首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 628 毫秒
1.
The elevated levels of primary productivity associated with eastern boundary currents are driven by nutrient- rich waters upwelled from depth, such that these regions are typically characterised by high rates of nitrate-fuelled phytoplankton growth. Production studies from the southern Benguela upwelling system (SBUS) tend to be biased towards the summer upwelling season, yet winter data are required to compute annual budgets and understand seasonal variability. Net primary production (NPP) and nitrate and ammonium uptake were measured concurrently at six stations in the SBUS in early winter. While euphotic zone NPP was highest at the stations nearest to the coast and declined with distance from the shore, a greater proportion was potentially exportable from open-ocean surface waters, as indicated by the higher specific nitrate uptake rates and f-ratios (ratio of nitrate uptake to total nitrogen consumption) at the stations located off the continental shelf. Near the coast, phytoplankton growth was predominantly supported by ammonium despite the high ambient nitrate concentrations. Along with ammonium concentrations as high as 3.6 µmol l–1, this strongly suggests that nitrate uptake in the inshore SBUS, and by extension carbon drawdown, is inhibited by ammonium, at least in winter, although this has also been hypothesised for the summer.  相似文献   

2.
Nitrate and ammonium uptake rates were measured during a series of cruises in the well-mixed region of the southern North Sea from February to September. Water column-integrated uptake rates ranged between 0.01 and 8.7 mmol N m−2 d−1 and 0.01 and 12.2 mmol N m−2 d−1 for nitrate and ammonium, respectively, with ammonium uptake dominating after the phytoplankton spring bloom in May. A moored buoy continuously measuring nitrate and chlorophyll a and seabed current meters were also deployed in the central southern North Sea in the region of the East Anglian plume—a permanent physical feature which transports nutrients towards continental Europe. This enabled the flux of water and hence of nutrients across the southern North Sea to be determined and an assessment of the contribution of freshwater nutrients to the flux to be made. A simple box model is developed to relate the phytoplankton uptake of nitrate and ammonium to the transport of nitrate, ammonium and particulate organic matter (POM) across the southern North Sea. This showed the importance of the plume region of the North Sea in the processing of nitrogen, with nitrate dominating total nitrogen transport prior to the spring bloom (10 340×103 kg N inflow to the plume in March) and transport of nitrogen as ammonium, nitrate and POM in approximately equivalent amounts during summer (2560, 2960 and 2151×103 kg N inflow to the plume, respectively, in July). The box model also demonstrates more generally the need to assess nitrogen transport as nitrate, ammonium and POM if an improved understanding of the impact of nutrient input in shelf seas is to be achieved.  相似文献   

3.
A theoretical framework for the time-dependent processes leading to the high rates of new production in eastern boundary upwelling systems has been assembled from a series of past upwelling studies. As part of the CoOP WEST (Wind Events and Shelf Transport) study, new production in the Bodega Bay upwelling area and it's control by ambient nitrate and ammonium concentrations and the advective wind regime are described. Data and analyses are focused primarily on the WEST 2001 cruise (May–June 2001) when the two legs differed greatly in wind regimes but not nutrient concentrations. Elevated concentrations of ammonium in upwelled water with high nitrate were observed in both legs. Nitrate uptake by phytoplankton as a function of nitrate concentration was linear rather than Michaelis–Menten-like, modulated by inhibitory levels of ammonium, yielding coefficients that enable the specific nitrate uptake element of new production to be estimated from nutrient concentrations. The range of specific nitrate uptake rates for the two legs of WEST 2001 were similar, essentially a physiological response to nutrient conditions. However, the low “realization” of new production i.e. incorporation of biomass as particulate nitrogen that occurred in this system compared to the theoretical maximum possible was determined by the strong advective and turbulent conditions that dominated the second leg of the WEST 2001 study. These data are compared with other upwelling areas using a physiological shift-up model [Dugdale, R.C., Wilkerson, F.P., Morel, A. 1990. Realization of new production in coastal upwelling areas: a means to compare relative performance. Limnology and Oceanography 35, 822–829].  相似文献   

4.
I present here a review of my work concerning nitrogen assimilation by marine phytoplankton. This opportunity was provided to me as the recipient of the Okada Prize for 1990 from the Oceanographical Society of Japan. Assimilation of nitrogenous nutrients by phytoplankton has received considerable research effort since it is an essential process in organic matter production in the sea surface. The use of15N technique is necessary for tracing nitrogen assimilation by natural marine phytoplankton, but nitrogen metabolism of heterogenous natural populations significantly complicates flow of isotope. Dilution of15N isotope by heterotrophic regeneration of ammonium causes underestimates of uptake rates. I made an evaluation of isotope dilution effects in available data sets of15N-ammonium uptake experiments in literature. Incorporated15N in particulates might revert back to dissolved organic or inorganic nitrogen. I conducted pulse-chase experiments which can quantify such loss of tracer. From these studies, a short term experiment with sufficient amount of tracer enrichment is found to overwhelm these problems. In such an experiment, however, the elevation of nutrient concentration by tracer addition may likely perturb the uptake process. An initial rapid uptake is expected if the population is nitrogen deficient, but I found that this phenomenon is not common to surface oligotrophic open oceans. Uptake rate from such an experiment, or capacity of nitrogen uptake, was obtained using surface waters from an extended area in the North Pacific, and its regional variability was discussed. In addition to overall15N uptake, time series analysis of intracellular15N partitioning between hot ethanol soluble and insoluble fractions was found to be useful. When15N-ammonium is added to nitrogen deficient cells of phytoplankton,15N is accumulated in the ethanol soluble fraction. Using cultured strains of marine phytoplankton, this accumulation was proved to be caused by the difference of rates of nitrogen uptake and nitrogenous macromolecule synthesis. Uptake rate per cell is relatively constant irrespective of nutritional status, but macromolecule synthesis decreases with nitrogen deficiency. This accumulation of15N in the ethanol soluble fraction was used as an index of nutritional status with respect to nitrogen of the natural populations of phytoplankton from the western North Pacific. The uptake capacity of nitrate was observed to be higher than that of ammonium in the regional upwelling around Izu Islands and during the spring bloom in Alaskan coastal water. The15N partitioning technique revealed that nitrate taken up was rapidly incorporated in the macromolecule fraction. This suggests that ammonium uptake is suppressed to be smaller than intracellular nitrogen assimilation, rather than that nitrate is taken up in excess and accumulates within the cell. Regulation of nitrate uptake by light intensity was also discussed in detail for the Alaskan data. Several other studies currently conducted are also mentioned.  相似文献   

5.
The longitude of the western limit of the equatorial Pacific upwelling is a key parameter for studies of carbon budget and pelagic fisheries variability. Although it is well defined at the surface on the equator by a salinity front and a sharp variation of the partial pressure of CO2, data from two equatorial cruises make it clear that this hydrological limit does not necessarily coincide with the boundary of the nitrate and chlorophyll enriched area. In January-February 1991 during a non-El Niño period, when trade winds and the South Equatorial current (SEC) were favorable to upwelling, the two limits were at the same longitude. Conversely, in September-October 1994 during El Niño conditions, when the equatorial upwelling had stopped, the nitrate and chlorophyll enriched zone was found a few degrees of longitude east of the hydrological boundary (5.5° at the surface and 2.5° for the 50 m upper layer), whereas no such offset was observed for zooplankton biomass. A simple model, based on the HNLC (High Nutrient - Low Chlorophyll) ecosystem functioning, was initialized with nitrate uptake measurements and estimates of upwelling break duration. The model results support the hypothesis that zonal separation of the limits arises from biological processes (i.e. nitrate uptake and phytoplankton grazing) achieved during that upwelling break.  相似文献   

6.
Primary production was measured during two Lagrangian experiments in the Iberian upwelling. The first experiment, in a body of upwelled water, measured day-to-day changes in phytoplankton activity as the water mass moved south along the shelf break. Nutrient concentrations decreased over a five day period, with concomitant increases in phytoplankton biomass. Initially the maximum phytoplankton biomass was in the upper 10m but after four days, a sub-surface chlorophyll maximum was present at 30m. Depth-integrated primary production at the beginning of the experiment was 70mmolC.m−2.d−1 (838mgC.m−2.d−1) and reached a maximum of 88mmolC.m−2.d−1 (1053mgC.m−2.d−1) on day 3. On day 1, the picoplankton fraction (<2μm) was slightly more productive than larger (>5μm) phytoplankton, but the increase in overall production during the drift experiment was by these larger cells. Nitrate was the dominant nitrogen source. As nutrient concentrations declined, ammonium became increasingly more important as a nitrogen source and the f-ratio decreased from 0.7 to 0.5. Picoplankton cells (<2μm) were responsible for most (65–80%) of the ammonium uptake. The C:N:P uptake ratios were very close to the Redfield ratio for the first four days but as nutrients became depleted high C:N uptake ratios (11 to 43) were measured. Over the period of the experiment, nitrate concentration within the upper 40m decreased by 47.91mmolN.m−2. In vitro estimates, based on 15N nitrate uptake, accounted for 56% of the decrease in nitrate concentration observed in the drifting water mass. Ammonium uptake over the same four day period was 16.28mmolN.m−2, giving a total nitrogen uptake of 43.18mmolN.m−2.In the second experiment, an offshore filament was the focus and a water mass was sampled as it moved offshore. Nutrient concentrations were very low (nitrate was <10nmol l−1 and ammonium was 20–40nmol l−1). Primary production rate varied between 36mmolC.m−2.d−1 (436mgC.m−2.d−1) and 21mmolC.m−2.d−1 (249mgC.m−2.d−1). Picophytoplankton was the most productive fraction and was responsible for a constant proportion (ca 0.65) of the total carbon fixation. Uptake rates of both nitrate and ammonium were between 10 and 20% of those measured in the upwelling region. Urea could be a very significant nitrogen source in these waters with much higher uptake rates than nitrate or ammonium; urea turnover times were ca. one day but the source of the urea remains unknown. Urea uptake had a profound effect on calculated f ratios. If only nitrate and ammonium uptake was considered, f ratios were calculated to be 0.42–0.46 but inclusion of urea uptake reduced the f ratio to <0.1. The primary production of this oligotrophic off-shore filament was driven by regenerated nitrogen.  相似文献   

7.
Horizontal distributions of phytoplankton abundance,species composition as well as environmental factors were investigated in the surface waters of southern South China Sea(SCS) in early summer(May 16 to June 7) of 2009.In most areas of southern SCS,the concentrations of nitrogen and phosphorus were very low and DIN/DIP ratios usually were lower than the Redfield N/P Ratio of 16:1.Nitrogen nutrients were significant lower in the upwelling region off Vietnam.A total of 144 taxa of phytoplankton were identified in the study area.The dominant genera were Prorocentrum,Gonyaulax,Gyrodinium,Scrippsiella and Chaetoceros,respectively.Spatial patterns of early-summer phytoplankton abundance and species composition should be mainly controlled by the upwelling off Vietnam and the discharge of Mekong River in the southern SCS.Diatoms dominated in the nutritious Mekong River Estuary or upwelling region off Vietnam;while dinoflagellates dominated in the oligotrophic pelagic region.The canonical correspondence analysis(CCA) indicates that most of diatoms favor higher levels of silicate and phosphorus,as well as lower temperature;while most of dinoflagellates favor the lower silicate and phosphorous and higher temperature.Correlation and CCA results indicate that silicate,nitrate and temperature were the most relevant environmental factors to regulate the horizontal pattern of early-summer phytoplankton in the surface waters of southern SCS.  相似文献   

8.
In July 2007, phosphorus input by an upwelling event along the east coast of Gotland Island and the response of filamentous cyanobacteria were studied to determine whether introduced phosphorus can intensify cyanobacterial bloom formation in the eastern Gotland Basin. Surface temperature, nutrient concentrations, phytoplankton biomass and its stoichiometry, as well as phosphate uptake rates were determined in two transects between the coasts of Gotland and Latvia and in a short grid offshore of Gotland. In the upwelling area, surface temperatures of 11–12 °C and average dissolved inorganic phosphorus (DIP) concentrations of 0.26 μM were measured. Outside the upwelling, surface temperatures were higher (15.5–16.6 °C) and DIP supplies in the upper 10 m layer were exhausted. Nitrite and nitrate concentrations (0.01–0.22 μM) were very low within and outside the upwelling region. Abundances of filamentous cyanobacteria were highly reduced in the upwelling area, accounting for only 1.4–6.0% of the total phytoplankton biomass, in contrast to 18–20% outside the upwelling. The C:P ratio of filamentous cyanobacteria varied between 32.8 and 310 in the upwelling region, most likely due to the introduction of phosphorus-depleted organisms into the upwelling water. These organisms accumulate DIP in upwelling water and have lower C:P ratios as long as they remain in DIP-rich water. Thus, diazotrophic cyanobacteria benefit from phosphorus input directly in the upwelling region. Outside the upwelling region, the C:P ratios of filamentous cyanobacteria varied widely, between 240 and 463, whereas those of particulate material in the water ranged only between 96 and 224. To reduce their C:P ratio from 300 to 35, cyanobacteria in the upwelling region had to take up 0.05 mmol m−3 DIP, which is about 20% of the available DIP. Thus, a larger biomass of filamentous cyanobacteria may be able to benefit from a given DIP input. As determined from the DIP uptake rates measured in upwelling cells, the time needed to reduce the C:P ratio from 300 to 35 was too long to explain the huge bloom formations that typically occur in summer. However, phosphorus uptake rates increased significantly with increasing C:P ratios, allowing phosphorus accumulation within 4–5 days, a span of time suitable for bloom formation in July and August.  相似文献   

9.
文章建立了基于真实场驱动的三维物理—生态耦合模型, 利用模型定量分析了夏季南海北部上升流和羽状流过程对浮游植物生物量空间分布的影响程度及作用机制。首先, 利用2006—2008年卫星遥感数据及2006与2008年夏季观测数据对模型进行了验证, 结果表明, 模型能较好地再现夏季南海北部上升流和羽状流过程, 较好地反映出浮游植物的空间分布特征。模拟分析结果显示, 夏季南海北部浮游植物主要分布在50m等深线以内。琼州海峡东部海域和汕头海域浮游植物垂向分布较为均匀, 上升流的贡献均达到90%以上, 表层水平平流输送是浮游植物主要的汇, 生物过程是浮游植物的源。珠江口和汕尾海域浮游植物存在表层和次表层两个高值区, 羽状流贡献35%~40%, 主要促进表层浮游植物生长, 而上升流贡献60%~65%, 主要促进中底层浮游植物的生长。粤西海域上升流对浮游植物的贡献占92%, 主要促进中底层浮游植物生长, 而表层浮游植物浓度极低。整体上, 夏季南海北部上升流和羽状流主要是通过输送营养盐的方式影响浮游植物的生长。上升流对营养盐的输送作用是向岸方向的爬升输送和平行于等深线的沿岸流输送共同作用的结果。跃层的存在改变了营养盐的垂向输送过程, 是导致上升流和羽状流过程对不同水层浮游植物贡献差异的关键因素之一。整体而言, 夏季南海北部浮游植物空间分布差异是以上升流、羽状流主导, 环流—营养盐—生物过程共同作用的结果。  相似文献   

10.
The biomass, elemental composition, and rates of ingestion and excretion by macrozoo‐plankon associated with the upwelling plume off the north‐west coast of the South Island, New Zealand, were investigated in March‐April 1983. Ingestion and excretion rates of the major zoo‐plankton species were combined with abundance data to determine the spatial and temporal variability which may influence phytoplankton dynamics in the plume system. Zooplankton biomass near Cape Kahurangi was dominated by small copepods like Acartia ensifera (up to 60%). In the South Tar‐anaki Bight, larval and adult forms of the euphau‐siid Nyctiphanes australis commonly contributed up to 60% of biomass. However, the carbon ingestion and ammonia excretion patterns of N. australis were spatially displaced from those of the total zooplankton community in the South Taranaki Bight because of higher weight‐specific metabolic rates for the smaller copepods. Close to the focus of the upwelling near the Kahurangi Shoals, grazing pressure on the phytoplankton was high, but as the upwelled water was advected into the Taranaki Bight, carbon production exceeded utilisation by zooplankton. Relatively high rates of ammonia excretion were also associated with peak zooplankton biomass near the Kahurangi Shoals and in the eastern Taranaki Bight.  相似文献   

11.
Uptake rates of ammonium, nitrate, urea and nitrite were measured for 1 year (1988) at a coastal station in the well-mixed waters of the western English Channel. Ammonium was the major form of nitrogen (N) utilized (48%) by phytoplankton, followed by nitrate (32%), urea (13%) and nitrite (7%). Seasonal changes of uptake of ammonium, nitrate and urea showed a broad, intense summer maximum. Nitrite uptake was low throughout the year except for a peak value in June. Uptake rates of ammonium and nitrate were independent of substrate concentrations, whereas those of urea and nitrite were not. The summer maxima of ammonium, nitrate and total N uptake, and the significant relationships of N-uptake index to ambient light, and of chlorophyll-a-specific N uptake to surface-incident light, indicate that light is the major factor controlling N uptake in these waters. This is due to the permanent vertical mixing which reduces the mean light available for N uptake to <15% of the incident light. Mixing also injects regenerated N continuously into the euphotic zone, thus alleviating nitrogen limitation and accounting for the larger proportion of regenerated N uptake in total N uptake.  相似文献   

12.
The influence of the Columbia River plume on the distributions of nitrate and iron and their sources to coastal and shelf waters were examined. In contrast to other large estuaries, the Columbia River is a unique study area as it supplies very little nitrate (5 μM) and iron (14–30 nM) at salinities of 1–2 to coastal waters. Elevated nitrate and dissolved iron concentrations (as high as 20 μM and 20 nM) were observed, however, in the near field Columbia River plume at salinities of 20. Surface nitrate concentrations were higher than observed in the Columbia River itself and therefore must be added by entrainment of higher nitrate concentrations from subsurface coastal waters. Tidal flow was identified as an important factor in determining the chemical constituents of the Columbia River plume. During the rising flood tide, nitrate and iron were entrained into the plume waters resulting in concentrations of 15 μM and 6 nM, respectively. Conversely, during the ebb tide the concentrations of nitrate and total dissolved iron were reduced to 0.3–3 μM and 1–2 nM, respectively, with a concomitant increase in chlorophyll a concentrations. As these plume waters moved offshore the plume drifted directly westward, over a nitrate depleted water mass (< 0.2 μM). The plume water was also identified to move southwards and offshore during upwelling conditions and nitrate concentrations in this far field plume were also depleted. Iron concentrations in the near-field Columbia River plume are sufficient to meet the biological demand. However, due to the low nitrate in the Columbia River itself, nitrate in the plume is primarily dependent on mixing with nitrate rich, cold, high salinity subsurface waters. Without such an additional source the plume rapidly becomes nitrate limited.  相似文献   

13.
《Oceanologica Acta》1998,21(6):861-870
Nitrate and ammonium uptake rates were measured in spring and summer in deep and shallow wellmixed waters of the English Channel during different cruises between 1986 and 1994. In the deep waters, nitrate uptake was relatively low during phytoplankton development and ammonium uptake represented more than 70 % of the total uptake irrespective of the season. In the shallow waters, nitrate uptake during spring phytoplankton growth was high and represented about 75 % of the total uptake. Ammonium uptake became substantial towards the end of spring and summer. The high contribution of ammonium to the nitrogenous nutrition of phytoplankton over the whole of the well-mixed waters is related to a high rate of recycling of nitrogen in the water column. Ammonium regeneration by microheterotrophs can satisfy between 62 % and the totality of the phytoplankton nitrogen requirements. The high primary production in deep well-mixed waters is not supported by allochthonous nitrogen supply but by an intense in situ regeneration of nitrogen. The situation is similar in shallow well-mixed waters, except during the spring bloom.  相似文献   

14.
A synoptic spatial examination of the eddy Haulani (17–20 November 2000) revealed a structure typical of Hawaiian cyclonic eddies with divergent surface flow forcing the upward displacement of deep waters. Hydrographic surveys revealed that surface water in the eddy center was ca. 3.5°C cooler, 0.5 saltier, and 1.4 kg m−3 denser than surface waters outside the eddy. Vertically integrated concentrations of nitrate+nitrite, phosphate and silicate were enhanced over out-eddy values by about 2-fold, and nitrate+nitrite concentrations were ca. 8× greater within the euphotic zone inside the eddy than outside. Si:N ratios were lower within the upper mixed layer of the eddy, indicating an enhanced Si uptake relative to nitrate+nitrite. Chlorophyll a concentrations were higher within the eddy compared to control stations outside, when integrated over the upper 150 m, but were not significantly different when integrated over the depth of the euphotic zone. Photosynthetic competency, assessed using fast repetition-rate fluorometry, varied with the doming of the isopycnals and the supply of macro-nutrients to the euphotic zone. The physical and chemical environment of the eddy selected for the accumulation of larger phytoplankton species. Photosynthetic bacteria (Prochlorococcus and Synechococcus) and small (<3 μm diameter) photosynthetic eukaryotes were 3.6-fold more numerically abundant outside the eddy as compared to inside. Large photosynthetic eukaryotes (>3 μm diameter) were more abundant inside the eddy than outside. Diatoms of the genera Rhizosolenia and Hemiaulus outside the eddy contained diazotrophic endosymbiontic cyanobacteria, but these endosymbionts were absent from the cells of these species inside the eddy. The increase in cell numbers of large photosynthetic eukaryotes with hard silica or calcite cell walls is likely to have a profound impact on the proportion of the organic carbon production that is exported to deep water by sinking of senescent cells and cells grazed by herbivorous zooplankton and repackaged as large fecal pellets.  相似文献   

15.
The photosynthetic properties of phytoplankton populations as related to physical–chemical variations on small temporal and spatial scales and to phytoplankton size structure and pigment spectra were investigated in the Northern Adriatic Sea off the Po River delta in late winter 1997. Large diatoms (fucoxanthin) dominated the phytoplankton in the coastal area whereas small phytoflagellates (mainly 19′-hexanoyloxyfucoxanthin, chlorophyll b, 19′-butanoyloxyfucoxanthin) occurred outside the front. The front was defined by the steep gradient in density in the surface layer separating low-salinity coastal waters from the offshore waters.Physical features of the area strongly influenced phytoplankton biomass distributions, composition and size structure. After high volumes of Po River discharge several gyres and meanders occurred in the area off the river delta in February. Decreasing river discharge and the subsequent disappearance of the gyres and the spreading dilution of the river plume was observed in March. The dynamic circulation of February resulted in high photosynthetic capacity of the abundant phytoplankton population (>3.40 mg m−3). In March, the slow circulation and an upper low-salinity water layer, segregated from the deeper layers, resulted in lack of renewal of this water mass. The huge phytoplankton biomass, up to 15.77 mg chl a m−3, became nutrient depleted and showed low photosynthetic capacity. In February, an exceptionally high PmaxB, 20.11 mg C (mg chl a)−1 h−1 was recorded in the Po River plume area and average PmaxB was three-fold in February as compared to the March recordings, 10.50 mg C (mg chl a)−1 h−1 and 3.22 mg C (mg chl a)−1 h−1, respectively.The extreme variability and values of phytoplankton biomass in the innermost plume area was not always reflected in primary production. Modeling of circulation patterns and water mass resilience in the area will help to predict phytoplankton response and biomass distributions. In the frontal area, despite a considerable variability in environmental conditions, our findings have shown that the phytoplankton assemblages will compensate for nutrient depression and hydrographic constraints, by means of size and taxonomic composition and, as a result, the variability in the photosynthetic capacity was much less pronounced than that observed for other parameters.  相似文献   

16.
The preferential inorganic nitrogen source for the seagrass Zostera noltii was investigated in plants from Ria Formosa, South Portugal. Rates of ammonium and nitrate uptake were determined at different concentrations of these nutrients (5, 25 and 50 μm ), supplied simultaneously (NH4NO3) or separately (KNO3 and NH4Cl). The activity of the enzymes nitrate reductase (NR) and glutamine synthetase (GS) was also assessed. The results showed that ammonium is the preferential inorganic nitrogen source for Z. noltii, but, in the absence of ammonium, the species also has a high nitrate uptake capacity. The simultaneous availability of both inorganic nitrogen forms enhanced the uptake rate of ammonium and decreased the uptake rate of nitrate compared to when only one of the nitrogen forms was supplied. The activity of both enzymes was much higher in the leaves than in the roots, highlighting the importance of the leaves as primary reducing sites in the nitrogen assimilation process.  相似文献   

17.
We construct a one-dimensional ecosystem model (nitrate, ammonium, phytoplankton, zooplnakton and detritus) with simple physics and biology in order to focus on the structural relations and intrinsic properties of the food web that characterizes the biological regime in the central equatorial Pacific at 140°W. When possible, data collected during the EgPac and other cruises were used to calibrate model parameters for two simulations that differ in the limiting nutrient, i.e. nitrogen or iron. Both simulations show annual results in good agreement with the data, but phytoplankton biomass and primary production show a more pronounced annual variability when iron is used as the limiting nutrient. This more realistically reproduces the variability of biological production and illustrates the greater coupling between vertical physical processes and biological production when the limiting nutrient is iron rather than nitrogen. The iron simulation also illustrates how iron supply controls primary production variability, how grazingbalances primary production and controls phytoplankton biomass, and how both iron supply and grazingcontrol primary production. These results suggest that it is not possible to capture primary production variability in the central equatorial Pacific with biological models using nitrogen as the limiting nutrient. Other indirect results of this modeling study were: (1) partitioning of export production between dissolved and particulate matter is almost equal, suggesting that the importance of DOC export may have been previously overestimated; (2) lateral export of live biomass has to be taken into account in order to balance the nitrogen budget on the equator at 140°W; and (3) preferential uptake of ammonium (i.e. nitrate uptake inhibition by ammonium) associated with high regeneration of nitrogen (low f ratio as a consequence of the food web structure imposed by iron limitation) largely accounts for the surface build-up of upwelled nitrate.  相似文献   

18.
The Santa Clara River delivers nutrient rich runoff to the eastern Santa Barbara Channel during brief (1–3 day) episodic events. Using both river and oceanographic measurements, we evaluate river loading and dispersal of dissolved macronutrients (silicate, inorganic N and P) and comment on the biological implications of these nutrient contributions. Both river and ocean observations suggest that river nutrient concentrations are inversely related to river flow rates. Land use is suggested to influence these concentrations, since runoff from a subwatershed with substantial agriculture and urban areas had much higher nitrate than runoff from a wooded subwatershed. During runoff events, river nutrients were observed to conservatively mix into the buoyant, surface plume immediately seaward of the Santa Clara River mouth. Dispersal of these river nutrients extended 10s of km into the channel. Growth of phytoplankton and nutrient uptake was low during our observations (1–3 days following runoff), presumably due to the very low light levels resulting from high turbidity. However, nutrient quality of runoff (Si:N:P = 16:5:1) was found to be significantly different than upwelling inputs (13:10:1), which may influence different algal responses once sediments settle. Evaluation of total river nitrate loads suggests that most of the annual river nutrient fluxes to the ocean occur during the brief winter flooding events. Wet winters (such as El Niño) contribute nutrients at rates approximately an order-of-magnitude greater than “average” winters. Although total river nitrate delivery is considerably less than that supplied by upwelling, the timing and location of these types of events are very different, with river discharge (upwelling) occurring predominantly in the winter (summer) and in the eastern (western) channel.  相似文献   

19.
Mesoscale distribution of the density and productivity of bacterioplankton at representative geological locations in the rift ecosystem of the North Fiji Basin were clarified by sampling using a mannedShinkai 6500 submersible. The bacterioplankton density inside the hot and warm fluids of hydrothermal vents was one order magnitude greater than that in the deep water outside the vent plume. The bacterial production was highest inside the hot and warm vent fluids, and was higher just outside the hot and warm vent fluids than further outside in the deep water surrounding the vent plume, respectively. Productivity from outside to inside the vent fluid varied from 0.01 to 0.71 gC m–3 day–1.  相似文献   

20.
Upwelling occurs on the coast of Java between June and October, forced by local alongshore winds associated with the southeasterly monsoon. This causes variations in phytoplankton community composition in the upwelling zone compared with the surrounding offshore area. Based on pigments analysis with subsequent calculations of group contributions to total chlorophyll a(Chl a) using CHEMTAX, we studied the distribution and composition of phytoplankton assemblages in the subsurface chlorophyll maximum along the south coast of Java and the influence of upwelling. Nineteen phytoplankton pigments were identified using high-performance liquid chromatography, and CHEMTAX analysis associated these to ten major phytoplankton groups. The phytoplankton community in the coastal area influenced by upwelling was characterized by high Chl a and fucoxanthin concentrations, indicating the dominance of diatoms. In contrast, in the offshore area, the Chl a and fucoxanthin concentrations declined to very low levels and the community was dominated by haptophytes represented by 19′-Hexanoyloxyfucoxanthin. Accordingly, microphytoplankton was found to be the major size class in the coastal area influenced by upwelling, while nanophytoplankton was most abundant in the offshore area. Low concentrations of other accessory pigments indicated less contribution from dinoflagellates,prasinophytes, chlorophytes and cryptophytes. Photo-pigment indices revealed that photosynthetic carotenoids(PSCs) were the largest component of the pigment pool, exceeding the proportion of Chl a, with the average PSCTP up to 0.62. These distribution trends can mainly be explained by phytoplankton adaption strategies to upwelling and subsurface conditions by changing species composition and adjusting the pigment pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号