. Most Britannia slurry‐flow deposits contain 10–35% detrital mud matrix and are grain supported. Individual beds vary in thickness from a few centimetres to over 30 m. Seven sedimentary structure division types are recognized in slurry‐flow beds: (M1) current structured and massive divisions; (M2) banded units; (M3) wispy laminated sandstone; (M4) dish‐structured divisions; (M5) fine‐grained, microbanded to flat‐laminated units; (M6) foundered and mixed layers that were originally laminated to microbanded; and (M7) vertically water‐escape structured divisions. Water‐escape structures are abundant in slurry‐flow deposits, including a variety of vertical to subvertical pipe‐ and sheet‐like fluid‐escape conduits, dish structures and load structures. Structuring of Britannia slurry‐flow beds suggests that most flows began deposition as turbidity currents: fully turbulent flows characterized by turbulent grain suspension and, commonly, bed‐load transport and deposition (M1). Mud was apparently transported largely as hydrodynamically silt‐ to sand‐sized grains. As the flows waned, both mud and mineral grains settled, increasing near‐bed grain concentration and flow density. Low‐density mud grains settling into the denser near‐bed layers were trapped because of their reduced settling velocities, whereas denser quartz and feldspar continued settling to the bed. The result of this kinetic sieving was an increasing mud content and particle concentration in the near‐bed layers. Disaggregation of mud grains in the near‐bed zone as a result of intense shear and abrasion against rigid mineral grains caused a rapid increase in effective clay surface area and, hence, near‐bed cohesion, shear resistance and viscosity. Eventually, turbulence was suppressed in a layer immediately adjacent to the bed, which was transformed into a cohesion‐dominated viscous sublayer. The banding and lamination in M2 are thought to reflect the formation, evolution and deposition of such cohesion‐dominated sublayers. More rapid fallout from suspension in less muddy flows resulted in the development of thin, short‐lived viscous sublayers to form wispy laminated divisions (M3) and, in the least muddy flows with the highest suspended‐load fallout rates, direct suspension sedimentation formed dish‐structured M4 divisions. Markov chain analysis indicates that these divisions are stacked to form a range of bed types: (I) dish‐structured beds; (II) dish‐structured and wispy laminated beds; (III) banded, wispy laminated and/or dish‐structured beds; (IV) predominantly banded beds; and (V) thickly banded and mixed slurried beds. These different bed types form mainly in response to the varying mud contents of the depositing flows and the influence of mud on suspended‐load fallout rates. The Britannia sandstones provide a remarkable and perhaps unique window on the mechanics of sediment‐gravity flows transitional between turbidity currents and debris flows and the textures and structuring of their deposits.  相似文献   

9.
Much of our understanding of submarine sediment‐laden density flows that transport very large volumes (ca 1 to 100 km3) of sediment into the deep ocean comes from careful analysis of their deposits. Direct monitoring of these destructive and relatively inaccessible and infrequent flows is problematic. In order to understand how submarine sediment‐laden density flows evolve in space and time, lateral changes within individual flow deposits need to be documented. The geometry of beds and lithofacies intervals can be used to test existing depositional models and to assess the validity of experimental and numerical modelling of submarine flow events. This study of the Miocene Marnoso Arenacea Formation (Italy) provides the most extensive correlation of individual turbidity current and submarine debris flow deposits yet achieved in any ancient sequence. One hundred and nine sections were logged through a ca 30 m thick interval of time‐equivalent strata, between the Contessa Mega Bed and an overlying ‘columbine’ marker bed. Correlations extend for 120 km along the axis of the foreland basin, in a direction parallel to flow, and for 30 km across the foredeep outcrop. As a result of post‐depositional thrust faulting and shortening, this represents an across‐flow distance of over 60 km at the time of deposition. The correlation of beds containing thick (> 40 cm) sandstone intervals are documented. Almost all thick beds extend across the entire outcrop area, most becoming thinly bedded (< 40 cm) in distal sections. Palaeocurrent directions for flow deposits are sub‐parallel and indicate confinement by the lateral margins of the elongate foredeep. Flows were able to traverse the basin in opposing directions, suggesting a basin plain with a very low gradient. Small fractional changes in stratal thickness define several depocentres on either side of the Verghereto (high) area. The extensive bed continuity and limited evidence for flow defection suggest that intrabasinal bathymetric relief was subtle, substantially less than the thickness of flows. Thick beds contain two distinct types of sandstone. Ungraded mud‐rich sandstone intervals record evidence of en masse (debrite) deposition. Graded mud‐poor sandstone intervals are inferred to result from progressive grain‐by‐grain (turbidite) deposition. Clast‐rich muddy sandstone intervals pinch‐out abruptly in downflow and crossflow directions, in a fashion consistent with en masse (debrite) deposition. The tapered shape of mud‐poor sandstone intervals is consistent with an origin through progressive grain‐by‐grain (turbidite) deposition. Most correlated beds comprise both turbidite and debrite sandstone intervals. Intrabed transitions from exclusive turbidite sandstone, to turbidite sandstone overlain by debrite sandstone, are common in the downflow and crossflow directions. This spatial arrangement suggests either: (i) bypass of an initial debris flow past proximal sections, (ii) localized input of debris flows away from available sections, or (iii) generation of debris flows by transformation of turbidity currents on the basin plain because of seafloor erosion and/or abrupt flow deceleration. A single submarine flow event can comprise multiple flow phases and deposit a bed with complex lateral changes between mud‐rich and mud‐poor sandstone.  相似文献   

10.
On the basis of detailed sedimentological investigation, three types of hybrid event beds (HEBs) together with debrites and turbidites were distinguished in the Lower Cretaceous sedimentary sequence on the Lingshan Island in the Yellow Sea, China. HEB 1, with a total thickness of 63–80 cm and internal bipartite structures, is characterised by a basal massive sandstone sharply overlain by a muddy sandstone interval. It is interpreted to have been formed by particle rearrangement at the base of cohesive debris flows. HEB 2, with a total thickness of 10–71 cm and an internal tripartite structure, is characterised by a normal grading sandstone base, followed by muddy siltstone middle unit and capped with siltstones; the top unit of HEB 2 may in places be partly or completely eroded. The boundary between the lowest unit and the middle unit is gradual, whereas that between the middle unit and the top unit is sharp. HEB 2 may be developed by up-dip muddy substrate erosion. HEB 3, with a total thickness up to 10 cm and an internal bipartite structure, is characterised by a basal massive sandstone sharply overlain by a muddy siltstone interval. The upper unit was probably deposited by cohesive debris flow with some plant fragments and rare mud clasts. HEB 3 may be formed by the deceleration of low-density turbidity currents. The distribution of HEBs together with debrites and turbidites implies a continuous evolution process of sediment gravity flows: debris flow → hybrid flow caused by particle rearrangement → high-density turbidity current → hybrid flow caused by muddy substrate erosion → low-density turbidity current → hybrid flow caused by deceleration.  相似文献   

11.
Holocene inner-shelf storm deposits preserved beneath the Sendai coastal plain facing the Pacific coast of north-eastern Japan were formed during a transgressive–regressive cycle. The evolution of the Holocene wave-dominated depositional system along the Sendai coast is reconstructed using 76 AMS (accelerator mass spectrometers) 14C ages and the origin of bed thickness variations in the inner-shelf storm deposits is explored. The Holocene succession is <30 m thick and overlies latest Pleistocene to early Holocene non-marine deposits above a transgressive ravinement surface. It comprises transgressive ravinement and inner-shelf deposits, and regressive inner shelf, shoreface, and coastal plain deposits. The inner-shelf deposits comprise alternating sand and mud layers interpreted as stacked storm beds. The average preservation interval of a single storm bed is shortest during the transgression (5·7–20·6 years), and then increases to a maximum during the early regression (83·3–250·0 years), decreasing to 7·7–31·3 years with shoreline progradation. Average accumulation rates decreased during the transgression and then increased during the regression, but the sand/mud ratio varies little, reflecting inefficient sediment segregation downdip on the inner shelf. The vertical pattern of sand-layer thicknesses also shows no relationship to position within the cycle, although small-scale intervals of upward thickening and thinning probably relate to lateral switching of river mouths and/or random storm processes. The average thickness of storm beds is the highest in the interval deposited during the period from maximum flooding to early regression. This is probably because of the low preservation potential of thin beds associated with frequent, low-magnitude storms during this period of low accumulation rates and extensive reworking. This preservation bias and the nature of the Sendai inner shelf resulted in an absence of characteristic bed thickness trends in the preserved storm deposits.  相似文献   

12.
Abstract Although shelf‐edge deltas are well‐imaged seismic features of Holocene and Pleistocene shelf margins, documented outcrop analogues of these important sand‐prone reservoirs are rare. The facies and stratigraphic architecture of an outcropping shelf‐edge delta system in the Eocene Battfjellet Formation, Spitsbergen, is presented here, as well as the implications of this delta system for the generation of sand‐prone, shelf‐margin clinoforms. The shelf‐edge deltas of the Battfjellet Formation on Litledalsfjellet and Høgsnyta produced a 3–5 × 15 km, shelf edge‐attached, slope apron (70 m of sandstones proximally, tapering to zero on the lower slope). The slope apron consists of distributary channel and mouth‐bar deposits in its shelf‐edge reaches, passing downslope to slope channels/chutes that fed turbiditic lobes and spillover sheets. In the transgressive phase of the slope apron, estuaries developed at the shelf edge, and these also produced minor lobes on the slope. The short‐headed mountainous rivers that drained the adjacent orogenic belt and fed the narrow shelf, and the shelf‐edge position of the discharging deltas, made an appropriate setting for the generation of hyperpycnal turbidity currents on the slope of the shelf margin. The abundance of organic matter and of coal fragments in the slope turbidites is consistent with this notion. Evidence that many of the slope turbidites were generated by sustained turbidity currents that waxed then waned includes the presence of scour surfaces and thick intervals of plane‐parallel laminae within turbidite beds in the slope channels, and thick spillover lobes with repetitive alternations of massive and flat‐laminated intervals. The examined shelf‐edge to slope system, now preserved mainly below the shelf break and dominated by sediment gravity‐flow deposits, has a threefold stratigraphic architecture: a lower, progradational part, in which the clinoforms have a slight downward‐directed trajectory; a thin aggradational zone; and an upper part in which clinoforms backstep up onto the shelf edge. A greatly increased density of erosional channels and chutes marks the regressive‐to‐transgressive turnaround within the slope apron, and this zone becomes an angular unconformity up near the shelf edge. This unconformity, with both subaerial and subaqueous components, is interpreted as a sequence boundary and developed by vigorous sand delivery and bypass across the shelf edge during the time interval of falling relative sea level. The studied shelf‐margin clinoforms accreted mostly during falling stage (sea level below the shelf edge), but the outer shelf later became estuarine as sea level became re‐established above the shelf edge.  相似文献   

13.
Normark  Piper  & Hiscott 《Sedimentology》1998,45(1):53-70
Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan, lenticular sand sheets on the middle fan, and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times; the most recently active of the lowstand fan valleys, Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to ‘underfit’ talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.  相似文献   

14.
The late Pleistocene and Holocene stratigraphy of Navy Fan is mapped in detail from more than 100 cores. Thirteen 14C dates of plant detritus and of organic-rich mud beds show that a marked change in sediment supply from sandy to muddy turbidites occurred between 9000 and 12,000 years ago. They also confirm the correlation of several individual depositional units. The sediment dispersal pattern is primarily controlled by basin configuration and fan morphology, particularly the geometry of distributary channels, which show abrupt 60° bends related to the Pleistocene history of lobe progradation. The Holocene turbidity currents are depositing on, and modifying only slightly, a relict Pleistocene morphology. The uppermost turbidite is a thin sand to mud bed on the upper-fan valley levées and on parts of the mid-fan. Most of its sediment volume is in a mud bed on the lower fan and basin plain downslope from a sharp bend in the mid-fan distributary system. Little sediment occurs farther downstream within this distributary system. It appears that most of the turbidity current overtopped the levée at the channel bend, a process referred to as flow stripping. The muddy upper part of the flow continued straight down to the basin plain. The residual more sandy base of the flow in the distributary channel was not thick enough to maintain itself as gradient decreased and the channel opened out on to the mid-fan lobe. Flow stripping may occur in any turbidity current that is thick relative to channel depth and that flows in a channel with sharp bends. Where thick sandy currents are stripped, levée and mid-fan erosion may occur, but the residual current in the channel will lose much of its power and deposit rapidly. In thick muddy currents, progressive overflow of mud will cause less declaration of the residual channelised current. Thus both size and sand-to-mud ratio of turbidity currents feeding a fan are important factors controlling morphologic features and depositional areas on fans. The size-frequency variation for different types of turbidity currents is estimated from the literature and related to the evolution of fan morphology.  相似文献   

15.
Single beds of up to 41 m thick are exposed for 16 km along the strike in an Eocene flysch, Spanish Pyrenees. These mega-beds consist of a lower calcarenite (up to 25 m) and an upper marlstone (up to 16 m). Their volume is minimally of the order of 1 km3. The mega-beds are underlain by slump sheets which in places exceed 100 m in thickness. The calcarenites show erosional sole markings, no internal amalgamation, a graded texture expressed by matrix percent, coarsest quartz grains, and coarsest foram tests. The marlstones are burrowed from their top, they are graded as expressed by matrix percent, coarsest quartz grains, and carbonate percent. Their grading continues the upward size decline in the underlying calcarenites, and their thickness and carbonate percent vary with those of the underlying calcarenites. Single calcarenite-marlstone beds are interpreted as deposited by turbidity currents. The great thickness and other uncommon features (e.g. consistent association with an underlying slump sheet, distal thickening, locally repetitive grading, compositional inhomogeneity) can be accounted for by (1) widespread slumping initiating voluminous turbidity currents, (2) concurrence of tributary turbidity currents to deposit a single mega-bed, and (3) ponding of the turbidity currents behind what may have been a local, palaeobasin floor high. Slumping and simultaneous turbidity currents were probably triggered by earthquakes of great magnitude. The basin floor high may have formed by basement faulting. The mega-beds do not occupy a particular niche in a facies sequence and their great thickness does not reflect a particular environment of deposition. Instead, they more likely reflect the seismic regime (periodic earthquakes of great magnitude) and tectonic style (block faulting) of the flysch basin.  相似文献   

16.
利用岩心、粒度、测井信息和重力流沉积理论,系统研究了南堡凹陷东部洼陷带东营组重力流沉积特征和沉积模式。该区重力流沉积砂岩常夹于灰色、灰黑色泥岩中,砂岩相发育,其中正递变层理(含砾)中-细砂岩相(S-3)、粉砂岩相(S-4)和块状层理中-细砂岩相(S-2)发育层数最多,块状层理含砾砂岩相(S-1)次之;S-2沉积厚度最大,S-1和S-3次之。按支撑和沉积机制,将本区重力流分为浊流、砂质碎屑流、颗粒流和液化流,其中砂质碎屑流以基质支撑、冻结块状沉积为特征。不同重力流发育程度有明显差异。从砂岩层数看,浊流最多,砂质碎屑流次之,颗粒流和液化流最少;从单期沉积厚度看,砂质碎屑流最大,平均为1.17m,浊流沉积最小,仅平均为0.25m。为了回避取心的局限性、弱化重力流成因,突出具有油气储集意义的砂层概念,开展了测井岩性解释,结果表明该区重力流沉积为细砂岩或粉砂岩,单层平均厚度2.94m,最大厚度可达9.5m,其中单井中厚度在3m以上的砂体可达22层、累积达107.5m。本区重力流沉积为滑塌成因,除了(扇)三角洲前缘斜坡的自然滑塌外,断层(地震)活动或间歇式火山喷发是其关键的触发机制;断层活动除了提供滑塌的动力外,还影响着其堆积场所和沉积的结构。  相似文献   

17.
在详细野外剖面工作的基础上,通过岩性特征、沉积构造及沉积序列等的系统观察研究,发现济源盆地下侏罗统鞍腰组重力流沉积由滑塌沉积、砂质碎屑流沉积和浊流沉积构成。滑塌沉积以砂岩和泥岩的混杂、岩层的滑动变形以及泥岩呈碎块被卷入砂岩层中为特征;砂质碎屑流沉积常呈厚层块状,颗粒分选和磨圆较差,杂基较多,可见漂浮于层内的石灰岩砾石;常见的浊流沉积分为2种类型: 具有明显正粒序结构的浊流沉积和砂泥岩薄互层的浊流沉积,可用鲍马序列来描述。鞍腰组重力流沉积可划分为3个沉积序列: 序列A记录了滑塌沉积→砂质碎屑流沉积→浊流沉积→深湖沉积的转换过程;序列B表现为砂质碎屑流与浊流沉积的叠覆;序列C由浊流及湖泊沉积构成,并经历了由序列A→序列B→序列C的沉积演化过程。重力流的形成受秦岭造山带于早侏罗世沿三门峡—鲁山—舞阳断裂发生逆冲推覆作用的控制,其沉积演化指示了秦岭造山带造山作用由强到弱的过程。  相似文献   

18.
A detailed survey of the upper and middle Nova Scotian continental slope at 42°50′N and 63°30′W indicates a complex morphology dominated by mass movements on various scales and an immature turbidity current channel. The range of sediment facies is diverse including hemipelagic and turbidite muds, turbidite sands and gravelly sandy muds of debris flow origin. Deformed units, interpreted as slump deposits are also observed. Several facies associations, related to discrete morphological environments, are recognized. Thick turbidite sand units with minor intervening mud beds are characteristic of the high-relief uppermost slope and channel margin. Thinner turbidite sands, deformed slump beds and various mud facies are associated with small-scale, hummocky mid-slope topography. Sand beds are more abundant in the depressions than on intervening hummocks indicating the preferred transport paths of small turbidity currents. At the lower end of the main turbidity current channel, frequent turbidite sand beds with relatively minor mud beds are deposited on a depositional lobe. In areas unaffected by mass movements, alternating bioturbated mud and sandy muds make up the core sequences. A local model of sedimentation is proposed for this area and illustrates that simple models of continental slope sedimentation only apply to a limited range of settings.  相似文献   

19.
综合运用钻井岩心、测录井等资料,通过岩心观察、薄片鉴定和粒度分析等方法,对渤海湾盆地临南洼陷古近系沙三中亚段深水重力流沉积类型及其沉积特征、沉积模式展开研究。研究表明,临南洼陷沙三中亚段深水重力流沉积主要发育滑塌沉积、碎屑流沉积和浊流沉积3种成因类型。滑塌沉积以包卷层理、液化砂岩脉、阶梯状小断层、变形岩层与未变形岩层叠置为典型特征。碎屑流沉积中砂质碎屑流沉积分布较广,以突变的底部接触面、块状层理、泥岩撕裂屑、土黄色泥砾、突变或不规则的上接触面为典型识别标志。浊流沉积则以正粒序层理、底部冲刷面和槽模、薄层砂泥互层、不完整的鲍马序列为典型识别标志。滑塌沉积主要发育在三角洲前缘斜坡根部,在滑塌沉积前方形成碎屑流沉积,碎屑流向前搬运的过程中,流体被稀释逐渐转化成浊流。滑塌型深水重力流沉积整体分为近源沉积、中部沉积和远源沉积3个部分: 近源沉积主要发育具变形构造的滑塌沉积和厚层块状砂质碎屑流沉积;中部沉积主要发育砂质碎屑流沉积及浊流沉积;远源沉积以薄层浊流沉积为主。  相似文献   

20.
The parautochthonous Cloridorme Formation is a syn-orogenic flysch succession that was deposited in an elongate foredeep basin as mainly lower middle-fan, outer-fan, and basin-floor deposits. The basin-floor deposits (about 1.5 km thick) are confined to members β1, β2 and γ1, and are characterized by graded, thick (1–10 m) mud-rich calcareous greywacke beds previously interpreted as deposits of concentrated, muddy, unidirectional turbidity currents that locally generated backset (antidune) lamination in internally stratified flows. The dominant flow directions were from east to west, but west to east transport also occurred, as seen in the orientation of ripples, climbing ripples, flutes, consistently overturned flames, and grain imbrication. We believe that the flows that deposited these thick calcareous greywacke beds reversed by roughly 180° one or more times during deposition of the lower sandy part of the beds. Flow reversals are consistent with the sharp grain-size breaks and mud partings within sandy divisions. Measurement of grain fabric relative to stratification in the most celebrated ‘antidune’ bedforms indicates flow from west to east; thus, the bedforms were produced by west-to-east migration of megaripples, not by the upcurrent migration of antidunes. The thick muddy beds were deposited by large-volume, muddy flows that were deflected and reflected from the side slopes and internal topographic highs of a confined basin floor, much like the ‘Contessa’ and similar beds of the Italian Apennines. Large quantities of suspended mud were ponded above the irregular basin floor and settled to produce the thick silty mudstone caps seen on each bed. Because of their mode of emplacement, we propose that these beds be called contained turbidites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号