首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
地球物理   5篇
地质学   10篇
海洋学   2篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2000年   3篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Abstract

Changes in water resources availability, as affected by global climate warming, together with changes in water withdrawal, could influence the world water resources stress situation. In this study, we investigate how the world water resources situation will likely change under the Special Report on Emissions Scenarios (SRES) by integrating water withdrawal projections. First, the potential changes in water resources availability are investigated by a multi-model analysis of the ensemble outputs of six general circulation models (GCMs) from organizations worldwide. The analysis suggests that, while climate warming might increase water resources availability to human society, there is a large discrepancy in the size of the water resource depending on the GCM used. Secondly, the changes in water-stressed basins and the number of people living in them are evaluated by two indices at the basin scale. The numbers were projected to increase in the future and possibly to be doubled in the 2050s for the three SRES scenarios A1b, A2 and B1. Finally, the relative impacts of population growth, water use change and climate warming on world water resources are investigated using the global highly water-stressed population as an overall indicator. The results suggest that population and socio-economic development are the major drivers of growing world water resources stress. Even though water availability was projected to increase under different warming scenarios, the reduction of world water stress is very limited. The principal alternative to sustainable governance of world water resources is to improve water-use efficiency globally by effectively reducing net water withdrawal.
Editor Z.W. Kundzewicz; Associate editor D. Gerten  相似文献   
2.
This paper presents an experimental study on the performance of a shear-sliding stud-type damper composed of multiple friction units with high-tension bolts and disc springs. A numerical evaluation of the response reduction effects achieved by the stud-type damper is also presented. In dynamic loading tests, the behavior of stud-type multiunit friction damper specimens was investigated. Three different full-scale damper specimens, which were composed of five, six, or seven friction units with two or four sliding surfaces, were incorporated into loading devices for testing. The stud-type friction dampers demonstrated stable rigid-plastic hysteresis loops without any remarkable decrease in the sliding force even when subjected to repetitive loading, in addition to showing no unstable behavior such as lateral buckling. The damper produced a total sliding force approximately proportional to the number of sliding surfaces and friction units. The total sliding force of the stud-type damper can thus be estimated by summing the contributions of each friction unit. In an earthquake response simulation, the control effects achieved by stud-type dampers incorporated into an analytical high-rise building model under various input waves, including long-period, long-duration and pulse-like ground motions, were evaluated. A satisfactory response reduction was obtained by installing the developed stud-type dampers into the main frame without negatively impacting usability and convenience in terms of building planning.  相似文献   
3.
New high-pressure orthorhombic (GdFeO3-type) perovskite polymorphs of MnSnO3 and FeTiO3 have been observed using in situ powder X-ray diffraction in a diamond-anvil cell with synchrotron radiation. The materials are produced by the compression of the lithium niobate polymorphs of MnSnO3 and FeTiO3 at room temperature. The lithium niobate to perovskite transition occurs reversibly at 7 GPa in MnSnO3, with a volume change of -1.5%, and at 16 GPa in FeTiO3, with a volume change of -2.8%. Both transitions show hysteresis at room temperature. For MnSnO3 perovskite at 7.35 (8) GPa, the orthorhombic cell parameters are a=5.301 (2) A, b=5.445 (2) Å, c=7.690 (8) Å and V= 221.99 (15) Å3. Volume compression data were collected between 7 and 20 GPa. The bulk modulus calculated from the compression data is 257 (18) GPa in this pressure region. For FeTiO3 perovskite at 18.0 (5) GPa, cell parameters are a=5.022 (6) Å, b=5.169 (5) Å, c=7.239 (9) Å and V= 187.94 (36) Å3. Based on published data on the quench phases, the FeTiO3 perovskite breaks down to a rocksalt + baddelyite mixture of FeO and TiO2 at 23 GPa. This is the first experimental verification of the pressure-induced breakdown of a perovskite to simple oxides.  相似文献   
4.
5.
Using a DIA-type, cubic-anvil, high-pressure apparatus (SAM-85) in conjunction with in situ X-ray diffraction, we have investigated phase relations between coesite and stishovite up to 12 GPa and 1530 °C using synthetic powders of the two phases as the starting materials. The phase transition between coesite and stishovite was identified by observing the first appearance of a phase that did not already exist or by a change in the relative intensity of the two patterns. In most experiments, the diffraction patterns on samples were collected within 10 minutes after reaching a pressure and temperature condition. On this time scale, two phase boundaries associated with the coesite-stishovite transition have been determined: (1) for the stishovite-to-coesite transition, observations were made in the temperature range of 950–1530 °C, and (2) for the coesite-to-stishovite transition from 500 to 1300 °C. These observations reveal that there exists a critical temperature of about 1000 °C to constrain the coesite-stishovite equilibrium phase boundary. Above this temperature, both boundaries are linear, have positive dP/dT slopes, and lie within a pressure interval of 0.4 GPa. Below this temperature, the dP/dT slope for the stishovite-to-coesite phase boundary becomes significantly larger and that for the coesite-tostishovite phase boundary changes from positive to negative. As a result, an equilibrium phase boundary can only be determined from the results above 1000 °C and is described by a linear equation P (GPa)=6.1 (4)+ 0.0026 (2) T (°C). This dP/dT slope is in good agreement with that of Zhang et al. (1993) but more than twice that of Yagi and Akimoto (1976). For the kinetics of the phase transition, preliminary rate data were obtained for the stishovite-to-coesite transition at 1160 and 1430 °C and are in agreement with the simple geometric transformation model of Avrami and Cahn.  相似文献   
6.
 In situ synchrotron X-ray experiments in the system SnO2 were made at pressures of 4–29 GPa and temperatures of 300–1400 K using sintered diamond anvils in a 6–8 type high-pressure apparatus. Orthorhombic phase (α-PbO2 structure) underwent a transition to a cubic phase (Pa3ˉ structure) at 18 GPa. This transition was observed at significantly lower pressures in DAC experiments. We obtained the isothermal bulk modulus of cubic phase K 0 = 252(28) GPa and its pressure derivative K =3.5(2.2). The thermal expansion coefficient of cubic phase at 25 GPa up to 1300 K was determined from interpolation of the P-V-T data obtained, and is 1.7(±0.7) × 10−5 K−1 at 25 GPa. Received: 7 December 1999 / Accepted: 27 April 2000  相似文献   
7.
Determination of the phase boundary between ilmenite and perovskite structures in MgSiO3 has been made at pressures between 18 and 24 GPa and temperatures up to 2000 °C by in situ X-ray diffraction measurements using synchrotron radiation and quench experiments. It was difficult to precisely define the phase boundary by the present in situ X-ray observations, because the grain growth of ilmenite hindered the estimation of relative abundances of these phases. Moreover, the slow reaction kinetics between these two phases made it difficult to determine the phase boundary by changing pressure and temperature conditions during in situ X-ray diffraction measurements. Nevertheless, the phase boundary was well constrained by quench method with a pressure calibration based on the spinel-postspinel boundary of Mg2SiO4 determined by in situ X-ray experiments. This yielded the ilmenite-perovskite phase boundary of P (GPa) = 25.0 (±0.2) – 0.003 T (°C) for a temperature range of 1200–1800 °C, which is generally consistent with the results of the present in situ X-ray diffraction measurements within the uncertainty of ∼±0.5 GPa. The phase boundary thus determined between ilmenite and perovskite phases in MgSiO3 is slightly (∼0.5 GPa) lower than that of the spinel-postspinel transformation in Mg2SiO4. Received: 19 May 1999 / Accepted: 21 March 2000  相似文献   
8.
It has been often accepted that rising troposphere temperatures will lead to higher precipitation intensities. This argument is based on the Clausius?CClapeyron (C?CC) relation, which indicates an increase in atmospheric moisture storage capacity of approximately 7?% K?1. However, recent studies carried out in mid-latitude regions indicate that changes in precipitation intensity as a function of temperature do not necessarily follow the C?CC relation. This study aimed to evaluate the correlation between precipitation extremes and temperature in tropical regions, using measured data obtained at low latitude ranges over Brazil. The results indicate that, at daily timescale, the C?CC relation alone is unlikely to explain the relation between precipitation extremes and temperatures in tropical regions. Additional aspects, such as moisture availability and the duration of precipitation events, should be further analyzed to allow a comprehensive understanding of the relationship between temperature and precipitation intensity. Moreover, we show that in tropical regions, higher temperatures may reduce the magnitude of extreme precipitation events at daily timescales, independent of the season of the year.  相似文献   
9.
 An experimental technique to make real-time observations at high pressure and temperature of the diamond-forming process in candidate material of mantle fluids as a catalyst has been established for the first time. In situ X-ray diffraction experiments using synchrotron radiation have been performed upon a mixture of brucite [Mg(OH)2] and graphite as starting material. Brucite decomposes into periclase (MgO) and H2O at 3.6 GPa and 1050 °C while no periclase is formed after the decomposition of brucite at 6.2 GPa and 1150 °C, indicating that the solubility of the MgO component in H2O greatly increases with increasing pressure. The conversion of graphite to diamond in aqueous fluid has been observed at 7.7 GPa and 1835 °C. Time-dependent X-ray diffraction profiles for this transformation have been successfully obtained. Received: 17 July 2001 / Accepted: 18 February 2002  相似文献   
10.
The graphite-diamond transformation was investigated by in situ time-resolved X-ray diffraction experiments using aqueous fluid containing dissolved MgO as the diamond-forming catalyst under conditions of 6.6–8.9 GPa and 1400–1835 °C. The transformed volume fractions of diamond as a function of time under various pressure-temperature conditions were obtained and analyzed using the JMAK rate equation. Variations in the nucleation and growth processes during diamond formation as a function of pressure and temperature were clarified.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号