首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new interpretation of the structural evolution of the Iberian Pyrite Belt (IPB) and volcanogenic massive sulfide mineralization (VMS) is presented in this work, based on a review of the ore deposit types, the analysis of the hosting volcanic sequences and the tectonic evolution. The VMS deposits of the IPB are hosted by volcanic and siliciclastic rocks. Four main volcano-sedimentary sequences (VSC), from VSC0 to VSC3, have been assumed, the main deposits being located in the VSC0 and at the top of the VSC2.We have defined three main sectors oriented approximately E-W and hosting the VMS deposits. In the Northern sector, which is mostly located in Spain, graben basins and local pull-aparts are the main structures. In this sector, two belts can be distinguished, the deposits being located at the top of the VSC2 felsic volcanism (Rio Tinto-type IPB deposits). In the Central sector, both in Spain and Portugal, half-graben basins are the most common structures, and the deposits are mostly located in the VSC0 andesitic volcanic-sedimentary sequence (Tharsis-type IPB deposits). In the Southern sector, which is only located in Portugal, a graben basin with a pull-apart is again the main structure, and the deposits are located in black slates and at the top of a felsic volcanism, Strunian in age (VSC0). The deposits located in graben basin with a pull-apart are essentially felsic volcanic-hosted with some siliciclastic material, mostly black shales. By contrast, those located in half-graben basins are mainly hosted by black-shales with minor amounts of andesitic rocks.The tectonic evolution shows that as a result of a counterclockwise rotation of the stress axes, the formation of the IPB and the associated ore deposits took place during several episodes, from transtension (with the development of both graben with pull-aparts and half-graben basins), through left lateral E-W shearing, to transpression. At the beginning of the transtensional process, several extensional, roughly E-W trending faults that developed graben and half-graben basins were generated and the first volcanic andesite-rhyolite rocks (VSC0) formed. The Tharsis-type deposits, mainly hosted by black slates with some volcanic rocks, were formed in the Central sector while the Neves Corvo-type deposit, hosted by black slates and felsic volcanism formed in the Southern one. After a period characterized by barren mafic volcanism (VSC1), a sinistral shear affected the previous fractures due to the stress axis rotation and felsic crustal volcanism started (VSC2). Rhyolites and dacites were particularly abundant in two graben basins, which developed rollovers in pull-apart zones, forming the Rio Tinto-type deposits in the Northern sector. The thermal increase associated with VSC0 and VSC2 gave rise to the development of crustal-scale hydrothermal convective cells, which generated both types of deposits.After a barren VSC3 felsic volcanism, subsequently, during the Variscan transpressional phase, the E-W extensional faults were reactivated as reverse faults, affecting the volcanic sequence (VSC0 to VSC3) as well as the interbedded sedimentary rocks (mostly black shales). As has been recognized at the Rio Tinto deposit, buttressing must have played a significant role in the geometry of inverted structures, and the VMS ores were intensely recrystallized.It should be emphasized that this new regional geological model for the IPB is an approach to provide a better insight into VMS deposits and could be a key-point for further studies, providing a new tool to improve knowledge of the VMS mineralizations and exploration guidelines elsewhere in the IPB.  相似文献   

2.
Tellurium-bearing minerals are generally rare in chimney material from mafic and bimodal felsic volcanic hosted massive sulfide (VMS) deposits, but are abundant in chimneys of the Urals VMS deposits located within Silurian and Devonian bimodal mafic sequences. High physicochemical gradients during chimney growth result in a wide range of telluride and sulfoarsenide assemblages including a variety of Cu-Ag-Te-S and Ag-Pb-Bi-Te solid solution series and tellurium sulfosalts. A change in chimney types from Fe-Cu to Cu-Zn-Fe to Zn-Cu is accompanied by gradual replacement of abundant Fe-, Co, Bi-, and Pb- tellurides by Hg, Ag, Au-Ag telluride and galena-fahlore with native gold assemblages. Decreasing amounts of pyrite, both colloform and pseudomorphic after pyrrhotite, isocubanite ISS and chalcopyrite in the chimneys is coupled with increasing amounts of sphalerite, quatz, barite or talc contents. This trend represents a transition from low- to high sulphidation conditions, and it is observed across a range of the Urals deposits from bimodal mafic- to bimodal felsic-hosted types: Yaman-Kasy → Molodezhnoye → Uzelga → Valentorskoye → Oktyabrskoye → Alexandrinskoye → Tash-Tau → Jusa.  相似文献   

3.
Most of the massive sulfide deposits (VMS) occurring from Precambrian to Cenozoic throughout the world has been subsequently metamorphosed at various grades. Thus, all the original textures have been either completely destroyed or strongly modified. However, there are a very few examples, rather younger deposits such as late Cretaceous Turkish VMS deposits and Miocene Kuroko deposits of Japan in which representative and original ore textures are preserved. The Turkish massive sulfide deposits are mainly Cu-Zn-Pb-type and entirely hosted by Late Cretaceous felsic volcanic rocks within a paleoarc geotectonic setting.  相似文献   

4.
北祁连山火山成因块状硫化物矿床的金属来源研究   总被引:2,自引:0,他引:2  
研究了北祁连山造山带火山成因块状硫化物矿床(VMS)类型、金属来源与容矿围岩、火山岩类型及其构造环境的关系。结果表明,容矿岩石和地壳性质是控制矿床类型和金属来源的主要因素。多金属黑矿型矿床主要赋存于硅名质陆壳边缘裂陷带双峰火山岩系的酸性火山岩中,成矿元素源于深部长英质岩石,铜型矿床产于洋壳基性火山岩中,成矿元素源于深部镁铁质岩石。中寒武统双峰火山岩所赋存的多金属VMS矿床多、规模大,是主要含矿矿岩  相似文献   

5.
辽西杨家杖子-八家子钼多金属矿成矿带钼矿床与燕山期中酸性岩体关系密切.产于花岗质岩类与碳酸盐岩地层接触带的钼矿床为夕卡岩型或斑岩-夕卡岩型钼矿床.产于花岗斑岩、长英质或中性火山岩内的钼矿床多为斑岩型钼矿床.不同类型钼矿床在成因、分布规律以及成矿元素的分带性上有着密切的时空关系.钼矿床的成矿物质来源于花岗岩,细粒花岗斑岩是主要成矿母岩.从成矿条件分析可确定,该钼多金属成矿带的找矿远景可观.  相似文献   

6.
毛启贵  方同辉  王京彬  王书来  王宁 《岩石学报》2010,26(10):3017-3026
东天山卡拉塔格矿带红海块状硫化物Cu-Zn矿床产于卡拉塔格海相火山岩建造中,矿层主要与两个岩性段的火山-碎屑岩地层有关:(1)盖层为中性-酸性火山岩、火山角砾岩、凝灰岩,夹凝灰质砂岩;(2)赋矿层位主要由中基性-中酸性火山角砾岩、凝灰角砾岩、凝灰岩和沉凝灰岩组成。高精度的锆石离子探针U-Pb同位素定年获得矿体上盘围岩底部酸性火山岩的年龄为416.3±5.9Ma,为成矿时代的上限年龄;K-Ar同位素定年获得矿体下盘强绢云母化蚀变围岩年龄为424±7Ma,记录了最晚一期成矿热液活动的时代。同位素年代学研究显示,卡拉塔格地区在早古生代末期存在一期铜多金属成矿作用,这个认识不仅为吐哈盆地南缘古生代火山岩地层的时代划分提供了年代学限制,而且扩大了卡拉塔格地区和区域找矿空间。  相似文献   

7.
Abstract. The Malusok volcanogenic massive sulfide (VMS) deposits comprise two adjacent ore bodies, the Main Malusok and the Malusok Southeast ore bodies, hosted within Cretaceous metamorphic rocks. Owing to the structural and metamor-phic overprinting combined with intense hydrothermal alteration, primary textures of the Malusok volcanic rocks have been obliterated. The stratigraphic correlation of the Main Malusok and the Malusok Southeast ore bodies show that both deposits are essentially confined within a single stratigraphic interval. The lithogeochemical analysis of the Malusok samples shows that constituent lithologies have precursor compositions ranging from sub-alkaline basalts to rhyodacites. Field and mass flux data suggest that the Main Malusok VMS deposits were derived as a consequence of axial hydrothermal activity. The Malusok Southeast ore bodies represent satellite deposits generated by off-axis hydrothermal activities from vents aligned along a NW-SE trend with the Main Malusok zone. This alignment represents an ancient fissure that served as a pathway for the upwelling metalliferous hydrothermal fluids. In searching for lateral extensions of these VMS deposits, this NW-SE alignment should serve as a possible exploration guide.  相似文献   

8.
杨开辉  侯增谦  莫宣学 《矿床地质》1992,11(1):35-44,64
“三江”地区是我国一个主要的火山成因块状硫化物成矿区域,包括2个成矿带:①赠科—乡城矿带,主要产出伴随晚三叠世义敦岛弧裂谷火山作用形成的黑矿型Zn-Pb-Cu块状硫化物矿床;②昌宁—孟连矿带,以伴随保山—掸邦微陆块晚古生代裂谷火山作用形成的老厂型Pb-Zn-Cu和别子型Cu-Zn块状硫化物矿床为主,本文揭示“三江”地区,尤其是赠科—乡城和昌宁—孟连矿带的构造-火山-矿床的地质特征,阐明该区块状硫化物矿床的主要成因类型。  相似文献   

9.
为了探讨河南桐柏地区铜锌多金属矿的成因,采用ICPMS对刘山岩铜锌矿床、大栗树-方老庄铜锌矿床、羊圈铜矿化点的矿石和矿化岩石的微量元素和稀土元素进行测试。根据研究区铜锌矿石的微量元素和稀土元素特征将其分为4种类型:第一类REE配分曲线右倾,Eu异常不明显,Ce弱负异常,HFSE相对MORB弱亏损,Zr、Ti弱负异常;第二类REE配分曲线右倾,Eu负异常,Ce弱负异常;第三类REE配分曲线右倾,Eu明显正异常,Ce负异常,HFSE相对MORB强烈亏损,Zr、Ti强负异常;第四类REE配分曲线平坦,Eu明显正异常,Ce弱负异常,HFSE相对MORB亏损,无Zr、Ti异常。研究表明:桐柏地区铜锌多金属矿床为海底火山成因块状硫化物矿床,矿石和矿化岩石与矿区火山岩的微量元素和稀土元素地球化学特征相似,第一类与矿区基性火山岩类似,第二类与矿区酸性火山岩类似,第三类指示高温热液流体与海水发生了对流混合且残留相有较多难溶矿物,第四类指示源区为亏损地幔。这些特征表明成岩与成矿的物质来源具有一致性,同为经历早期多次熔融事件的地幔源区的部分熔融的产物。  相似文献   

10.
The 3.09 to 2.97 Ga Murchison Greenstone Belt is an important metallotect in the northern Kaapvaal Craton (South Africa), hosting several precious and base metal deposits. Central to the metallotect is the Antimony Line, striking ENE for over 35?km, which hosts a series of structurally controlled Sb–Au deposits. To the north of the Antimony Line, hosted within felsic volcanic rocks, is the Copper–Zinc Line where a series of small, ca. 2.97 Ga Cu–Zn volcanogenic massive sulfide (VMS)-type deposits occur. New data are provided for the Malati Pump gold mine, located at the eastern end of the Antimony Line. Crystallizations of a granodiorite in the Malati Pump Mine and of the Baderoukwe granodiorite are dated at 2,964?±?7 and 2,970?±?7?Ma, respectively (zircon U–Pb), while pyrite associated with gold mineralization yielded a Pb–Pb age of 2,967?±?48?Ma. Therefore, granodiorite emplacement, sulfide mineral deposition and gold mineralization all happened at ca. 2.97?Ga. It is, thus, suggested that the major styles of orogenic Au–Sb and the Cu–Zn VMS mineralization in the Murchison Greenstone Belt are contemporaneous and that the formation of meso- to epithermal Au–Sb mineralization at fairly shallow levels was accompanied by submarine extrusion of felsic volcanic rocks to form associated Cu–Zn VMS mineralization.  相似文献   

11.
The northeast (NE) Honshu arc was formed by three major volcano-tectonic events resulting from Late Cenozoic orogenic movement: continental margin volcanism (before 21?Ma), seafloor basaltic lava flows and subsequent bimodal volcanism accompanied by back-arc rifting (21 to 14?Ma), and felsic volcanism related to island arc uplift (12 to 2?Ma). Eight petrotectonic domains, parallel to the NE Honshu arc, were formed as a result of the eastward migration of volcanic activity with time. Major Kuroko volcanogenic massive sulfide (VMS) deposits are located within the eastern marginal rift zone (Kuroko rift) that formed in the final period of back-arc rifting (16 to 14?Ma). Volcanic activity in the NE Honshu arc is divided into six volcanic stages. The eruption volumes of volcanic rocks have gradually decreased from 4,600?km3 (per 1?my for a 200-km-long section along the arc) of basaltic lava flows in the back-arc spreading stage to 1,000?C2,000?km3 of bimodal hyaloclastites in the back-arc rift stage, and about 200?km3 of felsic pumice eruptions in the island arc stage. The Kuroko VMS deposits were formed at the time of abrupt decrease in the eruption volume and change in the mode of occurrence of the volcanic rocks during the final period of back-arc rifting. In the area of the Kuroko rift, felsic volcanism changed from aphyric or weakly plagioclase phyric (before 14?Ma), to quartz and plagioclase phyric with minor clinopyroxene (12 to 8?Ma), to hornblende phyric (after 8?Ma), and hornblende and biotite phyric (after 4?Ma). The Kuroko VMS deposits are closely related to the aphyric rhyolitic activity before 14?Ma. The rhyolite was generated at a relatively high temperature from a highly differentiated part of felsic magma seated at a relatively great depth and contains higher Nb, Ce, and Y contents than the post-Kuroko felsic volcanism. The Kuroko VMS deposits were formed within a specific tectonic setting, at a specific period, and associated with a particular volcanism of the arc evolution process. Therefore, detailed study of the evolutional process from rift opening to island arc tectonics is very important for the exploration of Kuroko-type VMS deposits.  相似文献   

12.
Massive sulphide deposits in the Urals are found within volcanic and volcanic-sedimentary sequences of Ordovician to Middle Devonian ages. Four types of economic sulphide deposits have been recognized: Cyprus, Besshi, Urals and Baimak. The Cyprus-type copper sulphide deposits are hosted by mafic volcanites that occur in the basal parts of Palaeozoic volcanic sequences. The Besshi-type copper-zinc deposits are located within clastic sedimentary rocks intercalated with basalts and andesites. Zinc-copper deposits of the Urals-type are hosted by bimodal rhyolite-basalt assemblages, which occur at a higher stratigraphic level than those of Cyprus- and Besshi-types. The Baimak-type zinc-copper-barite deposits are associated with intrusive quartz porphyries which occur in the upper parts of bimodal volcanic successions. In addition there are some sulphide deposits of zinc-lead-barite and zinc-copper composition hosted by Ordovician terrigenous sequences which occur within depressions in Precambrian blocks. These types of sulphide deposits have been formed at various stages of divergence and convergence of the Earth's crust during the orogenic history of the Urals. Received: 27 June 1997 / Accepted: 14 May 1998  相似文献   

13.
VMS矿床是中亚造山带的重要矿床类型,在新疆中亚造山带(即新疆北部)主要分布于阿尔泰和东天山的阿舍勒、克兰、麦兹和卡拉塔格矿集区.含矿层位主要有下?中志留统红柳峡组、上志留统?下泥盆统康布铁堡组下亚组和上亚组、下?中泥盆统阿舍勒组和下石炭统小热泉子组海相火山沉积岩系.矿区发育喷流岩,如含铁碧玉岩、重晶石、硅质岩、铁锰质大理岩、黄铁矿层、绿泥石岩.VMS成矿系统中发育多种矿化类型,“双层结构”(层状或透镜状矿体和补给通道相脉状矿体)是其中之一,还有与火山热液有关的脉状矿化、与次火山热液有关的脉状和浸染状矿化.VMS矿床形成于3个成矿期,即早?中志留世(428~438 Ma)、早?中泥盆世(379~413 Ma)和早石炭世(332~359 Ma).硫来自下伏火山岩、海水硫酸盐无机还原作用和硫酸盐细菌还原作用.成矿流体以中低温(300~120 ℃)低盐度(2%~10% NaCleq)为特色,成矿流体为深循环海水混合不同比例的岩浆水.VMS成矿系统中由于受火山机构、岩相、矿化类型、矿化部位、成矿流体来源、物理化学条件等因素影响,造成了成矿元素组合复杂.   相似文献   

14.
北祁连山加里东优地槽褶皱山系由厚层海相火山岩系和沉积建造组成。其内已经发现数十个火山岩型块状硫化物矿床,可划分为三种类型,即Cu(Fe)型(或红沟型)、Cu-Zn型(或蛇绿岩套型)及Cu-Pb-Zn型(或白艰厂型)。不同类型矿床分别形成于不同地质环境且趋向于在特定时-空范围产出:Cu(Fe)型矿床集中分布在南部达坂山成矿带,成矿与晚奥陶世双峰态细碧角斑岩系有关,矿床形成于弧间或弧后盆地环境;Cu-Zn型矿床分布在北部九个泉—错沟、猪嘴哑吧一银硐沟矿带,与早—中奥陶世蛇绿岩套有关,矿床形成于大洋扩张构造环境;Cu-Pb-Zn型矿床集中分布在祁连、白银成矿区,矿床产出与中寒武世中酸性石英角斑凝灰岩有关,形成于优地槽发展早期阶段裂谷岛弧环境。  相似文献   

15.
Most attention has been given to the geology of the extensive VMS and subordinate precious metals mineralization in the Skellefte district. Less attention has been given to indications of deep-seated origins of felsic and mafic/ultramafic volcanic rocks; of VMS and precious metals mineralizing fluids; and the primary origins of these metals. A holistic view of the significance of mafic/ultramafic volcanic rocks to both the geotectonic evolution of the area and the existence of its important base and precious metals deposits has never been presented. These subjects are discussed in this investigation.Primitive mantle normalized spider diagrams of rare-earth-elements (REE) distinguish two groups of mafic/ultramafic volcanic rocks, each with distinct geochemical characteristics: a mid-ocean-ridge “MORB”-type, and a geochemically unusual and problematic calc–alkaline–basalt “CAB”-type which is the main subject of this investigation. The “MORB”-type mafic volcanic rocks are mostly older than the Skellefte Group felsic volcanic rocks hosting the VMS deposits, whereas the more primitive “CAB”-type mafic/ultramafic volcanic rocks are mostly younger.A common source for these “CAB”-type, mafic-(MgO wt.% < 14%) and ultramafic-(MgO wt.% > 14%) volcanic rocks is suggested by their similar and distinctive geochemical features. These are near-chondritic (Al-undepleted) Al2O3/TiO2 ratios; moderate to strong high-field-strength-element (HFSE) depletion; light-rare-earth-element (LREE) enrichment and moderate heavy-rare-earth-element (HREE) depletion. They outcrop throughout an area of at least 100 × 100 km. Gold mineralization is spatially associated with ultramafic volcanic rocks.Zr and Hf depletion has been shown to be associated with Al-depletion in mafic/ultramafic volcanic rocks elsewhere, and has been attributed to deep-seated partial melting in ascending mantle plumes. Zr and Hf depletion in “CAB”-type Al-undepleted mafic/ultramafic volcanic rocks is therefore unusual. The solution to this dilemma is suggested to be contamination of an Al-depleted mantle plume by felsic crustal rocks whereby Al-depleted ultramafic magmas become Al-undepleted. It will be argued that this model has the potential to explain previous observations of deep-seated origins; the spatial association of ultramafic volcanic rocks with occurrences of gold mineralization; and even the primary origin of metals in VMS deposits.  相似文献   

16.
Volcanogenic massive sulfide deposits contain variable amounts of gold, both in terms of average grade and total gold content, with some VMS deposits hosting world-class gold mines with more than 100?t Au. Previous studies have identified gold-rich VMS as having an average gold grade, expressed in g/t, exceeding the total abundance of base metals, expressed in wt.%. However, statistically meaningful criteria for the identification of truly anomalous deposits have not been established. This paper presents a more extensive analysis of gold grades and tonnages of 513 VMS deposits worldwide, revealing a number of important features in the distribution of the data. A large proportion of deposits are characterized by a relatively low gold grade (<2?g/t), with a gradual decrease in frequency towards maximum gold grades, defining a log-normal distribution. In the analysis presented in this paper, the geometric mean and geometric standard deviation appear to be the simplest metric for identifying subclasses of VMS deposits based on gold grade, especially when comparing deposits within individual belts and districts. The geometric mean gold grade of 513 VMS deposits worldwide is 0.76?g/t; the geometric standard deviation is +2.70?g/t Au. In this analysis, deposits with more than 3.46?g/t Au (geometric mean plus one geometric standard deviation) are considered auriferous. The geometric mean gold content is 4.7?t Au, with a geometric standard deviation of +26.3?t Au. Deposits containing 31?t Au or more (geometric mean plus one geometric standard deviation) are also considered to be anomalous in terms of gold content, irrespective of the gold grade. Deposits with more than 3.46?g/t Au and 31?t Au are considered gold-rich VMS. A large proportion of the total gold hosted in VMS worldwide is found in a relatively small number of such deposits. The identification of these truly anomalous systems helps shed light on the geological parameters that control unusual enrichment of gold in VMS. At the district scale, the gold-rich deposits occupy a stratigraphic position and volcanic setting that commonly differs from other deposits of the district possibly due to a step change in the geodynamic and magmatic evolution of local volcanic complexes. The gold-rich VMS are commonly associated with transitional to calc-alkaline intermediate to felsic volcanic rocks, which may reflect a particularly fertile geodynamic setting and/or timing (e.g., early arc rifting or rifting front). At the deposit scale, uncommon alteration assemblages (e.g., advanced argillic, aluminous, strongly siliceous, or potassium feldspar alteration) and trace element signatures may be recognized (e.g., Au?CAg?CAs?CSb ± Bi?CHg?CTe), suggesting a direct magmatic input in some systems.  相似文献   

17.
郭云峰  安芳 《世界地质》2018,37(2):436-446
别子型矿床最早形成于古元古代,并在显生宙海沟环境或弧前盆地广泛发育,其成矿区域发育厚层沉积岩地层,覆盖在火山岩之上,对成矿流体物质交换和金属元素富集有重要意义。别子型块状硫化物矿床下盘发育强烈的黄铁绢英岩化,而上盘仅发育微弱的绿泥石化、碳酸盐化。矿床常呈单个矿体产出或2~3个矿体连生,剖面上,由下至上表现为枕状玄武岩→块状含铜黄铁矿矿石→块状、条带状燧石黄铁矿矿石→块状碧玉岩。别子型矿床的火山岩围岩多为钙碱性系列,少量拉斑系列,与活动大陆边缘的岛弧火山岩具有相似的微量和稀土元素地球化学特征。成矿流体中的硫为幔源硫和海水硫的混合来源,成矿元素来源为幔-壳混合源。  相似文献   

18.
《Ore Geology Reviews》2006,28(1-4):203-237
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   

19.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   

20.
Criteria for the identification of ancient volcanic arcs   总被引:1,自引:0,他引:1  
Michael O. Garcia 《Earth》1978,14(2):147-165
Characteristic features of recent volcanic arcs must be preserved in the rock record to be useful in determining the magmatic affinities of metavolcanic rocks. This paper reviews criteria suggested by others, and proposes new criteria for the recognition of ancient volcanic arc complexes. Major element abundances, which discriminate magma types in recent volcanic rocks, are very susceptible to modification during low-grade metamorphism, and therefore are of limited value for determining magmatic affinities of altered volcanic rocks. Ti and Zr, Cr and the rare-earth elements, are only slightly affected by low-grade metamorphism. These elements show distinctive trends that allow ocean-floor basalts to be discriminated from most volcanic arc basalts. Clinopyroxene phenocrysts are commonly the only unaltered remnant phase present in metavolcanic rocks. Compositions of clinopyroxene phenocrysts from a suite of fractionated volcanic rocks can be employed as a petrogenetic indicator, because each magma series displays a distinctive CaFeMg trend during differentiation. The much greater abundance of pyroclastic volcanic rocks versus flows in modern volcanic are sequences is a preservable criterion for identifying ancient volcanic arcs. Interbedded with the pyroclastic volcanic rocks are thick deposits of graywackes and mudstones. The volcanic arc deposits are overprinted by high-temperature/low-pressure metamorphism. Parallel to and on the seaward side of the volcanic arc metamorphic belt is a belt of low-temperature/high-pressure metamorphic rocks. These two metamorphic belts comprise a paired metamorphic belt that is diagnostic of Pacific-type convergent plate margins. These criteria together distinguish volcanic arc deposits from other volcanic—sedimentary deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号