首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
影响气候变化的大气成分,依据其在大气中存留的时间,分为长寿命的温室气体和短寿命的气候强迫因子(SLCFs)。考虑到SLCFs在气候变化和大气环境中的重要作用,IPCC第六次评估报告(AR6)首次有了专门针对SLCFs的章节(第六章)。本文解读IPCC报告关于SLCFs的主要结论,特别强调AR5以来的最新结论,包括:SLCFs的定义、SLCFs排放和大气含量的变化特征及其对辐射强迫和全球气候的影响、不同共享社会经济路径(SSP)情景下SLCFs对未来气候变化和空气质量可能的影响,以及COVID-19疫情期间减排对气候变化的影响。文末也讨论了结论的不确定性以及结论对我国的启示。  相似文献   

2.
Earlier GCM studies have expressed the concern that an enhancement of greenhouse warming might increase the occurrence of summer droughts in mid-latitudes, especially in southern Europe and central North America. This could represent a severe threat for agriculture in the regions concerned, where summer is the main growing season. These predictions must however be considered as uncertain, since most studies featuring enhanced summer dryness in mid-latitudes use very simple representations of the land-surface processes ("bucket" models), despite their key importance for the issue considered. The current study uses a regional climate model including a land-surface scheme of intermediate complexity to investigate the sensitivity of the summer climate to enhanced greenhouse warming over the American Midwest. A surrogate climate change scenario is used for the simulation of a warmer climate. The control runs are driven at the lateral boundaries and the sea surface by reanalysis data and observations, respectively. The warmer climate experiments are forced by a modified set of initial and lateral boundary conditions. The modifications consist of a uniform 3 K temperature increase and an attendant increase of specific humidity (unchanged relative humidity). This strategy maintains a similar dynamical forcing in the warmer climate experiments, thus allowing to investigate thermodynamical impacts of climate change in comparative isolation. The atmospheric CO 2 concentration of the sensitivity experiments is set to four times its pre-industrial value. The simulations are conducted from March 15 to October 1st, for 4 years corresponding to drought (1988), normal (1986, 1990) and flood (1993) conditions. The numerical experiments do not present any great enhancement of summer drying under warmer climatic conditions. First, the overall changes in the hydrological cycle (especially evapotranspiration) are of small magnitude despite the strong forcing applied. Second, precipitation increases in spring lead to higher soil water recharge during this season, compensating for the enhanced soil moisture depletion occurring later in the year. Additional simulations replacing the plant control on transpiration with a bucket-type formulation presented increased soil drying in 1988, the drought year. This suggests that vegetation control on transpiration might play an important part in counteracting an enhancement of summer drying when soil water gets limited. Though further aspects of this issue would need investigating, our results underline the importance of land-surface processes in climate integrations and suggest that the risk of enhanced summer dryness in the region studied might be less acute than previously assumed, provided the North American general circulation does not change markedly with global warming.  相似文献   

3.
An analysis is presented of an ensemble of regional climate model (RCM) experiments from the ENSEMBLES project in terms of mean winter snow water equivalent (SWE), the seasonal evolution of snow cover, and the duration of the continuous snow cover season in the European Alps. Two sets of simulations are considered, one driven by GCMs assuming the SRES A1B greenhouse gas scenario for the period 1951–2099, and the other by the ERA-40 reanalysis for the recent past. The simulated SWE for Switzerland for the winters 1971–2000 is validated against an observational data set derived from daily snow depth measurements. Model validation shows that the RCMs are capable of simulating the general spatial and seasonal variability of Alpine snow cover, but generally underestimate snow at elevations below 1,000 m and overestimate snow above 1,500 m. Model biases in snow cover can partly be related to biases in the atmospheric forcing. The analysis of climate projections for the twenty first century reveals high inter-model agreement on the following points: The strongest relative reduction in winter mean SWE is found below 1,500 m, amounting to 40–80 % by mid century relative to 1971–2000 and depending upon the model considered. At these elevations, mean winter temperatures are close to the melting point. At higher elevations the decrease of mean winter SWE is less pronounced but still a robust feature. For instance, at elevations of 2,000–2,500 m, SWE reductions amount to 10–60 % by mid century and to 30–80 % by the end of the century. The duration of the continuous snow cover season shows an asymmetric reduction with strongest shortening in springtime when ablation is the dominant factor for changes in SWE. We also find a substantial ensemble-mean reduction of snow reliability relevant to winter tourism at elevations below about 1,800 m by mid century, and at elevations below about 2,000 m by the end of the century.  相似文献   

4.
The evolution of the Parisian urban climate under a changing climate is analyzed from long-term offline numerical integrations including a specific urban parameterization. This system is forced by meteorological conditions based on present-climate reanalyses (1970–2007), and climate projections (2071–2099) provided by global climate model simulations following two emission scenarios (A1B and A2). This study aims at quantifying the impact of climate change on air temperature within the city and in the surroundings. A systematic increase of 2-meter air temperature is found. In average according to the two scenarios, it reaches +?2.0/2.4°C in winter and +?3.5/5.0°C in summer for the minimum and maximum daily temperatures, respectively. During summer, the warming trend is more pronounced in the surrounding countryside than in Paris and suburbs due to the soil dryness. As a result, a substantial decrease of the strong urban heat islands is noted at nighttime, and numerous events with negative urban heat islands appear at daytime. Finally, a 30% decrease of the heating degree days is quantified in winter between present and future climates. Inversely, the summertime cooling degree days significantly increase in future climate whereas they are negligible in present climate. However, in terms of accumulated degree days, the increase of the demand in cooling remains smaller than the decrease of the demand in heating.  相似文献   

5.
Climate change is causing important shifts in the suitability of regions for wine production. Fine scale mapping of these shifts helps us to understand the evolution of vineyard climates, and to find solutions through viticultural adaptation. The aim of this study is to identify and map the structural and spatial shifts that occurred in the climatic suitability for wine production of the Cotnari wine growing region (Romania) between 1961 and 2013. Discontinuities in trends of temperature were identified, and the averages and trends of 13 climatic parameters for the 1961 to 1980 and 1981 to 2013 time periods were analysed. Using the averages of these climatic parameters, climate suitability for wine production was calculated at a resolution of 30 m and mapped for each time period, and the changes analysed. The results indicate shifts in the area’s historic climatic profile, due to an increase of heliothermal resources and precipitation constancy. The area’s climate suitability for wine production was modified by the loss of climate suitability for white table wines, sparkling wines and wine for distillates; shifts in suitability to higher altitudes by about 67 m, and a 48.6% decrease in the area suitable for quality white wines; and the occurrence of suitable climates for red wines at lower altitudes. The study showed that climate suitability for wine production has a multi-level spatial structure, with classes requiring a cooler climate being located at a higher altitude than those requiring a warmer climate. Climate change has therefore resulted in the shift of climate suitability classes for wine production to higher altitudes.  相似文献   

6.
Summary This study investigates the capability of the regional climate model RegCM3 to simulate surface air temperature and precipitation over the Korean Peninsula. The model is run in one-way double nested mode, with a 60 km grid point spacing “mother” domain encompassing the eastern regions of Asia and a 20 km grid point spacing nested domain covering the Korean Peninsula. The simulation spans the three-year period of 1 October 2000 through 30 September 2003 and the boundary conditions needed to run the mother domain experiment are provided from the NCEP reanalysis of observations. The model results are compared with a high density station observation dataset to examine the fine scale structure of the surface climate signal. The model shows a good performance in capturing both the sign and magnitude of the seasonal and inter-annual variations of the surface variables both over East Asia as a whole and over the Korean Peninsula in the nested system. Some persistent biases are however present. Surface temperature is systematically underestimated, especially over mountainous regions in the warm season. This feature may be due to the relatively coarse representation of the Korean topography. The simulated precipitation over the mother domain successfully reproduces the broad spatial pattern of observed precipitation over East Asia along with its seasonal evolution. On the other hand, fine scale details from the nested results show a varying level of quality for the different individual years. Because of the better resolved topographic forcing, the increased resolution of the nested model improves the spatial agreement with the fine scale observation fields for temperature and cold season precipitation. For summer monsoon precipitation the simulation of individual monsoon convective events and tropical storms is however more important than the topographic forcing, and therefore the performance of the nested system is more case-dependent.  相似文献   

7.
Climate indices facilitate the interpretation of expected climate change impacts for many sectors in society, economy, and ecology. The new localized data set of climatic change signals for temperature and precipitation presented by Zubler et al. (Clim Change, 2013) is applied for an analysis of frequently used climate indices in Switzerland. The indices considered are: number of summer days and tropical nights, growing season length, number of frost days and ice days, heating and cooling degree days, and the number of days with fresh snow. For the future periods 2020-49, 2045-74 and 2070–2099 the indices are computed using a delta-change approach based on the reference period 1980–2009 for the emission scenarios A1B, A2, and RCP3PD. The scenario data suggest the following relevant findings: (1) a doubling of the number of summer days by the end of the century under the scenarios A1B and A2, (2) an appearance of tropical nights even above 1500 m asl, (3) a possible reduction of the number of frost days by more than 3 months at altitudes higher than 2500 m asl, (4) a decline of heating degree days by about 30 % until the end of the century, and (5) the near disappearance of days with fresh snow at low altitudes. It is also shown that the end-of-the-century projections of all indices strongly depend on the chosen emission scenario.  相似文献   

8.
We use a seasonal energy balance climate model to study the behavior of the snowline cycle as a function of external parameters such as the solar constant. Our studies are confined in this study to cases with zonally symmetric land-sea distributions (bands or caps of land). The model is nonlinear in that the seasonally varying snow/sea ice line modifies the energy receipt through its different albedo from open land or water. The repeating steady-state seasonal cycle of the model is solved by a truncated Fourier series in time. This method is several thousand times faster than a time stepping approach. The results are interesting in that a number of bifurcations in the snowline behavior are found and studied for various geographies. Polar land caps and land bands positioned near the poles exhibit a variety of discontinuous summer snow cover behaviors (abrupt transitions as a parameter such as solar constant is slowly varied), which may be relevant to the inception and decay of continental ice sheets.  相似文献   

9.
The effective management of climate change on a national as well as an international level requires close co-operation between the scientific community and the political sector. Climate change first became a major subject of scientific inquiry in the early 1980s, and real political interest in the issue was awakened towards the end of that decade. In the last few years, the dialogue between the scientific community and the political sector has increased considerably. As a result, climate change is today one of the most significant areas in environmental research and international environmental policy alike.This paper examines the emergence and consolidation of international climate change regime. The theory of regime building is used as discussed by Young (1989). International Cooperation. Cornell University Press, Ithaca. The paper begins with an outline of the historical emergence of climate research and climate policy. This is followed by a discussion of the history and development of the Rio Convention, with a look at the latest developments in international climate politics. The next section begins with an examination of the foundations and present strategies of Finnish climate policy, which is used as a case study, and the paper concludes with an assessment of the current state of Finnish climate policy, illustrating the problems of compliance individual countries face when adopting the norms and principles of the regime.  相似文献   

10.
11.
History and climate: a road map to humanistic scholarship on climate change   总被引:1,自引:1,他引:0  
Joshua P. Howe 《Climatic change》2011,105(1-2):357-363
  相似文献   

12.
Solar radiation cycles, earth-orbital changes, and continental drift drive long to very long term (103–106 years) climatic changes. Lin and North used the stationary solutions of a simple energy balance model (EBM) to study the equilibrium climatic stages. In this paper, we study time dependent solutions and, in particular, transition processes. We make use of two time scales: a seasonal cycle (fast variation) and a long term time change (slow variation). Variations over short time scales are solved using a Fourier transform in time and long term variations are studied using a 4th order Runge-Kutta method. The energy balance equation is a parabolic type equation and it is well posed. Climate changes depend mainly on external forcing and the state of the climate is determined by the slow time scale forcing. In other words, transitions from one climate stage (snow-covered) to another (snow-free) at bifurcation points are monotonic, despite 20% to 50% shortperiod random fluctuations in the solar energy. This smooth transition is especially noticeable when the land bands lie close to the north pole (70° N to 90° N) or at high latitudes (50° N to 75° N).Now at Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723, USA  相似文献   

13.
14.
Indigenous knowledge of a changing climate   总被引:2,自引:2,他引:0  
  相似文献   

15.
Because of large economic and environmental asymmetries among world regions and the incentive to free ride, an international climate regime with broad participation is hard to reach. Most of the proposed regimes are based on an allocation of emissions rights that is perceived as fair. Yet, there are also arguments to focus more on the actual welfare implications of different regimes and to focus on a ‘fair’ distribution of resulting costs. In this article, the computable general equilibrium model DART is used to analyse the driving forces of welfare implications in different scenarios in line with the 2?°C target. These include two regimes that are often presumed to be ‘fair’, namely a harmonized international carbon tax and a cap and trade system based on the convergence of per capita emissions rights, and also an ‘equal loss’ scenario where welfare losses relative to a business-as-usual scenario are equal for all major world regions. The main finding is that indirect energy market effects are a major driver of welfare effects and that the ‘equal loss’ scenario would thus require large transfer payments to energy exporters to compensate for welfare losses from lower world energy demand and prices.

Policy relevance

A successful future climate regime requires ‘fair’ burden sharing. Many proposed regimes start from ethical considerations to derive an allocation of emissions reduction requirements or emissions allowances within an international emissions trading scheme. Yet, countries also consider the expected economic costs of a regime that are also driven by other factors besides allowance allocation. Indeed, in simplified lab experiments, successful groups are characterized by sharing costs proportional to wealth. This article shows that the major drivers of welfare effects are reduced demand for fossil energy and reduced fossil fuel prices, which implies that (1) what is often presumed to be a fair allocation of emissions allowances within an international emissions trading scheme leads to a very uneven distribution of economic costs and (2) aiming for equal relative losses for all regions requires large compensation to fossil fuel exporters, as argued, for example, by the Organization of Petroleum Exporting Countries (OPEC).  相似文献   

16.
ENSO nonlinearity in a warming climate   总被引:1,自引:1,他引:0  
The El Niño Southern Oscillation (ENSO) is known as the strongest natural inter-annual climate signal, having widespread consequences on the global weather, climate, ecology and even on societies. Understanding ENSO variations in a changing climate is therefore of primordial interest to both the climate community and policy makers. In this study, we focus on the change in ENSO nonlinearity due to climate change. We first analysed high statistical moments of observed Sea Surface Temperatures (SST) timeseries of the tropical Pacific based on the measurement of the tails of their Probability Density Function (PDF). This allows defining relevant metrics for the change in nonlinearity observed over the last century. Based on these metrics, a zonal “see-saw” (oscillation) in nonlinearity patterns is highlighted that is associated with the change in El Niño characteristics observed in recent years. Taking advantage of the IPCC database and the different projection scenarios, it is showed that changes in El Niño statistics (or “flavour”) from a present-day climate to a warmer climate are associated with a significant change in nonlinearity patterns. In particular, in the twentieth century climate, the “conventional” eastern Pacific El Niño relates more to changes in nonlinearity than to changes in mean state whereas the central Pacific El Niño (or Modoki El Niño) is more sensitive to changes in mean state than to changes in nonlinearity. An opposite behaviour is found in a warmer climate, namely the decreasing nonlinearity in the eastern Pacific tends to make El Niño less frequent but more sensitive to mean state, whereas the increasing nonlinearity in the west tends to trigger Central Pacific El Niño more frequently. This suggests that the change in ENSO statistics due to climate change might result from changes in the zonal contrast of nonlinearity characteristics across the tropical Pacific.  相似文献   

17.
A high-resolution pre-industrial control simulation with the regional climate model REMO is analyzed in detail for different European subregions. To our knowledge, this is the first long pre-industrial control simulation by a regional climate model as well as at comparable resolution. We assess the ability of the climate model to reproduce the observed climate variability in various parts of the continent. In order to investigate the representation of extreme events in the model under pre-industrial greenhouse gas concentrations, selected seasons are examined with regard to the atmospheric circulation and other climatic characteristics that have contributed to the occurrences. A special focus is dedicated to land-atmosphere interactions. Extreme seasons are simulated by the model under various circumstances, some of them strongly resemble observed periods of extraordinary conditions like the summer 2003 or autumn 2006 in parts of Europe. The regional perspective turns out to be of importance when analyzing events that are constituted by meso-scale atmospheric dynamics. Moreover, the predictability of the European climate on seasonal to decadal time scales is examined by relating the statistics of surface variables to large-scale modes of variability impacting the North Atlantic sector like the Meridional Overturning Circulation, the El Niño Southern Oscillation, and the North Atlantic Oscillation. For this purpose, we introduce a measure of tail dependence that quantifies the correlation between extreme values in two variables that describe the state of the climate system. Significant dependence of extreme events can be detected in various situations.  相似文献   

18.
19.
Decadal climate predictability is examined in hindcast experiments by a multi-model ensemble using three versions of the coupled atmosphere-ocean model MIROC. In these hindcast experiments, initial conditions are obtained from an anomaly assimilation procedure using the observed oceanic temperature and salinity with prescribed natural and anthropogenic forcings on the basis of the historical data and future emission scenarios in the Intergovernmental Panel of Climate Change. Results of the multi-model ensemble in our hindcast experiments show that predictability of surface air temperature (SAT) anomalies on decadal timescales mostly originates from externally forced variability. Although the predictable component of internally generated variability has considerably smaller SAT variance than that of externally forced variability, ocean subsurface temperature variability has predictive skills over almost a decade, particularly in the North Pacific and the North Atlantic where dominant signals associated with Pacific decadal oscillation (PDO) and the Atlantic multidecadal oscillation (AMO) are observed. Initialization enhances the predictive skills of AMO and PDO indices and slightly improves those of global mean temperature anomalies. Improvement of these predictive skills in the multi-model ensemble is higher than that in a single-model ensemble.  相似文献   

20.
A glacier parameterization scheme has been developed and implemented into the regional climate model REMO. The new scheme interactively simulates the mass balance as well as changes of the areal extent of glaciers on a subgrid scale. The temporal evolution and the general magnitude of the simulated glacier mass balance in the European Alps are in good accordance with observations for the period 1958–1980, but the strong mass loss towards the end of the twentieth century is systematically underestimated. The simulated decrease of glacier area in the Alps between 1958 and 2003 ranges from −17.1 to −23.6%. The results indicate that observed glacier mass balances can be approximately reproduced within a regional climate model based on simplified concepts of glacier-climate interaction. However, realistic results can only be achieved by explicitly accounting for the subgrid variability of atmospheric parameters within a climate model grid box.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号